Polymerase Chain Reaction (PCR): a Short Review

Total Page:16

File Type:pdf, Size:1020Kb

Polymerase Chain Reaction (PCR): a Short Review REVIEW ARTICLE Polymerase Chain Reaction (PCR): A Short Review *MT Rahman1, MS Uddin2, R Sultana2, A Moue3, M Setu4 *Prof. Dr. Md. Tahminur Rahman, Professor & Head, Pathology, Anwer Khan Modern Medical College, Dhaka 2Muhammed Salah Uddin, Senior Research Assistant, ICDDRB, Mohakhali, Dhaka 2Razia Sultana, Senior Research Assistant, ICDDRB, Mohakhali, Dhaka 3Arumina Moue, Mhil Student(Microbiology), Stamfored University Dhaka 4Dr. Muntahina Setu, Asstt Profe, Dept. of Paediatric, Anwer Khan Modern Medical College, Dhaka *Corresponding author ABSTRACT Diagnosis of disease now a days is mostly laboratory dependent. Due to recent advances in medical science and molecular biology, most of the diagnosis of uncommon, complicated, unusual presentation of disease has left the option of molecular diagnosis as the number one diagnostic modalities. Many molecular techniques are now being widely used throughout the world including PCR, flow cytometry, tissue microarray, different blots, and genetic diagnosis. Among these PCR is the most widely accepted, commonly used diagnostic modalities with very high specificity and sensitivity for correct diagnosis. We have reviewed the principle, application, advantages and disadvantages of PCR in laboratory diagnosis of disease. Key words: PCR, Molecular techniques, Review Introduction Polymerase chain reaction (PCR) is a new, was awarded the Nobel prize in Chemistry along 2 popular molecular biology technique for with Michael Smith for his work on PCR . The enzymatically replicating DNA without using a PCR is commonly carried out in a reaction living organism, such as E. coli or yeast. The volume of 10-200 ml in small reaction tubes technique allows a small amount of the DNA (0.2-0.5 ml volumes) in a thermal cycler. The molecule to be amplified many times, in an thermal cycler heats and cools the reaction tubes exponential manner. With more DNA available, to achieve the temperatures required at each step analysis is made much easier. PCR is commonly of the reaction. Many modern thermal cyclers used in medical and biological research labs for make use of the Peltier effect, which permits a variety of tasks, such as the detection of both heating and cooling of the block holding hereditary diseases, the identification of genetic the PCR tubes simply by reversing the electric fingerprints, the diagnosis of infectious diseases, current. Thin-walled reaction tubes permit the cloning of genes, paternity testing, and DNA favorable thermal conductivity to allow for rapid computing1. The technique was developed in thermal equilibration. Most thermal cyclers have 1983 by Kary Mullis, PCR is now a common heated lids to prevent condensation at the top of and important technique used in medical and the reaction tube. Older thermocyclers lacking a biological research labs for a variety of heated lid require a layer of oil on top of the applications. These include DNA cloning for reaction mixture or a ball of wax inside the tube. sequencing, DNA-based phylogeny, or functional analysis of genes; the diagnosis of Uses of PCR hereditary diseases; the identification of genetic PCR can be used for Diagnosis of many human fingerprints (used in forensic sciences and diseases, broad variety of experiments and paternity testing); and the detection and analyses3,4,5. Some examples are discussed diagnosis of infectious diseases. In 1993, Mullis below. AKMMC J 2013: 4(1): 30-36 Polemerase Chain Reaction (PCR): A Short Review 31 1. Infectious diseases HIV, CMV, Mycoplasma, The PCR reaction is carried out in a thermal Pneumonia, Cancer, Syphilis, fungal & cycler. This is a machnie that heats and cools Protozoal disease, hepatitis etc. the reaction tubes within it to the precise 2. Diagnosis of cancer specially leukaemia and temperature required for each step of the lymphomas reaction. To prevent evaporation of the reaction mixture (typically volumes between 15-100 l per 3. Genetic fingerprinting, paternity test tube), a heated lid is placed on top of the PCR permits early diagnosis of malignant reaction tubes or layer of oil is put on the diseases such as leukemia and lymphomas, surface of the reaction mixture. which is currently the highest-developed in cancer research and is already being used Primers routinely. PCR assays can be performed directly The DNA fragment to be amplified determined on genomic DNA samples to detect by selecting primers. Primers are short, translocation-specific malignant cells at a artificial DNA strands not more than fifty sensitivity that is at least 10,000-fold higher than (usually 18-25 bp) nucleotides that are that of other methods. complementary to the beginning and end of the PCR also permits identification of non- DNA fragment to be amplified. They anneal cultivatable or slow-growing microorganisms (adhere) to the DNA template at the starting and such as mycobacteria, anaerobic bacteria, or ending points, where the DNA-Polymerase viruses from tissue culture assays and animal binds and begins the synthesis of the new DNA models. The basis for PCR diagnostic strand applications in microbiology is the detection of The PCR process consists of a series of twenty infectious agents and the discrimination of non- to thirty-five cycles. Each consists of three pathogenic from pathogenic strains by virtue of steps. specific genes. 1. The double-stranded DNA has to be heated to PCR is used to amplify a short, well-defined 94-960C in order to separate the strands. This part of a DNA strand. This can be a single step is called denaturing; it breaks apart the gene, or just a part of a gene. As opposed to hydrogen bonds that connect the two DNA living organisms, the PCR process can copy strands. Prior to the first cycle, the DNA is only short DNA fragments; usually up to 10 kb often denatured for an extended time to ensure (kb stands for kilo base pairs). Certain methods that both the template DNA and the primers can copy fragments up to 40 kb in size, which is have completely separated and are now single- still much less than the chromosomal DNA of a strand only. Time 1-2 minutes up to 5 minutes. eukaryotic cell -for example, a human cell Also Taq-polymerase is activated by this step. contains about three billion base pairs. 2. After separating the DNA strands, the PCR requires several basic components. temperature is lowered so the primers can attach These components are: themselves to the single DNA strands. This step n DNA template, or cDNA which contains the is called annealing. The temperature of this region of the DNA fragment to be amplifie stage depends on the primers and is usually 50C below their melting temperature (45-600C). A n Two primers, which determine the beginning wrong temperature during the annealing step can and end of the region to be amplified (see result in primers not binding to the template following section on primers) DNA at all, or binding at random. Time 1-2 n Taq polymerase, which copies the region to minutes. be amplified 3. Finally, the DNA-Polymerase has to fill in n Nucleotides, from which the DNA-Polymerase the missing strands. It starts at the annealed for new DNA primer and works its way along the DNA n Buffer, which provides a suitable chemical strand. This step is called extension. The environment for the DNA-Polymerase. extension temperature depends on the DNA- 32 AKMMC J 2013: 4(1) MT Rahman, MS Uddin, R Sultana, MA Mumu et al Polymerase. The time for this step depends both Practical modifications to the PCR technique: on the DNA-Polymerase itself and on the length Nested PCR- Nested PCR is intended to reduce of the DNA fragment to be amplified. As a rule- the contaminations in products due to the of-thumb, 1 minute per 1 kbp. amplification of unexpected primer binding Although these resulting 'fingerprints' for sites. Two sets of primers are used in two example, parent-child or sibling, can be successive PCR runs, the second set intended to determined from two or more genetic amplify a secondary target within the first run fingerprints, which can be used for paternity product. This is very successful, but requires tests. A variation of this technique can also be more detailed knowledge of the sequences used to determine evolutionary relationships involved. between organisms. The PCR product can be Inverse PCR- Inverse PCR is a method used to identified by its size using agarose gel allow PCR when only one internal sequence is electrophoresis. Agarose gel electrophoresis is a known. This is especially useful in identifying procedure that consists of injecting DNA into flanking sequences to various genomic inserts. agarose gel and then applying an electric current This involves a series of digestion and self to the gel. As a result, the smaller DNA strands ligation before cutting by an endonuclease , move faster than the larger strands through the resulting in known sequences at either end of the gel toward the positive current. The size of the unknown sequence. PCR product can be determined by comparing it with a DNA ladder, which contains DNA RT-PCR (Reverse Transcription PCR) is the fragments of knows size, also within the gel. method used to amplify, isolate or identify a known sequence form a cell or tissues RNA The detection of hereditary diseases in a given library. Essentially normal PCR preceeded by genome is a long and difficult process, which transcription by Reverse transcriptase (to can be shortened significantly by using PCR. convert the RNA to cDNA) this is widely used Each gene in question can easily be amplified in expression mapping, determining when and through PCR by using the appropriate primers where certain genes are expressed. and then sequenced to detect mutations. Viral diseases, too, can be detected using PCR Asymetric PCR-Asymetric is used to through amplification of the viral DNA.
Recommended publications
  • DNA Footprinting with an Automated DNA Analyzer: Does the Shoe Fit?
    DNA Footprinting with an automated DNA Analyzer: does the shoe fit? Michael Zianni Manager, Plant-Microbe Genomics Facility DNA Footprinting with an Applied Biosystems 3730 DNA Analyzer: does the shoe fit ……….yes! DNA Footprint Analysis DNA Fragment BSA 6FAM DNA Binding Protein 6FAM Endonuclease Digestion (DNase I) 6FAM 6FAM 6FAM 6FAM 6FAM 6FAM 6FAM Capillary Electrophoresis rfu rfu Size (bp) Size (bp) 6FAM HrpY DNA Fragment 6FAM BSA 6FAM HrpY DNA Fragment 6FAM BSA Endonuclease EndonucleaseDigestion (DNaseDigestion I) (DNase I) 6FAM 6FAM 6FAM 6FAM 6FAM 6FAM 6FAM 6FAM 6FAM 6FAM 6FAM 6FAM 6FAM 6FAM Capillary ElectrophoresisCapillary Electrophoresis rfu rfu rfu rfu Size (bp) Size (bp) Size (bp) Size (bp) Development of DNA Foot print Analysis Techniques and Goals of This Study First performed in 1977, and utilized radioactively labeled DNA, slab gels, and autoradiography In 1994, dyes and fluorescent gel imager were used instead of radioisotopes and autoradiography but the slab gel remained. In 2000, the slab gel and imager were replaced by an automated capillary electrophoresis instrument: 310 DNA Analyzer. In 2004, ........... Demonstrate the feasibility by reproducing a protection assay previously done with autoradiography and a slab gel Demonstrate that each peak could be accurately identified Apply this method to a previously uncharacterized protein DNA Footprint analysis with protein: Autoradiography vs Electropherogram DNA Footprint analysis without protein: Electropherogram vs Autoradiography Fluorescent Primer Design For use in: (1) the DNA sequencing reactions which act as a standard/ladder and (2) the PCR reaction to make the DNA probe Used routine DNA sequencing guidelines: 18 -25mer. Tm at 55 – 60C. about 50% GC.
    [Show full text]
  • Locating Mammalian Transcription Factor Binding Sites: a Survey of Computational and Experimental Techniques
    Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Review Locating mammalian transcription factor binding sites: A survey of computational and experimental techniques Laura Elnitski,1,4 Victor X. Jin,2 Peggy J. Farnham,2 and Steven J.M. Jones3 1Genomic Functional Analysis Section, National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland 20878, USA; 2Genome and Biomedical Sciences Facility, University of California–Davis, Davis, California 95616-8645, USA; 3Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada V5Z-4E6 Fields such as genomics and systems biology are built on the synergism between computational and experimental techniques. This type of synergism is especially important in accomplishing goals like identifying all functional transcription factor binding sites in vertebrate genomes. Precise detection of these elements is a prerequisite to deciphering the complex regulatory networks that direct tissue specific and lineage specific patterns of gene expression. This review summarizes approaches for in silico, in vitro, and in vivo identification of transcription factor binding sites. A variety of techniques useful for localized- and high-throughput analyses are discussed here, with emphasis on aspects of data generation and verification. [Supplemental material is available online at www.genome.org.] One documented goal of the National Human Genome Research and other regulatory elements is mediated by DNA/protein in- Institute (NHGRI) is the identification of all functional noncod- teractions. Thus, one major step in the characterization of the ing elements in the human genome (ENCODE Project Consor- functional elements of the human genome is the identification tium 2004).
    [Show full text]
  • What Would You Do If You Could Sequence Everything?
    PERspECTIVE What would you do if you could sequence everything? Avak Kahvejian1, John Quackenbush2 & John F Thompson1 It could be argued that the greatest transformative aspect ing technologies, be leveraged with insightful approaches to biology and of the Human Genome Project has been not the sequencing medicine to maximize the benefits to all? DNA sequence is no longer just of the genome itself, but the resultant development of new an end in itself, but it is rapidly becoming the digital substrate replac- technologies. A host of new approaches has fundamentally ing analog chip-based hybridization signals; it is the barcode tracking of changed the way we approach problems in basic and enormous numbers of samples; and it is the readout indicating a host of translational research. Now, a new generation of high-throughput chemical modifications and intermolecular interactions. Sequence data sequencing technologies promises to again transform the allow one to count mRNAs or other species of nucleic acids precisely, to scientific enterprise, potentially supplanting array-based determine sharp boundaries for interactions with proteins or positions technologies and opening up many new possibilities. By allowing of translocations and to identify novel variants and splice sites, all in one http://www.nature.com/naturebiotechnology DNA/RNA to be assayed more rapidly than previously possible, experiment with digital accuracy. these next-generation platforms promise a deeper understanding The brief history of molecular biology and genomic technologies has of genome regulation and biology. Significantly enhancing been marked by the introduction of new technologies, their rapid uptake sequencing throughput will allow us to follow the evolution and then a steady state or slow decline in use as newer techniques are of viral and bacterial resistance in real time, to uncover the developed that supersede them.
    [Show full text]
  • M0495datasheet-Lot0011212
    1X Standard Taq Reaction Buffer: Reaction setup: analyze primers. The final concentration of Hot Start 10 mM Tris-HCl Due to the hot start nature of the enzyme, reactions each primer in a PCR may be 0.05–1 µM, typi- 50 mM KCl can be assembled on the bench at room temperature cally 0.1–0.5 µM. Taq DNA Polymerase 1.5 mM MgCl 2 and transferred to a thermocycler. No separate activa- ++ pH 8.3 @ 25°C tion step is required to release the inhibitor from the 3. Mg and additives: 1-800-632-7799 enzyme. Mg++ concentration of 1.5–2.0 mM is optimal [email protected] Unit Definition: One unit is defined as the amount for most PCR products generated with Hot www.neb.com of enzyme that will incorporate 15 nmol of dNTP Add to a sterile thin-walled PCR tube: Start Taq DNA Polymerase. The final Mg++ M0495S 001121214121 into acid insoluble material in 30 minutes at 75°C. 25 µl 50 µl FInaL concentration in 1X Standard Taq Reaction COMPONENT REacTION REacTION CONCENTRATION Buffer is 1.5 mM. This supports satisfactory Unit Assay Conditions: 1X ThermoPol™ Reaction amplification of most amplicons. However, M0495S Buffer, 200 µM dNTPs including [3H]-dTTP and 10X Standard Taq Reaction Buffer 2.5 µl 5 µl 1X Mg++ can be further optimized in 0.5 or 1.0 mM 200 µg/ml activated Calf Thymus DNA. 200 units 5,000 U/ml Lot: 0011212 10 mM dNTPs 0.5 µl 1 µl 200 µM increments using MgCl2 (sold separately).
    [Show full text]
  • DNA Affinity Labeling of Adenovirus Type 2 Upstream Promoter Sequence-Binding Factors Identifies Two Distinct Proteins BRIAN SAFER,* ROGER B
    MOLECULAR AND CELLULAR BIOLOGY, Jan. 1988, p. 105-113 Vol. 8, No. 1 0270-7306/88/010105-09$02.00/0 Copyright © 1988, American Society for Microbiology DNA Affinity Labeling of Adenovirus Type 2 Upstream Promoter Sequence-Binding Factors Identifies Two Distinct Proteins BRIAN SAFER,* ROGER B. COHEN, SUSAN GARFINKEL, AND JOHN A. THOMPSON Section on RNA and Protein Biosynthesis, Laboratory of Molecular Hematology, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892 Received 14 July 1987/Accepted 14 October 1987 A rapid affinity labeling procedure with enhanced specificity was developed to identify DNA-binding proteins. 32p was first introduced at unique phosphodiester bonds within the DNA recognition sequence. UV light-dependent cross-linking of pyrimidines to amino acid residues in direct contact at the binding site, followed by micrococcal nuclease digestion, resulted in the transfer of 32p to only those specific protein(s) which recognized the binding sequence. This method was applied to the detection and characterization of proteins that bound to the upstream promoter sequence (-50 to -66) of the human adenovirus type 2 major late promoter. We detected two distinct proteins with molecular weights of 45,000 and 116,000 that interacted with this promoter element. The two proteins differed significantly in their chromatographic and cross-linking behaviors. The accurate and regulated expression of genes tran- sequence (UPS) of the adenovirus type 2 (Ad2) major late scribed by RNA polymerase II requires the interaction of promoter (MLP). Results of deletion and mutation analyses specific DNA-binding proteins with cis-acting promoter ele- have shown that efficient transcription of the Ad2 MLP is ments (2, 10, 14, 29, 36).
    [Show full text]
  • 11|1111 Technical Tips
    Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press 11|1111 Technical Tips PCR has revolutionized nucleic acid vapor barrier on the surface of the aque- Wax-embedded analysis in many scientific disciplines, ous mixture. With this approach, the PCR Reagents including molecular biology, medical di- wax must first be melted and solidified agnostics, population genetics, and fo- on top of the lower aqueous layer prior rensic analysis. (1~ PCR is a highly sensi- to addition of the missing compo- tive technique that can selectively nent(s). In a similar approach, wax is enrich for a specific target from a back- melted and solidified to cover the lower Patricia Blair, ground of nonrelated sequences. How- aqueous layer completely. (7~ The miss- Rama Ramanujam, and ever, if all of the reaction components ing reagent is then layered onto the wax Brent A. Burdick (nucleotides, buffer containing magne- cap, followed by two drops of mineral sium, primers, a thermostable DNA poly- oil. When the temperature of the tubes Pharmacia Biotech, Milwaukee, merase, and sample containing the tar- in the thermocycler exceeds the melting Wisconsin get to be amplified) are mixed at room temperature of the wax, the wax rises to temperature prior to thermocycling, pre- the top of the tube and the upper and mature mispriming events such as non- lower aqueous layers mix by convection. specific annealing of primers to nontar- Another variation of the hot start get nucleic acid sequences and the technique involves drying one of the re- production of primer oligomerization action components in trehalose and em- (primer dimer) artifacts may occur.
    [Show full text]
  • PCR Tools 2Nd Edition PCR Tools 2Nd Edition | 2009
    Novagen® PCR Tools 2nd edition PCR Tools 2nd edition | 2009 Thermostable DNA Polymerases ......... 4 Overview and Enzyme Selection Guide ................................. 4 KOD Hot Start DNA Polymerase ............................................. 6 KOD Hot Start Master Mix ....................................................... 8 KOD Xtreme™ Hot Start DNA Polymerase .............................. 9 KOD XL DNA Polymerase .......................................................11 KOD DNA Polymerase ............................................................12 NovaTaq™ Hot Start DNA Polymerase .................................13 NovaTaq Hot Start Master Mix Kit ........................................13 NovaTaq DNA Polymerase ....................................................14 NovaTaq PCR Master Mix .....................................................14 Taq Antibody ...........................................................................15 10 mM dNTP Mix ...................................................................15 Direct PCR from Blood ........................16 BloodDirect™ PCR Buffer Kits ...............................................16 RT-PCR ....................................................18 One Step RT-PCR Master Mix Kit ........................................18 First Strand cDNA Synthesis Kit ..........................................19 Cover and Inside Photography: Chris Bucher Photography, Dale Chihuly Sculpture located at Indiana University, Medical Sciences Building, Indiana, United States. Prices and availability
    [Show full text]
  • Input Template Epg Pathshala
    Paper : 15 Molecular Cell Biology Module : 34 Methods for analysis of gene expression: Promoter analysis, DNA foot printing Development Team Principal Investigator: Prof. Neeta Sehgal Department of Zoology, University of Delhi Co-Principal Investigator: Prof. D.K. Singh Department of Zoology, University of Delhi Paper Coordinator: Prof. Kuldeep K. Sharma Department of Zoology, University of Jammu Content Writer: Dr. Jasvinder Kaur, Dr. Poonam Sharma Gargi College, University of Delhi Ms Poornima Vishwakarma, Research Scholar, DU Content Reviewer: Prof. Rup Lal Department of Zoology, University of Delhi 1 ZOOLOGY Molecular Cell biology Methods for analysis of gene expression: Promoter analysis, DNA foot printing Description of Module Subject Name ZOOLOGY Paper Name Zool 015: Molecular Cell Biology Module Name/Title Methods for analysis of gene expression Module ID M34: Promoter analysis, DNA foot printing Keywords DNA Footprint Assay, DNase I, DNA foot print, Promoter characterization, Cleavage agent, Autoradiography Glossary Capillary electrophoresis: To modify the footprinting procedure to modernized detection means, the labelled DNA fragments are identified using capillary electrophoresis mechanism as a substitute of polyacrylamide gel DNase I: A DNA- hydrolyzing enzyme that cuts DNA at random locations in a sequence independent manner DNA Footprint Assay: Technique used to determine the binding site of a protein regulator to DNA which is typically at a promoter for a gene. Foot print: The protected DNA region (bound by proteins) in a DNA footprinting experiment. Hydroxyl radicals: When the iron salts are reacted with hydrogen peroxide, they are reduced to form free hydroxyl radicals. The DNA fragment is cleaved when the free hydroxyl molecule react with the DNA backbone.
    [Show full text]
  • Chromatin Accessibility and the Regulatory Epigenome
    REVIEWS EPIGENETICS Chromatin accessibility and the regulatory epigenome Sandy L. Klemm1,4, Zohar Shipony1,4 and William J. Greenleaf1,2,3* Abstract | Physical access to DNA is a highly dynamic property of chromatin that plays an essential role in establishing and maintaining cellular identity. The organization of accessible chromatin across the genome reflects a network of permissible physical interactions through which enhancers, promoters, insulators and chromatin-binding factors cooperatively regulate gene expression. This landscape of accessibility changes dynamically in response to both external stimuli and developmental cues, and emerging evidence suggests that homeostatic maintenance of accessibility is itself dynamically regulated through a competitive interplay between chromatin- binding factors and nucleosomes. In this Review , we examine how the accessible genome is measured and explore the role of transcription factors in initiating accessibility remodelling; our goal is to illustrate how chromatin accessibility defines regulatory elements within the genome and how these epigenetic features are dynamically established to control gene expression. Chromatin- binding factors Chromatin accessibility is the degree to which nuclear The accessible genome comprises ~2–3% of total Non- histone macromolecules macromolecules are able to physically contact chroma­ DNA sequence yet captures more than 90% of regions that bind either directly or tinized DNA and is determined by the occupancy and bound by TFs (the Encyclopedia of DNA elements indirectly to DNA. topological organization of nucleosomes as well as (ENCODE) project surveyed TFs for Tier 1 ENCODE chromatin- binding factors 13 Transcription factor other that occlude access to lines) . With the exception of a few TFs that are (TF). A non- histone protein that DNA.
    [Show full text]
  • Genome-Scale Technologies 2/ Algorithmic and Statistical Aspects of DNA Sequencing Dnase I-Seq
    Genome-scale technologies 2/ Algorithmic and statistical aspects of DNA sequencing DNase I-seq Ewa Szczurek University of Warsaw, MIMUW [email protected] Deoxyribonuclease I (DNase I) § cleaves DNA adjacent to a pyrimidine nucleotide. § a waste-management endonuclease § one of the deoxyribonucleases responsible for DNA fragmentation during apoptosis. § DNase I hypersensitive sites ~ Ø open, accessible chromatin; Ø regions of the genome are likely to contain active genes Ho-Ryun Chung The project § http://students.mimuw.edu.pl/~szczurek/TSG2_Project/project.html § Report deadline: 20.01.2016 § Presentations: 26.01.2016 Deoxyribonuclease I (DNase I) hypersensitive sites § Short region of chromatin. § Super sensitivity to Dnase I cleavage § Nucleosomal structure less compacted § Increased availability of the DNA to binding by proteins: Ø transcription factors and Ø DNase I "DNAse hypersensitive site" by Wang Y-M, Zhou P, Wang L-Y, Li Z-H, Zhang Y-N, et al. - Wang Y-M, Zhou P, Wang L-Y, Li Z-H, Zhang Y-N, et al. (2012) Correlation Between DNase I Hypersensitive Site Distribution and Gene Expression in HeLa S3 Cells. PLoS ONE 7(8): e42414. doi:10.1371/journal.pone.0042414. DNase I hypersensitive sites: location § Hypersensitive sites (HS) found: Ø On every active gene (often >1 HS per gene) Ø Exclusively on chromatin of cells in which the gene is expressed Ø Before transcription begins, in regions preceding active promoters. § HS generated as a result of the binding of transcription factors that displace histone octamers. DNase I- Seq DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells Lingyun Song and Gregory E.
    [Show full text]
  • Pcr Hot Start Protocol Thermo Fisher
    Pcr Hot Start Protocol Thermo Fisher Lou is self-pleasing: she fortress imperceptibly and routings her degree. Ishmael still herd frolicsomely mishearwhile aetiological tremulously Riccardo when Silvanreorganise is unbid. that enterprise. Slant Putnam superintend capriciously or Screening for use any source of hot start pcr amplification Expression Assays Protocol 4334429 Primer Express Software Version 30 Getting. The fisher scientific experiments where the data collection of thermo fisher scientific taq is formulated for pcr hot start protocol thermo fisher scientific taq dna. Track dna polymerases with pcr may be easily organize all pcr hot start protocol thermo fisher scientific catalog number. New thermal insulation, thermo fisher scientific gains that starts with them unique in thermo fisher scientific protocol that mutation at every two replicates extracted dna sequencing to bind. Hot physically meaningful parameters can be performed, hot physically meaningful content for pcr hot start protocol thermo fisher scientific industries providing high yields compared using pcr test subject composition selected from. Cell biology lab equipment line, hot start pcr protocol times, hot start pcr applications; sharps in all primer which view the right or chemistry, the fidelity pcr. The thermo scientific direct loading yes, thermo fisher scientific. MyFuge Mini centrifuge shown includes rotors for microtube and PCR. It stick a growing in where thermo Fisher Scientific offers a sheet range. The thermo scientific protocol times due to pcr hot start protocol thermo fisher scientific laboratory safety supplies, muß das gerät unter normalen laborbedingungen verwendet wird. Axygen LightCycler 40 Compatible PCR Plates Thin walls coupled with the 40 platform. Jump dive to clutch is Hot-Start Technology Beneficial For Your PCR AU wwwthermofishercom.
    [Show full text]
  • Download Author Version (PDF)
    RSC Advances This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/advances Page 1 of 33 RSC Advances Employment of Nanomaterials in Polymerase Chain Reaction: Insight into the Impacts and Putative Operating Mechanisms of Nano-additives in PCR Meral Yuce, a* Hasan Kurt, b Venkata R.S.S. Mokkapati, a Hikmet Budak a, b a Sabanci University, Nanotechnology Research and Application Centre, 34956, Istanbul, Turkey b Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey Corresponding author: [email protected] Abstract Manuscript The unique ability to rapidly amplify low copy number DNA has made in vitro Polymerase Chain Reaction one of the most fundamental techniques in modern biology.
    [Show full text]