WO 2017/060488 Al 13 April 2017 (13.04.2017) P O PCT

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/060488 Al 13 April 2017 (13.04.2017) P O PCT (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/060488 Al 13 April 2017 (13.04.2017) P O PCT (51) International Patent Classification: (74) Agent: SRINIVASAN, Ravi Chandran; 14 South Square, A61K 31/522 (2006.01) A61P 17/00 (2006.01) Gray's Inn, London Greater London WC1R 5JJ (GB). A61P 13/00 (2006.01) A61P 29/00 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/EP20 16/074094 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (22) Date: International Filing DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 7 October 2016 (07. 10.2016) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (25) Filing Language: English KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (26) Publication Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (30) Priority Data: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 15382492.5 >October 201 5 (09. 10.2015) EP TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, zw. (71) Applicant: ALMIRALL, S.A. [ES/ES]; Ronda del Gener al Mitre 15 1, 08022 Barcelona (ES). (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (72) Inventors: AIGUADE BOSCH, Jose; c/o Laurea Miro GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 408-410, Sant Feliu de Llobregat, 08980 Barcelona (ES). TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, CONNOLLY, Stephen; 23 The Square, Tadcaster Road, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, York Yorkshire Y024 1UR (GB). EASTWOOD, Paul DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Robert; c/o Laurea Miro 408-410, Sant Feliu de Llobregat, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, 08980 Barcelona (ES). GOMEZ CASTILLO, Elena; c/o SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Laurea Miro 408-410, Sant Feliu de Llobregat, 08980 Bar GW, KM, ML, MR, NE, SN, TD, TG). celona (ES). MORENO MOLLO, Immaculada Montser- rat; c/o Laurea Miro 408-410, Sant Feliu de Llobregat, Published: 08980 Barcelona (ES). ROBERTS, Richard Spurring; — with international search report (Art. 21(3)) c/o Laurea Miro 408-410, Sant Feliu de Llobregat, 08980 Barcelona (ES). SEVILLA GOMEZ, Sara; Avda. 11 de Septiembre 12, 3°, 3a, Coloma de CervelkS, 08690 Bar celona (ES). (54) Title: NEW TRPAl ANTAGONISTS 00 00 o Formula (I) o (57) Abstract: The present invention relates to compounds of Formula (I), to the process for preparing such compounds and to their © use in the treatment of a pathological condition or disease susceptible to amelioration by TRPAl channel inhibition or antagonism. New TRPA1 antagonists FIELD OF THE INVENTION The present invention relates to novel compounds having TRPA1 activity. This invention also relates to pharmaceutical compositions containing them, processes for their preparation and their use in the treatment of several disorders. BACKGROUND OF THE INVENTION TRPA1 is a non-cation selective channel that belongs to the Transient Receptor Potential (TRP) superfamily. TRPA1 was first identified from cultured lung fibroblasts (Jaquemar ef a/. , 1999), and further studies indicated that TRPAI was highly expressed in sensory neurons of the dorsal root, trigeminal and nodose ganglia. In sensory neurons, TRPA1 expression is most prevalent in small diameter neurons where it colocalizes with markers of peptidergic nociceptors such as TRPV1 , calcitonin gene-related peptide (CGRP) and substance P (Kaneko e t al. , 201 3). Moreover, TRPA1 has been identified in the small intestine, colon, pancreas, skeletal muscle, heart, brain, and T and B-lymphocytes (Stokes e t al. , 2006). TRPA1 is activated by a variety of noxious stimuli, including cold temperatures and pungent natural compounds (e.g. , mustard, cinnamon and garlic). TRPA1 is also activated by environmental irritants, including isocyanates and heavy metals produced during the manufacturing of polymers, fertilizers and pesticides. Vehicle exhaust, burning vegetation and electrophilic tear gases used as incapacitating agents, are potent activators of TRPA1 . TRPA1 antagonists or inhibitors could also have applications in defence against such agents. TRPA1 is not only sensitive to electrophiles, but is also activated by oxidizing agents. Reactive oxygen species (ROS) are released by cells in response to tissue damage and can cause lipid peroxidation. Reactive carbonyl species like 4- hydroxynonenal (4-H NE) and 4-oxononenal (4-ON E), resulting from lipid peroxidation act directly on TRPA1 . ROS generated during inflammation excites airway sensory nerve fibres, and this response is largely reduced in TRPA1 -deficient mice. Another mechanism of TRPA1 activation is modulation by G protein-coupled receptors (GPCRs) through second-messenger signalling cascades. Prostaglandin PGE2 and bradykinin (BK) are indirect activators of TRPA1 (Bessac, 2008). TRPA1 has emerged as a key regulator of neuropeptide release and neurogenic inflammation . In mammals TRPA1 is expressed in a subset of C-fibres that express TrkA and TRPV1 . These afferent nerves have cell bodies in nodose, dorsal root ganglia (DRG) and trigeminal neurons (TG), and project to a variety of peripheral targets, including skin, airways, and gastrointestinal (Gl ) tract. TRP channels are present in both neuronal and non-neuronal cells in the skin where they are thought to play a key role in itch, regulation of barrier function , keratinocyte differentiation , hair growth , inflammation , and wound healing (reviewed in Moran e t al., 201 1). TRPA1 is an essential component of the pathways that promote histamine- independent itch and may act as a downstream transduction channel onto which multiple pathways converge. Among these, Mas-related GPCR from human (MrgprXI ) and mice (MrgprA3, MrgprCH ), receptors of chloroquine (A3, X 1) and BAM8-22 (C1 1, X 1) (Wilson 2011), TSLP-evoked scratching (Wilson e t al. , Cell 2013), dry skin-evoked chronic itch (Wilson e t al. 201 3), haptens-induced inflammation and itch in contact dermatitis (Liu e t al. , 2013), IL-1 3-induced itch in atopic dermatitis by IL-1 3 (Oh e t al. 201 3), IL-31 -induced Th cell-dependent itch (Cevikbas e t al., 201 3), and PGE2, bradykinin, PAR-2 ligands, etc. Overall, these studies suggest that TRPA1 would be key in the non-histaminergic itch . TRPA1 role as a pain sensor is well-established. A gain-of-function point mutation in TRPA1 was identified as the cause of Familial Episodic Pain Syndrome, a rare human pain disorder characterized by severe upper body pain triggered by fasting and physical stress (Kremeyer e t al. , 201 0). Taming these hyperactive TRP channels by antagonists may prove clinically beneficial. TRPA1 is required for the hypersensitivity that occurs in inflammatory pain models (Bautista e t al. 2013 , Julius 201 3). TRPA1 expression is increased by inflammatory mediators such as nerve growth factor (NGF) and following nerve injury or inflammation . Activation of TRPA1 has been shown to cause pain and neurogenic inflammation . Intrathecal TRPA1 antisense oligonucleotides administration suppressed inflammation and nerve injury-induced cold allodynia. TRPA1 gene knock-out studies showed impaired sensory function to noxious cold , chemical and mechanical stimuli, suggesting that TRPA1 represents an important target for development of therapeutics for inflammatory and neuropathic pain conditions (Obata e t al. 2003, McNamara e t al. 2007, Petrus e t al. 2007, Koivisto 2012). Disease models of diabetes strongly implicate TRPA1 in the inflammatory pain states associated with this metabolic disorder. Diabetic neuropathy affects more than 80% of all diabetes patients and can cause severe pain, tingling and numbing sensations, and disability. TRPA1 is a promising target for the treatment of this chronic diabetic neuropathy associated with peripheral demyelination and the degeneration of nerve fibres. In cancer research , there is an increasing appreciation of the role that chronic inflammation plays in tumorigenesis and of the presence of inflammation in the tumour microenvironment (Lorusso e t al. , 2008; reviewed in Bautista e t al. 2013). Neurogenic components of inflammation may contribute to pain and other debilitating consequences of cancer. TRPA1 may have a role in the pathogenesis of cancer and other inflammatory diseases. TRPA1 antagonists have been reported to revert oxaliplatin-induced neuropathic pain (Nativi, 2005). Some anaesthetics, such as isoflurane or lidocaine, also activate TRPA1 , suggesting a possible role for TRPAI antagonists in post-surgical pain . A number of studies suggest that TRPA1 is implicated in migraine (Edelmayer e t al., 201 2), and dental pain (Haas e t al., 201 1), as a result from neurogenic inflammation. The activation of trigeminal TG neurons through nasal application of TRPA1 activators causes a CGRP-dependent increase in meningeal blood flow, that has been clinically shown to correlate with migraine headache. TRPA1 could be considered a target for such conditions. There is growing evidence, generated using TRPA1 blockers and also TRPA1 -/- mice to support a role for TRPA1 in the pathogenesis of different airway diseases including chronic cough , asthma, and COPD (Nassini et al. , 201 2b). Several publications implicate TRPA1 in the generation of irritant-induced cough reflexes. Inhalation of a variety of TRPA1 agonists (acrolein , cinnamaldehyde, allyl isothiocyanate, crotonaldehyde) has been shown to produce a dose-dependent robust cough response in conscious guinea pigs and in humans (Andre e t al.
Recommended publications
  • CP.PMN.158 Netupitant and Palonosetron (Akynzeo)
    Clinical Policy: Netupitant and Palonosetron (Akynzeo), Fosnetupitant and Palonosetron (Akynzeo IV) Reference Number: CP.PMN.158 Effective Date: 09.01.06 Last Review Date: 02.21 Coding Implications Line of Business: HIM, Medicaid Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Netupitant/palonosetron (Akynzeo®) and fosnetupitant/palonosetron are fixed combination products of netupitant, a substance P/neurokinin 1 (NK1) receptor antagonist, and palonosetron hydrochloride, a serotonin (5-HT3) receptor antagonist. FDA Approved Indication(s) Akynzeo capsules are indicated in combination with dexamethasone in adults for the prevention of acute and delayed nausea and vomiting associated with initial and repeat courses of cancer chemotherapy, including, but not limited to, highly emetogenic chemotherapy. Akynzeo for injection is indicated in combination with dexamethasone in adults for the prevention of acute and delayed nausea and vomiting associated with initial and repeat courses of highly emetogenic cancer chemotherapy. Policy/Criteria Provider must submit documentation (such as office chart notes, lab results or other clinical information) supporting that member has met all approval criteria. It is the policy of health plans affiliated with Centene Corporation® that Akynzeo is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Prevention of Nausea and Vomiting Associated with Cancer Chemotherapy (must meet all): 1. Prescribed for the prevention of chemotherapy-induced nausea/vomiting; 2. Age ≥ 18 years; 3. If request is for Akynzeo capsules, member is scheduled to receive moderately to highly emetogenic cancer chemotherapy (see Appendix D); 4. If request is for Akynzeo for injection, member is scheduled to receive highly emetogenic cancer chemotherapy (see Appendix D); 5.
    [Show full text]
  • Fosaprepitant Dimeglumine (Emend® for Injection) Prior Authorization Drug Coverage Policy
    1 Fosaprepitant dimeglumine (Emend® for injection) Prior Authorization Drug Coverage Policy Effective Date: 9/1/2020 Revision Date: n/a Review Date: 3/13/20 Lines of Business: Commercial Policy type: Prior Authorization This Drug Coverage Policy provides parameters for the coverage of fosaprepitant dimeglumine. Consideration of medically necessary indications are based upon U.S. Food and Drug Administration (FDA) indications, recommended uses within the Centers of Medicare & Medicaid Services (CMS) five recognized compendia, including the National Comprehensive Cancer Network (NCCN) Drugs & Biologics Compendium (Category 1 or 2A recommendations), and peer-reviewed scientific literature eligible for coverage according to the CMS, Medicare Benefit Policy Manual, Chapter 15, section 50.4.5 titled, “Off-Label Use of Anti-Cancer Drugs and Biologics.” This policy evaluates whether the drug therapy is proven to be effective based on published evidence-based medicine. Drug Description 1 Fosaprepitant is a prodrug of aprepitant and accordingly, its antiemetic effects are attributable to aprepitant. Aprepitant is a selective high-affinity antagonist of human substance P/neurokinin 1 (NK1) receptors. Aprepitant has little or no affinity for serotonin (5-HT3), dopamine, and corticosteroid receptors, the targets of existing therapies for chemotherapy-induced nausea and vomiting (CINV). Aprepitant has been shown in animal models to inhibit emesis induced by cytotoxic chemotherapeutic agents, such as cisplatin, via central actions. Animal and human Positron Emission Tomography (PET) studies with aprepitant have shown that it crosses the blood brain barrier and occupies brain NK1 receptors. Animal and human studies show that aprepitant augments the antiemetic activity of the 5-HT3-receptor antagonist ondansetron and the corticosteroid dexamethasone and inhibits both the acute and delayed phases of cisplatin- induced emesis.
    [Show full text]
  • MASCC/ESMO ANTIEMETIC GUIDELINE 2016 with Updates in 2019
    1 ANTIEMETIC GUIDELINES: MASCC/ESMO MASCC/ESMO ANTIEMETIC GUIDELINE 2016 With Updates in 2019 Organizing and Overall Meeting Chairs: Matti Aapro, MD Richard J. Gralla, MD Jørn Herrstedt, MD, DMSci Alex Molassiotis, RN, PhD Fausto Roila, MD © Multinational Association of Supportive Care in CancerTM All rights reserved worldwide. 2 ANTIEMETIC GUIDELINES: MASCC/ESMO These slides are provided to all by the Multinational Association of Supportive Care in Cancer and can be used freely, provided no changes are made and the MASCC and ESMO logos, as well as date of the information are retained. For questions please contact: Matti Aapro at [email protected] Chair, MASCC Antiemetic Study Group or Alex Molassiotis at [email protected] Past Chair, MASCC Antiemetic Study Group 3 ANTIEMETIC GUIDELINES: MASCC/ESMO Consensus A few comments on this guideline set: • This set of guideline slides represents the latest edition of the guideline process. • This set of slides has been endorsed by the MASCC Antiemetic Guideline Committee and ESMO Guideline Committee. • The guidelines are based on the votes of the panel at the Copenhagen Consensus Conference on Antiemetic Therapy, June 2015. • Latest version: March 2016, with updates in 2019. 4 ANTIEMETIC GUIDELINES: MASCC/ESMO Changes: The Steering Committee has clarified some points: 2016: • A footnote clarified that aprepitant 165 mg is approved by regulatory authorities in some parts of the world ( although no randomised clinical trial has investigated this dose ). Thus use of aprepitant 80 mg in the delayed phase is only for those cases where aprepitant 125 mg is used on day 1. • A probable modification in pediatric guidelines based on the recent Cochrane meta-analysis is indicated.
    [Show full text]
  • Emend® (Fosaprepitant Dimeglumine)
    Emend® (fosaprepitant dimeglumine) (Intravenous) Document Number: IC-0036 Last Review Date: 04/01/2020 Date of Origin: 12/01/2011 Dates Reviewed: 03/2012, 06/2012, 09/2012, 12/2012, 03/2013, 06/2013, 09/2013, 12/2013, 03/2014, 06/2014, 09/2014, 12/2014, 03/2015, 05/2015, 08/2015, 11/2015, 02/2016, 05/2016, 08/2016, 11/2016, 02/2017, 05/2017, 08/2017, 11/2017, 02/2018, 05/2018, 04/2019, 04/2020 I. Length of Authorization Coverage is provided for six months and may be renewed. II. Dosing Limits A. Quantity Limit (max daily dose) [NDC unit]: Emend 150 mg powder for injection: 1 vial per 7 days B. Max Units (per dose and over time) [HCPCS Unit]: 150 billable units per 7 days III. Initial Approval Criteria1,2,3,4,5 Coverage is provided in the following conditions: Patient aged 6 months or older; AND Universal Criteria Patient is not taking pimozide concurrently; AND Prevention of Chemotherapy induced Nausea and vomiting (CINV) † Patient is receiving highly and/or moderately emetogenic chemotherapy (see HEC/MEC list below); AND Must be used in combination with a 5-HT3 antagonist such as ondansetron, granisetron, palonosetron, etc.; AND Must be used in combination with a corticosteroid such as dexamethasone Highly Emetogenic Chemotherapy (HEC) Carboplatin Carmustine Cisplatin Cyclophosphamide Dacarbazine Doxorubicin Epirubicin Ifosfamide Mechlorethamine Streptozocin Proprietary & Confidential © 2020 Magellan Health, Inc. Moderately Emetogenic Chemotherapy (MEC) Aldesleukin Amifostine Enfortumab vedotin Azacitidine Bendamustine Busulfan Clofarabine Cytarabine Dactinomycin Daunorubicin Dinutuximab Idarubicin Interferon alfa Irinotecan Melphalan Methotrexate Oxaliplatin Temozolomide Trabectedin Daunorubicin Liposomal; Cytarabine Liposomal Fam-trastuzumab deruxtecan The following regimens can be considered HEC: FOLFOX FOLFIRI FOLFIRINOX; AC (any anthracycline + FOLFOXIRI cyclophosphamide) † FDA-approved indication(s) IV.
    [Show full text]
  • Deciphering Emesis
    International Journal of Pharmaceutical Chemistry and Analysis 2021;8(1):19–24 Content available at: https://www.ipinnovative.com/open-access-journals International Journal of Pharmaceutical Chemistry and Analysis Journal homepage: https://www.ijpca.org/ Review Article Deciphering emesis 1, 2 Sunil Chaudhry *, Avisek Dutta 1Bioclinitech Technologies Pvt Ltd, Mumbai & GPATTutor.com,, India 2Cognizant Aolutions, Kolkata, West Bengal, India ARTICLEINFO ABSTRACT Article history: The incidence of nausea or vomiting changes much with etiopathogenesis. Multiple neurohumoural Received 04-03-2021 pathways lead to nausea and vomiting. The various classes of antiemetics target different pro-emetic Accepted 09-03-2021 pathways to alleviate nausea and vomiting. Some drugs target more than one pathway. It is demonstrated Available online 04-05-2021 that combination therapy is more effective than single anti-emetic agent. © This is an open access article distributed under the terms of the Creative Commons Attribution Keywords: License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and Vomiting reproduction in any medium, provided the original author and source are credited. Chemoreceptor trigger zone Aprepitant Cannabinoid receptor agonist 5 HT receptor antagonist Neurokinin receptor antagonists 1. Introduction 5. Refractory: Nausea and/or vomiting that occurs in subsequent chemotherapy cycles despite maximum Vomiting or emesis, is defined as the involuntary, forceful antiemetic protocol expulsion of the contents of stomach through the mouth and 6. Anticipatory: Nausea and/or vomiting that is sometimes from nose. triggered by sensory stimuli associated with chemotherapy administration. 1 2. Types of Vomiting Features of Cancer Chemotherapy induced nausea and 2.1. Vomiting centre vomiting: The chemoreceptor trigger zone in the Area postrema plays 1.
    [Show full text]
  • Rolapitant Improves Quality of Life of Patients Receiving Highly Or Moderately Emetogenic Chemotherapy
    Support Care Cancer (2017) 25:85–92 DOI 10.1007/s00520-016-3388-7 ORIGINAL ARTICLE Rolapitant improves quality of life of patients receiving highly or moderately emetogenic chemotherapy Martin Chasen1 & Laszlo Urban2 & Ian Schnadig3 & Bernardo Rapoport4 & Dan Powers5 & Sujata Arora5 & Rudolph Navari6 & Lee Schwartzberg7 & Cesare Gridelli8 Received: 4 April 2016 /Accepted: 17 August 2016 /Published online: 24 August 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract with no impact on daily life (total score >108 [range 18–126]). Purpose Addition of rolapitant to standard antiemetic therapy We performed a prespecified analysis of the MEC/ improved protection against chemotherapy-induced nausea anthracycline-cyclophosphamide (AC) study and a post hoc and vomiting (CINV) in phase 3 trials of patients receiving analysis of two pooled cisplatin-based HEC studies. highly emetogenic chemotherapy (HEC) or moderately Results In the pooled HEC studies, rolapitant significantly emetogenic chemotherapy (MEC). Here, we assessed the im- improved the FLIE total score (114.5 vs 109.3, p<0.001), pact of CINV on the daily lives of patients receiving HEC or nausea score (55.3 vs 53.5, p<0.05), and vomiting score MEC using the Functional Living Index-Emesis (FLIE). (59.2 vs 55.8, p<0.001) versus control; similar results were Methods In three double-blind phase 3 studies, patients re- observed in the MEC/AC study for FLIE total score (112.7 vs ceiving HEC or MEC were randomized 1:1 to receive oral 108.6, p < 0.001), nausea score (54.1 vs 52.3, p<0.05), and rolapitant 180 mg or placebo prior to chemotherapy plus 5- vomiting score (58.6 vs 56.3, p < 0.001).
    [Show full text]
  • HHS Template for Reports, with Instructions
    Texas Vendor Drug Program 1.1 Drug Use Criteria: Substance P/Neurokinin1 Receptor Antagonists Publication History 1. Developed December 2003. 2. Revised September 2020; September 2018; September 2016; May 2015; August 2013; June 2013; September 2011; October 2009; February 2006; January 2006. Notes: Information on indications for use or diagnosis is assumed to be unavailable. All criteria may be applied retrospectively; prospective application is indicated with an asterisk [*]. The information contained is for the convenience of the public. The Texas Health and Human Services Commission is not responsible for any errors in transmission or any errors or omissions in the document. Medications listed in the tables and non-FDA approved indications included in these retrospective criteria are not indicative of Vendor Drug Program formulary coverage. Prepared by: • Drug Information Service, UT Health San Antonio. • The College of Pharmacy, The University of Texas at Austin. 1 1 Dosage [*] Current therapies for chemotherapy-induced nausea/vomiting (CINV) and post- operative nausea and vomiting (PONV) target corticosteroid, dopamine, and serotonin (5-HT3) receptors. In the central nervous system, tachykinins and neurokinins play a role in some autonomic reflexes and behaviors. Aprepitant is a selective human substance P/neurokinin 1 (NK1) antagonist with a high affinity for NK1 receptors and little, if any, attraction for corticosteroid, dopamine, or 5-HT3 receptors. Rolapitant (Varubi®), the newest substance P/NK1 antagonist, is FDA- approved to prevent delayed CINV with initial and repeat chemotherapy courses including, but not limited to, highly emetogenic chemotherapy in adults. Combination therapy including netupitant, a substance P/NK1 antagonist and palonosetron, a selective 5-HT3 receptor antagonist (Akynzeo®), is now available to prevent acute and delayed CINV with initial and repeat chemotherapy courses including, but not limited to, highly emetogenic chemotherapy in adults.
    [Show full text]
  • The Effect of Intravenous Maropitant on Blood Pressure in Healthy Awake and Anesthetized Dogs
    Veterinary Clinical Sciences Publications Veterinary Clinical Sciences 2-27-2020 The effect of intravenous maropitant on blood pressure in healthy awake and anesthetized dogs Ting-Ting Chi Iowa State University, [email protected] Bonnie L. Hay Kraus Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/vcs_pubs Part of the Comparative and Laboratory Animal Medicine Commons, and the Small or Companion Animal Medicine Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ vcs_pubs/39. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Veterinary Clinical Sciences at Iowa State University Digital Repository. It has been accepted for inclusion in Veterinary Clinical Sciences Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The effect of intravenous maropitant on blood pressure in healthy awake and anesthetized dogs Abstract Objective To evaluate the effects of intravenous maropitant on arterial blood pressure in healthy dogs while awake and under general anesthesia. Design Experimental crossover study. Animals Eight healthy adult Beagle dogs. Procedure All dogs received maropitant (1 mg kg-1) intravenously under the following conditions: 1) awake with non-invasive blood pressure monitoring (AwNIBP), 2) awake with invasive blood pressure monitoring (AwIBP), 3) premedication with acepromazine (0.005 mg kg-1) and butorphanol (0.2 mg kg-1) intramuscularly followed by propofol induction and isoflurane anesthesia (GaAB), and 4) premedication with dexmedetomidine (0.005 mg kg-1) and butorphanol (0.2 mg kg-1) intramuscularly followed by propofol induction and isoflurane anesthesia (GaDB).
    [Show full text]
  • Safety of HTX-019 (Intravenous Aprepitant) and Fosaprepitant in Healthy Subjects
    Research Article For reprint orders, please contact: [email protected] Safety of HTX-019 (intravenous aprepitant) and fosaprepitant in healthy subjects Tom Ottoboni*,1, Michael Lauw2, Mary Rose Keller2,MattCravets3, Kimberly Manhard4, Neil Clendeninn‡,5 & Barry Quart6 1Pharmaceutical & Translational Sciences, Heron Therapeutics, Inc., 4242 Campus Point Court, Suite 200, San Diego, CA 92121, USA 2Clinical Operations, Heron Therapeutics, Inc., 4242 Campus Point Court, Suite 200, San Diego, CA 92121, USA 3Biometrics, Heron Therapeutics, Inc., 4242 Campus Point Court, Suite 200, San Diego, CA 92121, USA 4Drug Development, Heron Therapeutics, Inc., 4242 Campus Point Court, Suite 200, San Diego, CA 92121, USA 5Clinical, Heron Therapeutics, Inc., 4242 Campus Point Court, Suite 200, San Diego, CA 92121, USA 6Heron Therapeutics, Inc., 4242 Campus Point Court, Suite 200, San Diego, CA 92121, USA *Author for correspondence: Tel.: +1650 261 3003; Fax: +1650 365 6490; [email protected] ‡Employee at time of study, currently consultant to Heron Therapeutics, Inc. Aim: Evaluate safety of HTX-019, a novel polysorbate 80– and synthetic surfactant-free intravenous for- mulation of neurokinin 1 receptor antagonist aprepitant for chemotherapy-induced nausea and vom- iting. Methods: Two open-label, randomized, two-way crossover studies evaluated treatment-emergent adverse events (TEAEs) in 200 healthy subjects. Subjects received HTX-019 130 mg (30-min infusion) and fosaprepitant 150 mg (20- or 30-min infusion), with ≥7-day washout between doses. Results: Less than or equal to 30 min after start of infusion, TEAEs occurred in 5 (3%) HTX-019 and 30 (15%) fosaprepitant re- cipients. No HTX-019 recipients had infusion-site adverse events, versus 15 (8%) fosaprepitant recipients.
    [Show full text]
  • VARUBI™ (Rolapitant) Tablets, for Oral Use Initial U.S
    HIGHLIGHTS OF PRESCRIBING INFORMATION Interaction with CYP2D6 Substrates with a Narrow Therapeutic Index: The These highlights do not include all the information needed to use inhibitory effect of a single dose of VARUBI on CYP2D6 lasts at least 7 days VARUBI safely and effectively. See full prescribing information for and may last longer. Avoid use of pimozide; monitor for adverse reactions if VARUBI. concomitant use with other CYP2D6 substrates with a narrow therapeutic index cannot be avoided (4, 5.1, 7.1) VARUBI™ (rolapitant) tablets, for oral use Initial U.S. Approval: 2015 ___________________ ADVERSE REACTIONS ___________________ Most common adverse reactions (≥ 5%) are: __________________ INDICATIONS AND USAGE _________________ • Cisplatin Based Highly Emetogenic Chemotherapy: neutropenia and VARUBI™ is a substance P/neurokinin 1 (NK1) receptor antagonist indicated hiccups (6.1) in combination with other antiemetic agents in adults for the prevention of • Moderately Emetogenic Chemotherapy and Combinations of delayed nausea and vomiting associated with initial and repeat courses of Anthracycline and Cyclophosphamide: decreased appetite, neutropenia and emetogenic cancer chemotherapy, including, but not limited to, highly dizziness (6.1) emetogenic chemotherapy. (1) To report SUSPECTED ADVERSE REACTIONS, contact Tesaro at _______________ DOSAGE AND ADMINISTRATION ______________ 1-844-4-TESARO or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch. • The recommended dosage is 180 mg rolapitant administered approximately 1 to 2 hours prior to the start of chemotherapy (2) ___________________ DRUG INTERACTIONS____________________ • Administer in combination with dexamethasone and a 5-HT3 receptor • BCRP and P-gp Substrates with a Narrow Therapeutic Index: inhibition antagonist, see full prescribing information for dosing information (2) of BCRP and P-gp by VARUBI can increase plasma concentrations of the • No dosage adjustment for dexamethasone is required.
    [Show full text]
  • Rolapitant in the Current Management of Chemotherapy-Induced Nausea and Vomiting
    Review Supportive Care Rolapitant in the Current Management of Chemotherapy-induced Nausea and Vomiting Bernardo Rapoport,1,2 Pere Gascon,3 Florian Scotte,3 Karin Jordan,4 Massimo Di Maio,5 Sussanne Borjeson6 and Sam H Ahmedzai6 1. The Medical Oncology Centre of Rosebank, Johannesburg, South Africa; 2. Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; 3. Department of Medical Oncology and Supportive Care, Foch Hospital, Suresnes, France; 4. Department of Medicine V, Haematology, Oncology and Rheumatology, University of Heidelberg, Germany; 5. Department of Oncology, University of Turin, Ordine Mauriziano Hospital, Turin, Italy; 6. The University of Sheffield, NIHR National Speciality Lead for Cancer, Sheffield, UK hemotherapy-induced nausea and vomiting (CINV) has a severe detrimental effect on the quality of life of patients with cancer receiving chemotherapy, and remains one of the most feared adverse events associated with chemotherapy. However, physicians C and oncology nurses often underestimate the incidence of CINV, as well as the impact of this toxicity on patients’ daily lives. Many challenges remain in the prevention and treatment of CINV, particularly in the delayed phase. The 5‐hydroxytryptamine type 3 receptor antagonists (5‐HT3 RAs) have demonstrated efficacy in CINV control during the acute phase (≤24 hours) but have limited utility in the delayed phase (>24–120 hours). The more recently introduced neurokinin-1 (NK-1) RAs have represented a relevant improvement in the prevention of CINV associated with the administration of highly and moderately emetogenic chemotherapy, particularly in the delayed phase. One of these, rolapitant, when given as one dose on the first day of the chemotherapy cycle, has been shown to protect against CINV during the complete cycle of chemotherapy in randomised controlled trials, as well as being effective in multiple cycles of chemotherapy.
    [Show full text]
  • The Significance of NK1 Receptor Ligands and Their Application In
    pharmaceutics Review The Significance of NK1 Receptor Ligands and Their Application in Targeted Radionuclide Tumour Therapy Agnieszka Majkowska-Pilip * , Paweł Krzysztof Halik and Ewa Gniazdowska Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland * Correspondence: [email protected]; Tel.: +48-22-504-10-11 Received: 7 June 2019; Accepted: 16 August 2019; Published: 1 September 2019 Abstract: To date, our understanding of the Substance P (SP) and neurokinin 1 receptor (NK1R) system shows intricate relations between human physiology and disease occurrence or progression. Within the oncological field, overexpression of NK1R and this SP/NK1R system have been implicated in cancer cell progression and poor overall prognosis. This review focuses on providing an update on the current state of knowledge around the wide spectrum of NK1R ligands and applications of radioligands as radiopharmaceuticals. In this review, data concerning both the chemical and biological aspects of peptide and nonpeptide ligands as agonists or antagonists in classical and nuclear medicine, are presented and discussed. However, the research presented here is primarily focused on NK1R nonpeptide antagonistic ligands and the potential application of SP/NK1R system in targeted radionuclide tumour therapy. Keywords: neurokinin 1 receptor; Substance P; SP analogues; NK1R antagonists; targeted therapy; radioligands; tumour therapy; PET imaging 1. Introduction Neurokinin 1 receptor (NK1R), also known as tachykinin receptor 1 (TACR1), belongs to the tachykinin receptor subfamily of G protein-coupled receptors (GPCRs), also called seven-transmembrane domain receptors (Figure1)[ 1–3]. The human NK1 receptor structure [4] is available in Protein Data Bank (6E59).
    [Show full text]