The Cryosphere, 12, 3511–3534, 2018 https://doi.org/10.5194/tc-12-3511-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM framework Nicole-Jeanne Schlegel1, Helene Seroussi1, Michael P. Schodlok1, Eric Y. Larour1, Carmen Boening1, Daniel Limonadi1, Michael M. Watkins1, Mathieu Morlighem2, and Michiel R. van den Broeke3 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 2University of California, Irvine, Department of Earth System Science, Irvine, CA, USA 3Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht University, Utrecht, the Netherlands Correspondence: Nicole-Jeanne Schlegel (
[email protected]) Received: 16 May 2018 – Discussion started: 1 June 2018 Revised: 18 October 2018 – Accepted: 26 October 2018 – Published: 12 November 2018 Abstract. Estimating the future evolution of the Antarctic and the region with the largest potential for future sea level Ice Sheet (AIS) is critical for improving future sea level contribution (297 mm). In contrast, under a more plausible rise (SLR) projections. Numerical ice sheet models are in- forcing informed regionally by literature and model sensitiv- valuable tools for bounding Antarctic vulnerability; yet, few ity studies, the Ronne basin has a greater potential for local continental-scale projections of century-scale AIS SLR con- increases in ice shelf basal melt rates.