Chapter 2 Measure Spaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Version of 21.8.15 Chapter 43 Topologies and Measures II The
Version of 21.8.15 Chapter 43 Topologies and measures II The first chapter of this volume was ‘general’ theory of topological measure spaces; I attempted to distinguish the most important properties a topological measure can have – inner regularity, τ-additivity – and describe their interactions at an abstract level. I now turn to rather more specialized investigations, looking for features which offer explanations of the behaviour of the most important spaces, radiating outwards from Lebesgue measure. In effect, this chapter consists of three distinguishable parts and two appendices. The first three sections are based on ideas from descriptive set theory, in particular Souslin’s operation (§431); the properties of this operation are the foundation for the theory of two classes of topological space of particular importance in measure theory, the K-analytic spaces (§432) and the analytic spaces (§433). The second part of the chapter, §§434-435, collects miscellaneous results on Borel and Baire measures, looking at the ways in which topological properties of a space determine properties of the measures it carries. In §436 I present the most important theorems on the representation of linear functionals by integrals; if you like, this is the inverse operation to the construction of integrals from measures in §122. The ideas continue into §437, where I discuss spaces of signed measures representing the duals of spaces of continuous functions, and topologies on spaces of measures. The first appendix, §438, looks at a special topic: the way in which the patterns in §§434-435 are affected if we assume that our spaces are not unreasonably complex in a rather special sense defined in terms of measures on discrete spaces. -
Ernst Zermelo Heinz-Dieter Ebbinghaus in Cooperation with Volker Peckhaus Ernst Zermelo
Ernst Zermelo Heinz-Dieter Ebbinghaus In Cooperation with Volker Peckhaus Ernst Zermelo An Approach to His Life and Work With 42 Illustrations 123 Heinz-Dieter Ebbinghaus Mathematisches Institut Abteilung für Mathematische Logik Universität Freiburg Eckerstraße 1 79104 Freiburg, Germany E-mail: [email protected] Volker Peckhaus Kulturwissenschaftliche Fakultät Fach Philosophie Universität Paderborn War burger St raße 100 33098 Paderborn, Germany E-mail: [email protected] Library of Congress Control Number: 2007921876 Mathematics Subject Classification (2000): 01A70, 03-03, 03E25, 03E30, 49-03, 76-03, 82-03, 91-03 ISBN 978-3-540-49551-2 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad- casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2007 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant pro- tective laws and regulations and therefore free for general use. Typesetting by the author using a Springer TEX macro package Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig Cover design: WMXDesign GmbH, Heidelberg Printed on acid-free paper 46/3100/YL - 5 4 3 2 1 0 To the memory of Gertrud Zermelo (1902–2003) Preface Ernst Zermelo is best-known for the explicit statement of the axiom of choice and his axiomatization of set theory. -
An Introduction to Measure Theory Terence
An introduction to measure theory Terence Tao Department of Mathematics, UCLA, Los Angeles, CA 90095 E-mail address: [email protected] To Garth Gaudry, who set me on the road; To my family, for their constant support; And to the readers of my blog, for their feedback and contributions. Contents Preface ix Notation x Acknowledgments xvi Chapter 1. Measure theory 1 x1.1. Prologue: The problem of measure 2 x1.2. Lebesgue measure 17 x1.3. The Lebesgue integral 46 x1.4. Abstract measure spaces 79 x1.5. Modes of convergence 114 x1.6. Differentiation theorems 131 x1.7. Outer measures, pre-measures, and product measures 179 Chapter 2. Related articles 209 x2.1. Problem solving strategies 210 x2.2. The Radamacher differentiation theorem 226 x2.3. Probability spaces 232 x2.4. Infinite product spaces and the Kolmogorov extension theorem 235 Bibliography 243 vii viii Contents Index 245 Preface In the fall of 2010, I taught an introductory one-quarter course on graduate real analysis, focusing in particular on the basics of mea- sure and integration theory, both in Euclidean spaces and in abstract measure spaces. This text is based on my lecture notes of that course, which are also available online on my blog terrytao.wordpress.com, together with some supplementary material, such as a section on prob- lem solving strategies in real analysis (Section 2.1) which evolved from discussions with my students. This text is intended to form a prequel to my graduate text [Ta2010] (henceforth referred to as An epsilon of room, Vol. I ), which is an introduction to the analysis of Hilbert and Banach spaces (such as Lp and Sobolev spaces), point-set topology, and related top- ics such as Fourier analysis and the theory of distributions; together, they serve as a text for a complete first-year graduate course in real analysis. -
Old Notes from Warwick, Part 1
Measure Theory, MA 359 Handout 1 Valeriy Slastikov Autumn, 2005 1 Measure theory 1.1 General construction of Lebesgue measure In this section we will do the general construction of σ-additive complete measure by extending initial σ-additive measure on a semi-ring to a measure on σ-algebra generated by this semi-ring and then completing this measure by adding to the σ-algebra all the null sets. This section provides you with the essentials of the construction and make some parallels with the construction on the plane. Throughout these section we will deal with some collection of sets whose elements are subsets of some fixed abstract set X. It is not necessary to assume any topology on X but for simplicity you may imagine X = Rn. We start with some important definitions: Definition 1.1 A nonempty collection of sets S is a semi-ring if 1. Empty set ? 2 S; 2. If A 2 S; B 2 S then A \ B 2 S; n 3. If A 2 S; A ⊃ A1 2 S then A = [k=1Ak, where Ak 2 S for all 1 ≤ k ≤ n and Ak are disjoint sets. If the set X 2 S then S is called semi-algebra, the set X is called a unit of the collection of sets S. Example 1.1 The collection S of intervals [a; b) for all a; b 2 R form a semi-ring since 1. empty set ? = [a; a) 2 S; 2. if A 2 S and B 2 S then A = [a; b) and B = [c; d). -
Some Topologies Connected with Lebesgue Measure Séminaire De Probabilités (Strasbourg), Tome 5 (1971), P
SÉMINAIRE DE PROBABILITÉS (STRASBOURG) JOHN B. WALSH Some topologies connected with Lebesgue measure Séminaire de probabilités (Strasbourg), tome 5 (1971), p. 290-310 <http://www.numdam.org/item?id=SPS_1971__5__290_0> © Springer-Verlag, Berlin Heidelberg New York, 1971, tous droits réservés. L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili- sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou im- pression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ SOME TOPOLOGIES CONNECTED WITH LEBESGUE MEASURE J. B. Walsh One of the nettles flourishing in the nether regions of the field of continuous parameter processes is the quantity lim sup X. s-~ t When one most wants to use it, he can’t show it is measurable. A theorem of Doob asserts that one can always modify the process slightly so that it becomes in which case lim sup is the same separable, X~ s-t as its less relative lim where D is a countable prickly sup X, set. If, as sometimes happens, one is not free to change the process, the usual procedure is to use the countable limit anyway and hope that the process is continuous. Chung and Walsh [3] used the idea of an essential limit-that is a limit ignoring sets of Lebesgue measure and found that it enjoyed the pleasant measurability and separability properties of the countable limit in addition to being translation invariant. -
Measure Theory and Probability
Measure theory and probability Alexander Grigoryan University of Bielefeld Lecture Notes, October 2007 - February 2008 Contents 1 Construction of measures 3 1.1Introductionandexamples........................... 3 1.2 σ-additive measures ............................... 5 1.3 An example of using probability theory . .................. 7 1.4Extensionofmeasurefromsemi-ringtoaring................ 8 1.5 Extension of measure to a σ-algebra...................... 11 1.5.1 σ-rings and σ-algebras......................... 11 1.5.2 Outermeasure............................. 13 1.5.3 Symmetric difference.......................... 14 1.5.4 Measurable sets . ............................ 16 1.6 σ-finitemeasures................................ 20 1.7Nullsets..................................... 23 1.8 Lebesgue measure in Rn ............................ 25 1.8.1 Productmeasure............................ 25 1.8.2 Construction of measure in Rn. .................... 26 1.9 Probability spaces ................................ 28 1.10 Independence . ................................. 29 2 Integration 38 2.1 Measurable functions.............................. 38 2.2Sequencesofmeasurablefunctions....................... 42 2.3 The Lebesgue integral for finitemeasures................... 47 2.3.1 Simplefunctions............................ 47 2.3.2 Positivemeasurablefunctions..................... 49 2.3.3 Integrablefunctions........................... 52 2.4Integrationoversubsets............................ 56 2.5 The Lebesgue integral for σ-finitemeasure................. -
Topologies Which Generate a Complete Measure Algebra
ADVANCES IN MATHEMATICS 7, 231--239 (1971) Topologies which Generate a Complete Measure Algebra STEPHEN SCHEINBERG* Department of Mathematics, Stanford University, Stanford, California 94305 Topologies are constructed so that the c~-field they generate is the collection of Lebesgue-measurable sets_ One such topology provides a simple proof of yon Neumann's theorem on selecting representatives for bounded measurable "functions." Everyone is familiar with the fact that there are vastly more Lebesgue measurable sets than Borel sets in the real line. S. Polit asked me the very natural question: is there a topology for the reals so that the Borel sets generated by it are exactly the Lebesgue measurable sets ? This note is intended to present a self-contained elementary descrip- tion of several related ways of constructing such a topology. All the topologies considered are translation-invariant enlargements of the standard topology. The topology T of Section 1 is a very natural one for the real line. It is easily seen to be connected and regular, but not normal. The topology T has been studied before in a different context, and is known to be completely regular [1]. The topology T' of Section 2 is also connected, but not regular. However, the construction generalizes readily to general topological measure spaces. The topology U con- structed in Section 3 is maximal with respect to generating measurable sets; it is completely regular and has the remarkable property that each bounded measurable function is equal almost everywhere to a unique U-continuous function. This yields an especially simple proof of a theorem of von Neumann [2]. -
1.4 Outer Measures
10 CHAPTER 1. MEASURE 1.3.6. (‘Almost everywhere’ and null sets) If (X, A,µ) is a measure space, then a set in A is called a null set (or µ-null) if its measure is 0. Clearly a countable union of null sets is a null set, by the subadditivity condition in Theorem 1.3.4. If a statement about points x ∈ X is true except for points x in some null set, then we say that the statement is true almost everywhere (a.e.), or µ-almost everywhere (µ-a.e.), or for almost every x, or for µ-almost every x. We say that A is complete (with respect to µ), if any subset of a µ-null set is in A (in which case it is also a null set). We also say that the measure space is complete, in this case. Theorem 1.3.7 If (X, A,µ) is a measure space, define A¯ to be the set of unions of a set in A and a subset of a µ-null set. Then A¯ is a σ-algebra on X, and there is a unique extension µ¯ of µ to a complete measure on A¯. ∞ ∞ Proof: If (An)n=1, (Bn)n=1 are sets in A with µ(Bn) = 0 for all n, and if Fn ⊂ Bn for ∞ ∞ ∞ ∞ ∞ all n, then ∪n=1 (An ∪ Fn)=(∪n=1 An) ∪ (∪n=1 Fn), and ∪n=1 Fn ⊂ B, where B = ∪n=1 Bn. ∞ ¯ Note that B is µ-null, by a comment above the theorem. -
SOME REMARKS CONCERNING FINITELY Subaddmve OUTER MEASURES with APPUCATIONS
Internat. J. Math. & Math. Sci. 653 VOL. 21 NO. 4 (1998) 653-670 SOME REMARKS CONCERNING FINITELY SUBADDmVE OUTER MEASURES WITH APPUCATIONS JOHN E. KNIGHT Department of Mathematics Long Island University Brooklyn Campus University Plaza Brooklyn, New York 11201 U.S.A. (Received November 21, 1996 and in revised form October 29, 1997) ABSTRACT. The present paper is intended as a first step toward the establishment of a general theory of finitely subadditive outer measures. First, a general method for constructing a finitely subadditive outer measure and an associated finitely additive measure on any space is presented. This is followed by a discussion of the theory of inner measures, their construction, and the relationship of their properties to those of an associated finitely subadditive outer measure. In particular, the interconnections between the measurable sets determined by both the outer measure and its associated inner measure are examined. Finally, several applications of the general theory are given, with special attention being paid to various lattice related set functions. KEY WORDS AND PHRASES: Outer measure, inner measure, measurable set, finitely subadditive, superadditive, countably superadditive, submodular, supermodular, regular, approximately regular, condition (M). 1980 AMS SUBJECT CLASSIFICATION CODES: 28A12, 28A10. 1. INTRODUCTION For some time now countably subadditive outer measures have been studied from the vantage point of a general theory (e.g. see [4], [6]), but until now this has not been true for finitely subadditive outer measures. Although some effort has been made to explore the interconnections between certain specific examples of finitely subadditive outer measures (see [3], [7], [8], [10]), there is still no unifying framework for this subject analogous to the one for the countably subadditive case. -
Structural Features of the Real and Rational Numbers ENCYCLOPEDIA of MATHEMATICS and ITS APPLICATIONS
ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS FOUNDED BY G.-C. ROTA Editorial Board P. Flajolet, M. Ismail, E. Lutwak Volume 112 The Classical Fields: Structural Features of the Real and Rational Numbers ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS FOUNDING EDITOR G.-C. ROTA Editorial Board P. Flajolet, M. Ismail, E. Lutwak 40 N. White (ed.) Matroid Applications 41 S. Sakai Operator Algebras in Dynamical Systems 42 W. Hodges Basic Model Theory 43 H. Stahl and V. Totik General Orthogonal Polynomials 45 G. Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions 46 A. Bj¨orner et al. Oriented Matroids 47 G. Edgar and L. Sucheston Stopping Times and Directed Processes 48 C. Sims Computation with Finitely Presented Groups 49 T. Palmer Banach Algebras and the General Theory of *-Algebras I 50 F. Borceux Handbook of Categorical Algebra I 51 F. Borceux Handbook of Categorical Algebra II 52 F. Borceux Handbook of Categorical Algebra III 53 V. F. Kolchin Random Graphs 54 A. Katok and B. Hasselblatt Introduction to the Modern Theory of Dynamical Systems 55 V. N. Sachkov Combinatorial Methods in Discrete Mathematics 56 V. N. Sachkov Probabilistic Methods in Discrete Mathematics 57 P. M. Cohn Skew Fields 58 R. Gardner Geometric Tomography 59 G. A. Baker, Jr., and P. Graves-Morris Pade´ Approximants, 2nd edn 60 J. Krajicek Bounded Arithmetic, Propositional Logic, and Complexity Theory 61 H. Groemer Geometric Applications of Fourier Series and Spherical Harmonics 62 H. O. Fattorini Infinite Dimensional Optimization and Control Theory 63 A. C. Thompson Minkowski Geometry 64 R. B. Bapat and T. -
Probability Theory: STAT310/MATH230; September 12, 2010 Amir Dembo
Probability Theory: STAT310/MATH230; September 12, 2010 Amir Dembo E-mail address: [email protected] Department of Mathematics, Stanford University, Stanford, CA 94305. Contents Preface 5 Chapter 1. Probability, measure and integration 7 1.1. Probability spaces, measures and σ-algebras 7 1.2. Random variables and their distribution 18 1.3. Integration and the (mathematical) expectation 30 1.4. Independence and product measures 54 Chapter 2. Asymptotics: the law of large numbers 71 2.1. Weak laws of large numbers 71 2.2. The Borel-Cantelli lemmas 77 2.3. Strong law of large numbers 85 Chapter 3. Weak convergence, clt and Poisson approximation 95 3.1. The Central Limit Theorem 95 3.2. Weak convergence 103 3.3. Characteristic functions 117 3.4. Poisson approximation and the Poisson process 133 3.5. Random vectors and the multivariate clt 140 Chapter 4. Conditional expectations and probabilities 151 4.1. Conditional expectation: existence and uniqueness 151 4.2. Properties of the conditional expectation 156 4.3. The conditional expectation as an orthogonal projection 164 4.4. Regular conditional probability distributions 169 Chapter 5. Discrete time martingales and stopping times 175 5.1. Definitions and closure properties 175 5.2. Martingale representations and inequalities 184 5.3. The convergence of Martingales 191 5.4. The optional stopping theorem 203 5.5. Reversed MGs, likelihood ratios and branching processes 209 Chapter 6. Markov chains 225 6.1. Canonical construction and the strong Markov property 225 6.2. Markov chains with countable state space 233 6.3. General state space: Doeblin and Harris chains 255 Chapter 7. -
Finitely Subadditive Outer Measures, Finitely Superadditive Inner Measures and Their Measurable Sets
Internat. J. Math. & Math. Sci. 461 VOL. 19 NO. 3 (1996) 461-472 FINITELY SUBADDITIVE OUTER MEASURES, FINITELY SUPERADDITIVE INNER MEASURES AND THEIR MEASURABLE SETS P. D. STRATIGOS Department of Mathematics Long Island University Brooklyn, NY 11201, USA (Received February 24, 1994 and in revised form April 28, 1995) ABSTRACT. Consider any set X A finitely subadditive outer measure on P(X) is defined to be a function u from 7(X) to R such that u()) 0 and u is increasing and finitely subadditive A finitely superadditive inner measure on 7:'(X) is defined to be a function p from (X) to R such that p(0) 0 and p is increasing and finitely superadditive (for disjoint unions) (It is to be noted that every finitely superadditive inner measure on 7(X) is countably superadditive This paper contributes to the study of finitely subadditive outer measures on P(X) and finitely superadditive inner measures on 7:'(X) and their measurable sets KEY WORDS AND PHRASES. Lattice space, lattice normality and countable compactness, lattice regularity and a-smoothness of a measure, finitely subadditive outer measure, finitely superadditive inner measure, regularity of a finitely subadditive outer measure 1991 AMS SUBJECT CLASSIFICATION CODES. 28A12, 28A60, 28C15 0. INTROI)UCTION Consider any set X and any lattice on X, The algebra on X generated by is denoted by .A() A measure on .A(/2) is defined to be a function/.t from Jl.() to R such that/.t is finitely additive and bounded. The set of all measures on .A() is denoted by M() and the set of all/-regular measures on Jr(/2) by M/(/2) A finitely subadditive outer measure on 7)(X) is defined to be a function u from '(X) to R such that u(0) 0 and u is increasing and finitely subadditive A finitely superadditive inner measure on P(X) is defined to be a function p from P(X) to R such that p() 0 and p is increasing and finitely superadditive (for disjoint unions).