A Levitated Nanoparticle As a Classical Two-Level Atom
A levitated nanoparticle as a classical two-level atom Martin Frimmer,1 Jan Gieseler,1 Thomas Ihn,2 and Lukas Novotny1 1Photonics Laboratory, ETH Zürich, 8093 Zürich, Switzerland∗ 2Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland (Dated: September 27, 2018) The center-of-mass motion of a single optically levitated nanoparticle resembles three uncoupled harmonic oscillators. We show how a suitable modulation of the optical trapping potential can give rise to a coupling between two of these oscillators, such that their dynamics are governed by a classical equation of motion that resembles the Schrödinger equation for a two-level system. Based on experimental data, we illustrate the dy- namics of this parametrically coupled system both in the frequency and in the time domain. We discuss the limitations and differences of the mechanical analogue in comparison to a true quantum mechanical system. I. INTRODUCTION 780 nm (a) EOM1 EOM2 One particularly interesting laboratory system for engi- 1064 nm neers and physicists alike are optically levitated nanoparti- cles in vacuum [1–3]. The fact that such a levitated particle at suitably low pressures is a harmonic oscillator with no FB mechanical interaction with its environment promises ex- ceptional control over the system’s dynamics [4, 5]. In fact, -18 S (b) at such low pressures, the only interaction expected to re- 10 z main between the particle and the environment is mediated by the electromagnetic field [6, 7]. Indeed, it has recently Sx Sy been shown that at sufficiently low pressures, the dominat- /Hz) 2 -19 ing interaction of the particle with its environment is deter- 10 (m u mined by the photon bath of the trapping laser [8].
[Show full text]