A-Otqpterus Dolloi) Supports Its Phylogenetic Position As a Close Relative of Land Vertebrates

Total Page:16

File Type:pdf, Size:1020Kb

A-Otqpterus Dolloi) Supports Its Phylogenetic Position As a Close Relative of Land Vertebrates Copyright 0 1996 by the Genetics Society of America The Complete Nucleotide Sequence of the Mitochondrial Genome of the Lungfish (A-otqPterus dolloi) Supports Its Phylogenetic Position as a Close Relative of Land Vertebrates Rafael Zardoya and Axel Meyer Department of Ecology and Evolution and Program in Genetics, State University of New York, Stony Brook, New York 11 794-5245 Manuscript received June 10, 1995 Accepted for publication January 13, 1996 ABSTRACT The complete DNA sequence (16,646 bp) of the mitochondrial genome of the African lungfish, Protopterusdolloi, was determined. The evolutionary position of lungfish as possibly the closest living relative among fish of land vertebrates made its mitochondrial DNA sequence particularly interesting. Its mitochondrial gene order conforms to the consensus vertebrate gene order. Several sequence motifs and secondary structures likely involved inthe regulation of the initiation of replication and transcription of the mitochondrial genome are conserved in the lungfish and are more similar to those of land vertebrates than those of ray-finned fish. A novel feature discovered is that the putative origin of L- strand replication partially overlaps the adjacent tRNAcys.The phylogenetic analyses of genes coding for tRNAs and proteins confirm the intermediate phylogenetic position of lungfish between ray-finned fishes and tetrapods. The complete nucleotide sequence of the African lungfish mitochondrial genome was used to estimate which mitochondrial genes are most appropriate to elucidate deep branch phyloge- nies. Only a combined set of either protein or tRNA mitochondrial genes (but not each gene alone) is able to confidently recover the expected phylogeny among vertebrates that have diverged up to but not over -400 mya. HE transition from life in water to life on land, tologists, comparative morphologists and recently de- T -360 mya (BENTON1990), was one of the most velopmental biologists. consequential events in the history of vertebrates. It was The other extant groupof lobe-finned fish, the coe- accompanied by a variety of refined morphological and lacanths were believed to have gone extinct -80 mya, physiological modifications, e.g., reductions and rear- but in 1938, the only surviving species of this lineage rangements of the skull bones and modifications of of fishes was discovered off the coast of East Africa. swimming fins into load-bearing limbs (e.g., PANCHEN Since its sensational rediscovery, the coelacanth is of- and SMITHSON1987). Two groups of lobe-finned fish ten depicted in textbooks as the “missing link” be- (Table l),the lungfish and the coelacanth (Latimm’u tween fish and all land vertebrates i.e., amphibians, chalumnae) have both been implicated as the closest reptiles, birds and mammals (ROMER 1966).However, living relative of tetrapods (reviewed in MEYER 1995). many morphological, paleontological (e.g., reviewed Lungfish were discovered > 150 years ago (BISCHOFF in PATTERSON1980; ROSENet al. 1981), andmost mo- 1840) and for several reasons, e.g., they are obligate lecular (MEYERand WILSON1990; MEYERand DOLVEN airbreathers, were initially believed to be amphibians, 1992; HEDGESet al. 1993; reviewed in MEYER1995; but not fish. In the lower Devonian (-400 mya) lungfish see YOKOBORI et al. 1994) data suggest that lungfish were a speciesrich group that inhabited both marine and not the coelacanth are more closely related to and freshwater environments (e.g., reviewed in tetrapods.Hence, the nucleotide sequence of the CLOUTIER1991). However, onlya very small number of lungfish mitochondrial genome is of interest, both in “relict” species survive today. These are the Australian terms of the evolution of the mitochondrial gene or- lungfish, Neoceratodus forsteri, the South American lung- der in vertebrates and in terms of the phylogeny of fish, Lqbidosiren paradoxa, and four species in the genus land vertebrates. Protqterus from Africa. These living fossils are of inter- Until now, the complete mitochondrial DNA se- est to evolutionary biology since their morphology, quences of 19 vertebrate species have been reported. physiology, and biochemistry might be representative Thirteen of them are from mammals, four from fishes, of that of the common ancestor of all land vertebrates. but only one of an amphibian and one of a bird have Therefore, lungfish have been widely studied by paleon- been determined. Remarkably, the structure and orga- nization of vertebrate mitochondrial genomes is quite Corresponding authm: Rafael Zardoya, Department of Ecology and Evolution, State University of New York, Stony Brook, NY 117945245. conserved and only minor rearrangements have been E-mail: [email protected] described for the chicken (DESIARDINSand Mows Genetics 142 1249-1263 (April, 1996) 1250 R. Zardoya and A. Meyer TABLE 1 HindIlI Systematic position of lungfish Class: Osteichthyes (bony fish) Subclass: Actinopterygii (ray-finned fish) HindllI Chondrostei (sturgeon, Acipenser; bichir, Polypterus) Neopterygii (gar, Lepisosteus; bowfish, Amia; modern ray-finned fish, Teleostei) Protopterus dolloi \:\ Subclass: Sarcopterygii (lobe-finned fish) Actinistia (coelacanth, Latimeria) Rhipidistia Dipnoi (lungfish) Porolepiformes" Osteolepiformes" Tetrapoda (land vertebrates) Lissamphibia (modern amphibians) Amniota (reptiles, birds, mammals) EcoRI /} 2 \ Modified from CARROIL(1988) and AHIBERG (1991). Posi- Hind111 EroRl tion of lungfish in bold. " Extinct. FIGURE1 .-Restriction map and gene organization of the Protopterus dolloi mitochondrial genome. All protein coding 1990) and the opossum ( JANKE et al. 1994). Changes genes are encodedby the H-strand with the exception of iW6, which is coded by the Lstrand. Each tRNA gene is identified in gene order seem to be associated with the potential by the single letter amino acid code and depicted according capability of tRNAs to translocate, although sometimes to the coding strand. Only the EcoRI and Hind111 restriction other genes are involved in transpositions as well. It is sites used for cloning are shown. not yet clear when the establishment of the vertebrate consensus gene order occurred during their evolution. MATERIALSAND METHODS The lamprey, one of the earliest vertebrates, has a pecu- Mitochondrial DNA was purified from fresh eggs of a single liar gene order (LEEand KOCHER 1995). Although it individual of the African lungfish (Protopterus dolloi) as pre- is similar to that of other vertebrates, it has enough viously described (ZARDOYAet al. 1995a). After homogeniza- tion, intact nuclei and cellular debris were removed by a low- differences (i.e., rather than one major noncoding two speed centrifugation (1000 X g). Mitochondria were pelleted regions, the missing 01,in the WANCY region, and by spinning at 10,000 X g for 20 min and subjected to a translocations of cytochrome b, and tRNApr", tRNA?"", standard alkaline lysis procedure followed by a phenol/chlo- and tRNA"'" are found)to be considered to bea unique roformextraction. The isolated mtDNA was cleaved with and possibly a derived condition from the vertebrate EcoRI and HindIII restriction enzymes (see Figure 1 for posi- tions of restriction sites). Three EcoRI fragments of 7.4, 3.1 consensus mitochondrial gene order. Despite the slow and 0.7 kb and five HindIII fragments of 3.3, 2.9, 2.9, 2.2 and rate of evolution of gene order, nucleotide sequence 1.1 kb were cloned into pUC18 covering the entire lungfish evolution of animal mitochondrial DNA is rapid. The mtDNA molecule. In addition, the 7.4-kb EcoRI fragment was dynamic evolution of mitochondrial DNA sequences subcloned with Suu3A to facilitate sequencing. occurs through the accumulation of point mutations Plasmid DNA was extracted from each clone using a Magic and make them particularly valuable for estimating phy- miniprep kit (Promega). After ethanol precipitation, cloned DNA was used as template for Taq Dye Deoxy Terminator logenetic relationships among closely related species cycle-sequencing reactions (Applied Biosystems Inc.) follow- (BROWNet al. 1979). However, not all mitochondrial ing manufacturer's instructions. Sequencing was performed genes evolve at the same rate (e.g., reviewed in MEYER with an automated DNA sequencer (Applied Biosystems 373A 1993), and some genes are more appropriate than oth- Stretch). Sequences were obtained using both M13 universal ers for inferring phylogenetic relationships among dis- sequencing primers and 40 specific oligonucleotide primers. The sequences obtained from each clone were -350 bp in tantly related species. length and eachsequence overlapped the nextcontig by We determined the complete nucleotide sequence -100 bp. In no case were differences in sequence observed and the gene order of the African lungfish mitochon- between the overlapping regions. The location and sequence drial genome. The aims of this study were to reconstruct of these primers will be provided by the authors uponrequest. mitochondrial genome evolution, estimate which mito- Sequence data were analyzed by use of the GCG program package (DEVEREUXet al. 1984) and alignments and phyloge- chondrial genes (tRNA, rRNA, or proteincoding) are netic analyses were performed using CLUSTAL V (HIGGINS most appropriate to elucidate deep branch phyloge- and SHARP1989), PAUP Version3.1.1 (SWOFFORD 199S), nies, and clarify lungfish relationships to tetrapods and PHYLIP Version 3.5 (FELSENSTEIN1989), and MOLPHY Ver- to ray-finned fish (Actinopterygii, Table 1).We are pres- sion 2.2 (ADACHI and HASEWAGA,1992). ently
Recommended publications
  • RESPIRATORY CONTROL in the LUNGFISH, NEOCERATODUS FORSTERI (KREFT) KJELL JOHANSEN, CLAUDE LENFANT and GORDON C
    Comp. Biochem. Physiol., 1967, Vol. 20, pp. 835-854 RESPIRATORY CONTROL IN THE LUNGFISH, NEOCERATODUS FORSTERI (KREFT) KJELL JOHANSEN, CLAUDE LENFANT and GORDON C. GRIGG Abstract-1. Respiratory control has been studied in the lungfish, Neoceratodus forsteri by measuring ventilation (Ve), oxygen uptake (VO2), per cent O2 extraction from water, breathing rates of branchial and aerial respiration and changes in blood gas and pulmonary gas composition during exposure to hypoxia and hypercarbia. 2. Hypoxic water represents a strong stimulus for compensatory increase in both branchial and aerial respiration. Water ventilation increases by a factor of 3 or 4 primarily as a result of increased depth of breathing. 3. The ventilation perfusion ratio decreased during hypoxia because of a marked increase in cardiac output. Hypoxia also increased the fraction of total blood flow perfusing the lung. Injection of nitrogen into the lung evoked no compensatory changes. 4. It is concluded that the chemoreceptors eliciting the compensatory changes are located on the external side facing the ambient water or in the efferent branchial blood vessels. 5. Elevated pCO2 in the ambient water depressed the branchial respiration but stimulated aerial respiration. 6. It is suggested that the primary regulatory effect of the response to increased ambient pCO2 is to prevent CO2 from entering the animal, while the secondary stimulation of air breathing is caused by hypoxic stimulation of chemoreceptors located in the efferent branchial vessels. INTRODUCTION I t i s generally accepted that vertebrates acquired functional lungs before they possessed a locomotor apparatus for invasion of a terrestrial environment. Shortage of oxygen in the environment is thought to have been the primary driving force behind the development of auxiliary air breathing.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Conservation and Ecology of Marine Forage Fishes— Proceedings of a Research Symposium, September 2012
    Conservation and Ecology of Marine Forage Fishes— Proceedings of a Research Symposium, September 2012 Open-File Report 2013–1035 U.S. Department of the Interior U.S. Geological Survey Cover: Upper Left: Herring spawn, BC coast – Milton Love, “Certainly More Than You Want to Know About the Fishes of the Pacific Coast,” reproduced with permission. Left Center: Tufted Puffin and sand lance (Smith Island, Puget Sound) – Joseph Gaydos, SeaDoc Society. Right Center: Symposium attendants – Tami Pokorny, Jefferson County Water Resources. Upper Right: Buried sand lance – Milton Love, “Certainly More Than You Want to Know About the Fishes of the Pacific Coast,” reproduced with permission. Background: Pacific sardine, CA coast – Milton Love, “Certainly More Than You Want to Know About the Fishes of the Pacific Coast,” reproduced with permission. Conservation and Ecology of Marine Forage Fishes— Proceedings of a Research Symposium, September 2012 Edited by Theresa Liedtke, U.S. Geological Survey; Caroline Gibson, Northwest Straits Commission; Dayv Lowry, Washington State Department of Fish and Wildlife; and Duane Fagergren, Puget Sound Partnership Open-File Report 2013–1035 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Liedtke, Theresa, Gibson, Caroline, Lowry, Dayv, and Fagergren, Duane, eds., 2013, Conservation and Ecology of Marine Forage Fishes—Proceedings of a Research Symposium, September 2012: U.S.
    [Show full text]
  • Bering Sea Integrated Ecosystem Research Program
    NORTH PACIFIC RESEARCH BOARD BERING SEA INTEGRATED ECOSYSTEM RESEARCH PROGRAM FINAL REPORT Ichthyoplankton: horizontal, vertical, and temporal distribution of larvae and juveniles of Walleye Pollock, Pacific Cod, and Arrowtooth Flounder, and transport pathways between nursery areas NPRB BSIERP Project B53 Final Report Janet Duffy-Anderson1, Franz Mueter2, Nicola Hillgruber2, Ann Matarese1, Jeffrey Napp1, Lisa Eisner3, T. Smart4, 5, Elizabeth Siddon2, 1, Lisa De Forest1, Colleen Petrik2, 6 1Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115, USA 2University of Alaska Fairbanks, School of Fisheries and Ocean Sciences, 17101 Point Lena Loop Road, Juneau, AK 99801 USA 3Ted Stevens Marine Research Institute, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 17109 Pt. Lena Loop Road, Juneau, AK 99801, USA 4School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195-5020, USA 5Present affiliation: Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, South Carolina 29422, USA 6Present affiliation: UC Santa Cruz, Institute of Marine Sciences, 110 Shaffer Rd., Santa Cruz, CA 95060, USA December 2014 1 Table of Contents Page Abstract ........................................................................................................................................................... 3 Study Chronology ..........................................................................................................................................
    [Show full text]
  • Barbatula Leoparda (Actinopterygii, Nemacheilidae), a New Endemic Species of Stone Loach of French Catalonia
    Scientific paper Barbatula leoparda (Actinopterygii, Nemacheilidae), a new endemic species of stone loach of French Catalonia by Camille GAULIARD (1), Agnès DETTAI (2), Henri PERSAT (1, 3), Philippe KEITH (1) & Gaël P.J. DENYS* (1, 4) Abstract. – This study described a new stone loach species in France, Barbatula leoparda, which is endemic to French Catalonia (Têt and Tech river drainages). Seven specimens were compared to 49 specimens of B. bar- batula (Linnaeus, 1758) and 71 specimens of B. quignardi (Băcescu-Meşter, 1967). This new species is char- acterized by the presence of blotches on the belly and the jugular area in individuals longer than 47 mm SL and by a greater interorbital distance (35.5 to 41.8% of the head length). We brought moreover the sequence of two mitochondrial markers (COI and 12S, respectively 652 and 950 bp) of the holotype, which are well distinct from all other species, for molecular identifications. This discovery is important for conservation. Résumé. – Barbatula leoparda (Actinopterigii, Nemacheilidae), une nouvelle espèce endémique de loche fran- che en Catalogne française. © SFI Submitted: 4 Jun. 2018 Cette étude décrit une nouvelle espèce de loche franche en France, Barbatula leoparda, qui est endémique Accepted: 23 Jan. 2019 Editor: G. Duhamel à la Catalogne française (bassins de la Têt et du Tech). Sept spécimens ont été comparés à 49 spécimens de B. barbatula (Linnaeus, 1758) et 71 spécimens de B. quignardi (Băcescu-Meşter, 1967). Cette nouvelle espèce est caractérisée par la présence de taches sur le ventre et dans la partie jugulaire pour les individus d’une taille supérieure à 47 mm LS et par une plus grande distance inter-orbitaire (35,5 to 41,8% de la longueur de la tête).
    [Show full text]
  • Gene Nomenclature System for Rice
    Rice (2008) 1:72–84 DOI 10.1007/s12284-008-9004-9 Gene Nomenclature System for Rice Susan R. McCouch & CGSNL (Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative) Received: 11 April 2008 /Accepted: 3 June 2008 /Published online: 15 August 2008 # The Author(s) 2008 Abstract The Committee on Gene Symbolization, Nomen- protein sequence information that have been annotated and clature and Linkage (CGSNL) of the Rice Genetics Cooper- mapped on the sequenced genome assemblies, as well as ative has revised the gene nomenclature system for rice those determined by biochemical characterization and/or (Oryza) to take advantage of the completion of the rice phenotype characterization by way of forward genetics. With genome sequence and the emergence of new methods for these revisions, we enhance the potential for structural, detecting, characterizing, and describing genes in the functional, and evolutionary comparisons across organisms biological community. This paper outlines a set of standard and seek to harmonize the rice gene nomenclature system procedures for describing genes based on DNA, RNA, and with that of other model organisms. Newly identified rice genes can now be registered on-line at http://shigen.lab.nig. ac.jp/rice/oryzabase_submission/gene_nomenclature/. The current ex-officio member list below is correct as of the date of this galley proof. The current ex-officio members of CGSNL (The Keywords Oryza sativa . Genome sequencing . Committee on Gene Symbolization, Nomenclature and Linkage) are: Gene symbolization Atsushi Yoshimura from the Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan, email: [email protected] Guozhen Liu from the Beijing Institute of Genomics of the Chinese Introduction Academy of Sciences, Beijing, People’s Republic of China, email: [email protected] The biological community is moving towards a universal Yasuo Nagato from the Graduate School of Agricultural and Life system for the naming of genes.
    [Show full text]
  • Loaches 2 in and Your Final Choices Are All Compatible
    Checklist Never release your aquarium How to care for... Before purchase make sure that: animals or plants into the wild Never release an animal or plant bought for a home aquarium into the wild. It is illegal and for most fish species 1 You have the appropriate equipment and position for the aquarium. this will lead to an untimely and possibly lingering death because they are not native to this country. Any animals or You have researched all the species you are interested plants that do survive might be harmful to the environment. Loaches 2 in and your final choices are all compatible. You are familiar with how to transport and release Important things to remember 3 Always buy... your fish. test kits and regularly check the water for ammonia, nitrite, nitrate and pH. This will allow you to make sure the water in You are aware of the daily, weekly and monthly 4 your aquarium is not causing welfare problems for your fish. maintenance your aquarium will require. Establish a routine... 5 You are prepared to look after your fish properly for for testing the water in your aquarium. Record your results the duration of their life. to enable you to highlight fluctuations quickly. Also check 36 Tropical freshwater fish the temperature of the water. Equipment Maintain... 1 Glass or plastic aquarium the water in the aquarium within the accepted parameters highlighted in this leaflet. You may need to do regular water Gravel cleaner 2 changes to achieve this. 3 Water testing kit Always wash your hands... 4 Tap water conditioner making sure to rinse off all soap residues, before putting them into your aquarium.
    [Show full text]
  • Sight for Sore Eyes: Ancient Fish See Colour 19 September 2005
    Sight for sore eyes: ancient fish see colour 19 September 2005 The Australian lungfish - one of the world’s oldest pigments, are bigger in lungfish than for any other fishes and related to our ancient ancestors - may animal with a backbone. This probably makes them have been viewing rivers in technicolour long more sensitive to light. before dinosaurs roamed the Earth. “We keep discovering ways in which these animals Recent work by postgraduate student Helena are quite different from other fish,” Helena says. Bailes at the University of Queensland Australia, “Their eyes seem designed to optimise both has found these unusual fish have genes for five sensitivity and colour vision with large cells different forms of visual pigment in their eyes. containing different visual pigments.” Humans only have three. She now is hoping that behavioural research can Helena is one of 13 early-career researchers who find out how these fish are using their eyes for have presented their work to the public and the colour vision in the wild. media for the first time as part of the national program Fresh Science. “We may then learn what Queensland rivers look like to some of their oldest inhabitants, before those Night and day (colour) vision are controlled by inhabitants are wiped out,” Bailes says. different light sensing cells known respectively as rods and cones. Humans have a single type of rod and three types of cone, each containing a different pigment gene tuned to red, green and blue wavelengths. Lungfish possess two additional pigments that were lost in mammals, Bailes says.
    [Show full text]
  • Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs
    little fish BIG IMPACT Managing a crucial link in ocean food webs A report from the Lenfest Forage Fish Task Force The Lenfest Ocean Program invests in scientific research on the environmental, economic, and social impacts of fishing, fisheries management, and aquaculture. Supported research projects result in peer-reviewed publications in leading scientific journals. The Program works with the scientists to ensure that research results are delivered effectively to decision makers and the public, who can take action based on the findings. The program was established in 2004 by the Lenfest Foundation and is managed by the Pew Charitable Trusts (www.lenfestocean.org, Twitter handle: @LenfestOcean). The Institute for Ocean Conservation Science (IOCS) is part of the Stony Brook University School of Marine and Atmospheric Sciences. It is dedicated to advancing ocean conservation through science. IOCS conducts world-class scientific research that increases knowledge about critical threats to oceans and their inhabitants, provides the foundation for smarter ocean policy, and establishes new frameworks for improved ocean conservation. Suggested citation: Pikitch, E., Boersma, P.D., Boyd, I.L., Conover, D.O., Cury, P., Essington, T., Heppell, S.S., Houde, E.D., Mangel, M., Pauly, D., Plagányi, É., Sainsbury, K., and Steneck, R.S. 2012. Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs. Lenfest Ocean Program. Washington, DC. 108 pp. Cover photo illustration: shoal of forage fish (center), surrounded by (clockwise from top), humpback whale, Cape gannet, Steller sea lions, Atlantic puffins, sardines and black-legged kittiwake. Credits Cover (center) and title page: © Jason Pickering/SeaPics.com Banner, pages ii–1: © Brandon Cole Design: Janin/Cliff Design Inc.
    [Show full text]
  • BMC Ecology Biomed Central
    BMC Ecology BioMed Central Research article Open Access Visual ecology of the Australian lungfish (Neoceratodus forsteri) Nathan S Hart*1, Helena J Bailes1,2, Misha Vorobyev1,3, N Justin Marshall1 and Shaun P Collin1 Address: 1School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia, 2Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK and 3Department of Optometry and Vision Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand Email: Nathan S Hart* - [email protected]; Helena J Bailes - [email protected]; Misha Vorobyev - [email protected]; N Justin Marshall - [email protected]; Shaun P Collin - [email protected] * Corresponding author Published: 18 December 2008 Received: 27 August 2008 Accepted: 18 December 2008 BMC Ecology 2008, 8:21 doi:10.1186/1472-6785-8-21 This article is available from: http://www.biomedcentral.com/1472-6785/8/21 © 2008 Hart et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The transition from water to land was a key event in the evolution of vertebrates that occurred over a period of 15–20 million years towards the end of the Devonian. Tetrapods, including all land-living vertebrates, are thought to have evolved from lobe-finned (sarcopterygian) fish that developed adaptations for an amphibious existence.
    [Show full text]
  • Systematic Review of the Genetics of Sudden Unexpected Death in Epilepsy: Potential Overlap with Sudden Cardiac Death and Arrhythmia-Related Genes C
    SYSTEMATIC REVIEW AND META-ANALYSIS Systematic Review of the Genetics of Sudden Unexpected Death in Epilepsy: Potential Overlap With Sudden Cardiac Death and Arrhythmia-Related Genes C. Anwar A. Chahal, MBChB; Mohammad N. Salloum, MD; Fares Alahdab, MD; Joseph A. Gottwald, PharmD; David J. Tester, BS; Lucman A. Anwer, MD; Elson L. So, MD; Mohammad Hassan Murad, MD, MPH; Erik K. St Louis, MD, MS; Michael J. Ackerman, MD, PhD; Virend K. Somers, MD, PhD Background-—Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related death. SUDEP shares many features with sudden cardiac death and sudden unexplained death in the young and may have a similar genetic contribution. We aim to systematically review the literature on the genetics of SUDEP. Methods and Results-—PubMed, MEDLINE Epub Ahead of Print, Ovid Medline In-Process & Other Non-Indexed Citations, MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, and Scopus were searched through April 4, 2017. English language human studies analyzing SUDEP for known sudden death, ion channel and arrhythmia-related pathogenic variants, novel variant discovery, and copy number variant analyses were included. Aggregate descriptive statistics were generated; data were insufficient for meta- analysis. A total of 8 studies with 161 unique individuals were included; mean was age 29.0 (ÆSD 14.2) years; 61% males; ECG data were reported in 7.5% of cases; 50.7% were found prone and 58% of deaths were nocturnal. Cause included all types of epilepsy. Antemortem diagnosis of Dravet syndrome and autism (with duplication of chromosome 15) was associated with 11% and 9% of cases.
    [Show full text]
  • A Genetic Screen for Genes That Impact Peroxisomes in Drosophila Identifies
    bioRxiv preprint doi: https://doi.org/10.1101/704122; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A genetic screen for genes that impact peroxisomes in Drosophila identifies candidate genes for human disease Hillary K. Graves1, Sharayu Jangam1, Kai Li Tan1, Antonella Pignata1, Elaine S. Seto1, Shinya Yamamoto1,2,3,4# and Michael F. Wangler1,3,4,# 1Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA 2Department of Neuroscience, BCM, Houston, TX 77030, USA 3Program in Developmental Biology, BCM, Houston, TX 77030, USA 4Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX 77030, USA #Corresponding authors: SY ([email protected]), MFW ([email protected]) Keywords: Drosophila, peroxisomes, BRD4, fs(1)h bioRxiv preprint doi: https://doi.org/10.1101/704122; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Peroxisomes are sub-cellular organelles that are essential for proper function of eukaryotic cells. In addition to being the sites of a variety of oxidative reactions, they are crucial regulators of lipid metabolism. Peroxisome loss or dysfunction leads to multi- system diseases in humans that strongly affects the nervous system.
    [Show full text]