Foundations of Machine Learning Ranking

Total Page:16

File Type:pdf, Size:1020Kb

Foundations of Machine Learning Ranking Foundations of Machine Learning Ranking Mehryar Mohri Courant Institute and Google Research [email protected] Motivation Very large data sets: • too large to display or process. • limited resources, need priorities. • ranking more desirable than classification. Applications: • search engines, information extraction. • decision making, auctions, fraud detection. Can we learn to predict ranking accurately? Mehryar Mohri - Foundations of Machine Learning page 2 Related Problem Rank aggregation: given n candidates and k voters each giving a ranking of the candidates, find ordering as close as possible to these. • closeness measured in number of pairwise misrankings. • problem NP-hard even for k =4 (Dwork et al., 2001). Mehryar Mohri - Foundations of Machine Learning page 3 This Talk Score-based ranking Preference-based ranking Mehryar Mohri - Foundations of Machine Learning page 4 Score-Based Setting Single stage: learning algorithm • receives labeled sample of pairwise preferences; returns scoring function h : U R . • → Drawbacks: • h induces a linear ordering for full set U . • does not match a query-based scenario. Advantages: • efficient algorithms. • good theory: VC bounds, margin bounds, stability bounds (FISS 03, RCMS 05, AN 05, AGHHR 05, CMR 07). Mehryar Mohri - Foundations of Machine Learning page 5 Score-Based Ranking Training data: sample of i.i.d. labeled pairs drawn from U U according to some distribution D , × S = (x ,x ,y ),...,(x ,x ,y ) U U 1, 0, +1 , 1 1 1 m m m ∈ × ×{− } +1 if xi >pref xi with yi = 0ifxi =pref xi or no information 1ifx <pref xi. − i Problem : find hypothesis h : U R in H with small generalization error → R(h)= Pr (f(x, x0) = 0) (f(x, x0) h(x0) h(x) 0) . (x,x ) D 6 ^ − 0 ⇠ h i Mehryar Mohri - Foundations of Machine Learning page 6 Notes Empirical error: m 1 R(h)= 1(y =0) (y (h(x ) h(x )) 0) . m i ∧ i i − i ≤ i=1 The relation x x f ( x, x )=1 may be non- R ⇔ transitive (needs not even be anti-symmetric). Problem different from classification. Mehryar Mohri - Foundations of Machine Learning page 7 Distributional Assumptions Distribution over points: m points (literature). • labels for pairs. • squared number of examples O ( m 2 ) . • dependency issue. Distribution over pairs: m pairs. • label for each pair received. • independence assumption. • same (linear) number of examples. Mehryar Mohri - Foundations of Machine Learning page 8 Confidence Margin in Ranking Labels assumed to be in +1 , 1 . { − } Empirical margin loss for ranking: for ⇢ > 0 , 1 m R (h)= Φ y h(x0 ) h(x ) . ⇢ m ⇢ i i − i i=1 X ⇣ ⌘ b 1 m R⇢(h) 1y [h(x ) h(x )] ⇢. m i i0 − i i=1 X b Mehryar Mohri - Foundations of Machine Learning page 9 Marginal Rademacher Complexities Distributions: • D 1 marginal distribution with respect to the first element of the pairs; • D 2 marginal distribution with respect to second element of the pairs. Samples: S1 = (x1,y1),...,(xm,ym) S2 = (x10 ,y1),...,(xm0 ,ym). Marginal Rademacher complexities: D1 D2 Rm (H)=E[RS1 (H)] Rm (H)=E[RS2 (H)]. Mehryar Mohri - Foundations of Machine Learningb pageb 10 Ranking Margin Bound (Boyd, Cortes, MM, and Radovanovich 2012; MM, Rostamizadeh, and Talwalkar, 2012) Theorem: let H be a family of real-valued functions. Fix ρ > 0 , then, for any δ > 0 , with probability at least 1 δ over the choice of a sample of size m , the − following holds for all h H : ∈ 2 log 1 R(h) R (h)+ RD1 (H)+RD2 (H) + δ . ≤ ρ ρ m m 2m Mehryar Mohri - Foundations of Machine Learning page 11 Ranking with SVMs see for example (Joachims, 2002) Optimization problem: application of SVMs. m 1 2 min w + C ξi w,ξ 2 i=1 subject to: y w Φ(x ) Φ(x ) 1 ξ i · i − i ≥ − i ξ 0, i [1,m] . i ≥ ∀ ∈ Decision function: h: x w Φ(x)+b. → · Mehryar Mohri - Foundations of Machine Learning page 12 Notes The algorithm coincides with SVMs using feature mapping (x, x) Ψ(x, x)=Φ(x) Φ(x). → − Can be used with kernels: K0((x ,x0 ), (x ,x0 )) = (x ,x0 ) (x ,x0 ) i i j j i i · j j = K(x ,x )+K(x0 ,x0 ) K(x0 ,x ) K(x ,x0 ). i j i j − i j − i j Algorithm directly based on margin bound. Mehryar Mohri - Foundations of Machine Learning page 13 Boosting for Ranking Use weak ranking algorithm and create stronger ranking algorithm. Ensemble method: combine base rankers returned by weak ranking algorithm. Finding simple relatively accurate base rankers often not hard. How should base rankers be combined? Mehryar Mohri - Foundations of Machine Learning page 14 CD RankBoost (Freund et al., 2003; Rudin et al., 2005) X 0 + s H 0, 1 . t + t + t− =1,t (h)= Pr sgn f(x, x)(h(x) h(x)) = s . (x,x ) Dt − ⊆{ } ∼ RankBoost(S =((x1,x1 ,y1) ...,(xm,xm ,ym))) 1 for i 1 to m do ← 1 2 D1(xi,xi ) m 3 for t 1 to T ←do ← + 4 ht base ranker in H with smallest t− t = Ei Dt yi ht(xi ) ht(xi) ← − − ∼ − + 1 t 5 αt 2 log ← t− 0 + 1 6 Zt t +2[t t−] 2 normalization factor 7 for←i 1 to m do ← Dt(xi,xi )exp αtyi ht(xi ) ht(xi) 8 Dt+1(xi,x ) − − i ← Zt 9 ϕ T α h T ← t=1 t t 10 return ϕT Mehryar Mohri - Foundations of Machine Learning page 15 Notes Distributions D t over pairs of sample points: • originally uniform. • at each round, the weight of a misclassified example is increased. y[ϕ (x ) ϕ (x)] e− t − t observation: D t+1 ( x, x )= S t Z , since • | | s=1 s t yαt[ht(x) ht(x)] Q y αs[hs(x) hs(x)] Dt(x, x)e− − 1 e− s=1 − Dt+1(x, x)= = P t . Zt S Z | | s=1 s weight assigned to base classifier h t : α t directly depends on the accuracy of h t at round t . Mehryar Mohri - Foundations of Machine Learning page 16 Coordinate Descent RankBoost Objective Function: convex and differentiable. T y[ϕ (x) ϕ (x)] F (α)= e− T − T = exp y α [h (x) h (x)] . − t t − t (x,x ,y) S (x,x ,y) S t=1 ∈ ∈ x e− 0 1pairwiseloss − Mehryar Mohri - Foundations of Machine Learning page 17 • Direction: unit vector e t with dF (α + ηe ) e =argmin t . t dη t η=0 T y s=1 αs[hs(x) hs(x)] yη[ht(x) ht(x)] • Since F ( α + η e t )= e − − e − − , (x,x ,y) S P ∈ T dF (α + ηet) = y[h (x) h (x)] exp y α [h (x) h (x)] dη − t − t − s s − s η=0 (x,x ,y) S s=1 ∈ T = y[h (x) h (x)]D (x, x) m Z − t − t T +1 s (x,x,y) S s=1 ∈ T + = [ −] m Z . − t − t s s=1 Thus, direction corresponding to base classifier selected by the algorithm. Mehryar Mohri - Foundations of Machine Learning page 18 • Step size: obtained via dF (α + ηe ) t =0 dη T y[h (x) h (x)]η y[h (x) h (x)] exp y α [h (x) h (x)] e− t − t =0 ⇔− t − t − s s − s (x,x ,y) S s=1 ∈ T y[h (x) h (x)]η y[h (x) h (x)]D (x, x) m Z e− t − t =0 ⇔− t − t T +1 s (x,x ,y) S s=1 ∈ y[h (x) h (x)]η y[h (x) h (x)]D (x, x)e− t − t =0 ⇔− t − t T +1 (x,x ,y) S ∈ + η η [ e− −e ]=0 ⇔− t − t 1 + η = log t . ⇔ 2 t− Thus, step size matches base classifier weight used in algorithm. Mehryar Mohri - Foundations of Machine Learning page 19 Bipartite Ranking Training data: sample of negative points drawn according toD • − S =(x1,...,xm) U. − ∈ • sample of positive points drawn according to D+ S+ =(x ,...,x ) U. 1 m ∈ Problem: find hypothesis h : U R in H with small generalization error ! RD(h)= Pr h(x)<h(x) . x D ,x D+ ∼ − ∼ Mehryar Mohri - Foundations of Machine Learning page 20 Notes Connection between AdaBoost and RankBoost (Cortes & MM, 04; Rudin et al., 05). • if constant base ranker used. • relationship between objective functions. More efficient algorithm in this special case (Freund et al., 2003). Bipartite ranking results typically reported in terms of AUC. Mehryar Mohri - Foundations of Machine Learning page 21 AdaBoost and CD RankBoost Objective functions: comparison. F (α)= exp ( y f(x )) Ada − i i xi S S+ ∈−∪ = exp (+f(x )) + exp ( f(x )) i − i xi S xi S+ ∈ − ∈ = F (α)+F+(α). − F (α)= exp [f(x ) f(x )] Rank − j − i (i,j) S S+ ∈−× = exp (+f(x )) exp ( f(x )) i − i (i,j) S S+ ∈−× = F (α)F+(α). − Mehryar Mohri - Foundations of Machine Learning page 22 AdaBoost and CD RankBoost (Rudin et al., 2005) Property: AdaBoost (non-separable case). • constant base learner h =1 equal contribution of positive and negative points (in the limit). • consequence: AdaBoost asymptotically achieves optimum of CD RankBoost objective. Observations: if F + ( α )= F ( α ) , − d(FRank)=F+d(F )+F d(F+) − − = F+ d(F )+d(F+) − = F+d(FAda). Mehryar Mohri - Foundations of Machine Learning page 23 Bipartite RankBoost - Efficiency Decomposition of distribution: for ( x, x ) ( S ,S + ) , ∈ − D(x, x)=D (x)D+(x). − Thus, αt[ht(x) ht(x)] Dt(x, x)e− − Dt+1(x, x)= Zt αtht(x) αtht(x) Dt, (x)e Dt,+(x)e− = − , Zt, Zt,+ − αt ht(x) αtht(x) with Zt, = Dt, (x)e Zt,+ = Dt,+(x)e− .
Recommended publications
  • Concurrent Non-Malleable Zero Knowledge Proofs
    Concurrent Non-Malleable Zero Knowledge Proofs Huijia Lin?, Rafael Pass??, Wei-Lung Dustin Tseng???, and Muthuramakrishnan Venkitasubramaniam Cornell University, {huijia,rafael,wdtseng,vmuthu}@cs.cornell.edu Abstract. Concurrent non-malleable zero-knowledge (NMZK) consid- ers the concurrent execution of zero-knowledge protocols in a setting where the attacker can simultaneously corrupt multiple provers and ver- ifiers. Barak, Prabhakaran and Sahai (FOCS’06) recently provided the first construction of a concurrent NMZK protocol without any set-up assumptions. Their protocol, however, is only computationally sound (a.k.a., a concurrent NMZK argument). In this work we present the first construction of a concurrent NMZK proof without any set-up assump- tions. Our protocol requires poly(n) rounds assuming one-way functions, or O~(log n) rounds assuming collision-resistant hash functions. As an additional contribution, we improve the round complexity of con- current NMZK arguments based on one-way functions (from poly(n) to O~(log n)), and achieve a near linear (instead of cubic) security reduc- tions. Taken together, our results close the gap between concurrent ZK protocols and concurrent NMZK protocols (in terms of feasibility, round complexity, hardness assumptions, and tightness of the security reduc- tion). 1 Introduction Zero-knowledge (ZK) interactive proofs [GMR89] are fundamental constructs that allow the Prover to convince the Verifier of the validity of a mathematical statement x 2 L, while providing zero additional knowledge to the Verifier. Con- current ZK, first introduced and achieved by Dwork, Naor and Sahai [DNS04], considers the execution of zero-knowledge protocols in an asynchronous and con- current setting.
    [Show full text]
  • FOCS 2005 Program SUNDAY October 23, 2005
    FOCS 2005 Program SUNDAY October 23, 2005 Talks in Grand Ballroom, 17th floor Session 1: 8:50am – 10:10am Chair: Eva´ Tardos 8:50 Agnostically Learning Halfspaces Adam Kalai, Adam Klivans, Yishay Mansour and Rocco Servedio 9:10 Noise stability of functions with low influences: invari- ance and optimality The 46th Annual IEEE Symposium on Elchanan Mossel, Ryan O’Donnell and Krzysztof Foundations of Computer Science Oleszkiewicz October 22-25, 2005 Omni William Penn Hotel, 9:30 Every decision tree has an influential variable Pittsburgh, PA Ryan O’Donnell, Michael Saks, Oded Schramm and Rocco Servedio Sponsored by the IEEE Computer Society Technical Committee on Mathematical Foundations of Computing 9:50 Lower Bounds for the Noisy Broadcast Problem In cooperation with ACM SIGACT Navin Goyal, Guy Kindler and Michael Saks Break 10:10am – 10:30am FOCS ’05 gratefully acknowledges financial support from Microsoft Research, Yahoo! Research, and the CMU Aladdin center Session 2: 10:30am – 12:10pm Chair: Satish Rao SATURDAY October 22, 2005 10:30 The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics Tutorials held at CMU University Center into `1 [Best paper award] Reception at Omni William Penn Hotel, Monongahela Room, Subhash Khot and Nisheeth Vishnoi 17th floor 10:50 The Closest Substring problem with small distances Tutorial 1: 1:30pm – 3:30pm Daniel Marx (McConomy Auditorium) Chair: Irit Dinur 11:10 Fitting tree metrics: Hierarchical clustering and Phy- logeny Subhash Khot Nir Ailon and Moses Charikar On the Unique Games Conjecture 11:30 Metric Embeddings with Relaxed Guarantees Break 3:30pm – 4:00pm Ittai Abraham, Yair Bartal, T-H.
    [Show full text]
  • Magic Adversaries Versus Individual Reduction: Science Wins Either Way ?
    Magic Adversaries Versus Individual Reduction: Science Wins Either Way ? Yi Deng1;2 1 SKLOIS, Institute of Information Engineering, CAS, Beijing, P.R.China 2 State Key Laboratory of Cryptology, P. O. Box 5159, Beijing ,100878,China [email protected] Abstract. We prove that, assuming there exists an injective one-way function f, at least one of the following statements is true: – (Infinitely-often) Non-uniform public-key encryption and key agreement exist; – The Feige-Shamir protocol instantiated with f is distributional concurrent zero knowledge for a large class of distributions over any OR NP-relations with small distinguishability gap. The questions of whether we can achieve these goals are known to be subject to black-box lim- itations. Our win-win result also establishes an unexpected connection between the complexity of public-key encryption and the round-complexity of concurrent zero knowledge. As the main technical contribution, we introduce a dissection procedure for concurrent ad- versaries, which enables us to transform a magic concurrent adversary that breaks the distribu- tional concurrent zero knowledge of the Feige-Shamir protocol into non-black-box construc- tions of (infinitely-often) public-key encryption and key agreement. This dissection of complex algorithms gives insight into the fundamental gap between the known universal security reductions/simulations, in which a single reduction algorithm or simu- lator works for all adversaries, and the natural security definitions (that are sufficient for almost all cryptographic primitives/protocols), which switch the order of qualifiers and only require that for every adversary there exists an individual reduction or simulator. 1 Introduction The seminal work of Impagliazzo and Rudich [IR89] provides a methodology for studying the lim- itations of black-box reductions.
    [Show full text]
  • Typical Stability
    Typical Stability Raef Bassily∗ Yoav Freundy Abstract In this paper, we introduce a notion of algorithmic stability called typical stability. When our goal is to release real-valued queries (statistics) computed over a dataset, this notion does not require the queries to be of bounded sensitivity – a condition that is generally assumed under differential privacy [DMNS06, Dwo06] when used as a notion of algorithmic stability [DFH+15b, DFH+15c, BNS+16] – nor does it require the samples in the dataset to be independent – a condition that is usually assumed when generalization-error guarantees are sought. Instead, typical stability requires the output of the query, when computed on a dataset drawn from the underlying distribution, to be concentrated around its expected value with respect to that distribution. Typical stability can also be motivated as an alternative definition for database privacy. Like differential privacy, this notion enjoys several important properties including robustness to post-processing and adaptive composition. However, privacy is guaranteed only for a given family of distributions over the dataset. We also discuss the implications of typical stability on the generalization error (i.e., the difference between the value of the query computed on the dataset and the expected value of the query with respect to the true data distribution). We show that typical stability can control generalization error in adaptive data analysis even when the samples in the dataset are not necessarily independent and when queries to be computed are not necessarily of bounded- sensitivity as long as the results of the queries over the dataset (i.e., the computed statistics) follow a distribution with a “light” tail.
    [Show full text]
  • Data Structures Meet Cryptography: 3SUM with Preprocessing
    Data Structures Meet Cryptography: 3SUM with Preprocessing Alexander Golovnev Siyao Guo Thibaut Horel Harvard NYU Shanghai MIT [email protected] [email protected] [email protected] Sunoo Park Vinod Vaikuntanathan MIT & Harvard MIT [email protected] [email protected] Abstract This paper shows several connections between data structure problems and cryptography against preprocessing attacks. Our results span data structure upper bounds, cryptographic applications, and data structure lower bounds, as summarized next. First, we apply Fiat–Naor inversion, a technique with cryptographic origins, to obtain a data structure upper bound. In particular, our technique yields a suite of algorithms with space S and (online) time T for a preprocessing version of the N-input 3SUM problem where S3 T = O(N 6). This disproves a strong conjecture (Goldstein et al., WADS 2017) that there is no data· structure − − that solves this problem for S = N 2 δ and T = N 1 δ for any constant δ > 0. e Secondly, we show equivalence between lower bounds for a broad class of (static) data struc- ture problems and one-way functions in the random oracle model that resist a very strong form of preprocessing attack. Concretely, given a random function F :[N] [N] (accessed as an oracle) we show how to compile it into a function GF :[N 2] [N 2] which→ resists S-bit prepro- cessing attacks that run in query time T where ST = O(N 2−→ε) (assuming a corresponding data structure lower bound on 3SUM). In contrast, a classical result of Hellman tells us that F itself can be more easily inverted, say with N 2/3-bit preprocessing in N 2/3 time.
    [Show full text]
  • An Efficient Boosting Algorithm for Combining Preferences Raj
    An Efficient Boosting Algorithm for Combining Preferences by Raj Dharmarajan Iyer Jr. Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 1999 © Massachusetts Institute of Technology 1999. All rights reserved. A uth or .............. ..... ..... .................................. Department of E'ectrical ngineering and Computer Science August 24, 1999 C ertified by .. ................. ...... .. .............. David R. Karger Associate Professor Thesis Supervisor Accepted by............... ........ Arthur C. Smith Chairman, Departmental Committe Graduate Students MACHU OF TEC Lo NOV LIBRARIES An Efficient Boosting Algorithm for Combining Preferences by Raj Dharmarajan Iyer Jr. Submitted to the Department of Electrical Engineering and Computer Science on August 24, 1999, in partial fulfillment of the requirements for the degree of Master of Science Abstract The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting algorithm for combining preferences called RankBoost. We also describe an efficient implementation of the algorithm for certain natural cases. We discuss two experiments we carried out to assess the performance of RankBoost. In the first experi- ment, we used the algorithm to combine different WWW search strategies, each of which is a query expansion for a given domain. For this task, we compare the performance of Rank- Boost to the individual search strategies. The second experiment is a collaborative-filtering task for making movie recommendations.
    [Show full text]
  • CURRICULUM VITAE Rafail Ostrovsky
    last updated: December 26, 2020 CURRICULUM VITAE Rafail Ostrovsky Distinguished Professor of Computer Science and Mathematics, UCLA http://www.cs.ucla.edu/∼rafail/ mailing address: Contact information: UCLA Computer Science Department Phone: (310) 206-5283 475 ENGINEERING VI, E-mail: [email protected] Los Angeles, CA, 90095-1596 Research • Cryptography and Computer Security; Interests • Streaming Algorithms; Routing and Network Algorithms; • Search and Classification Problems on High-Dimensional Data. Education NSF Mathematical Sciences Postdoctoral Research Fellow Conducted at U.C. Berkeley 1992-95. Host: Prof. Manuel Blum. Ph.D. in Computer Science, Massachusetts Institute of Technology, 1989-92. • Thesis titled: \Software Protection and Simulation on Oblivious RAMs", Ph.D. advisor: Prof. Silvio Micali. Final version appeared in Journal of ACM, 1996. Practical applications of thesis work appeared in U.S. Patent No.5,123,045. • Minor: \Management and Technology", M.I.T. Sloan School of Management. M.S. in Computer Science, Boston University, 1985-87. B.A. Magna Cum Laude in Mathematics, State University of New York at Buffalo, 1980-84. Department of Mathematics Graduation Honors: With highest distinction. Personal • U.S. citizen, naturalized in Boston, MA, 1986. Data Appointments UCLA Computer Science Department (2003 { present): Distinguished Professor of Computer Science. Recruited in 2003 as a Full Professor with Tenure. UCLA School of Engineering (2003 { present): Director, Center for Information and Computation Security. (See http://www.cs.ucla.edu/security/.) UCLA Department of Mathematics (2006 { present): Distinguished Professor of Mathematics (by courtesy). 1 Appointments Bell Communications Research (Bellcore) (cont.) (1999 { 2003): Senior Research Scientist; (1995 { 1999): Research Scientist, Mathematics and Cryptography Research Group, Applied Research.
    [Show full text]
  • Adversarial Robustness of Streaming Algorithms Through Importance Sampling
    Adversarial Robustness of Streaming Algorithms through Importance Sampling Vladimir Braverman Avinatan Hassidim Yossi Matias Mariano Schain Google∗ Googley Googlez Googlex Sandeep Silwal Samson Zhou MITO CMU{ June 30, 2021 Abstract Robustness against adversarial attacks has recently been at the forefront of algorithmic design for machine learning tasks. In the adversarial streaming model, an adversary gives an algorithm a sequence of adaptively chosen updates u1; : : : ; un as a data stream. The goal of the algorithm is to compute or approximate some predetermined function for every prefix of the adversarial stream, but the adversary may generate future updates based on previous outputs of the algorithm. In particular, the adversary may gradually learn the random bits internally used by an algorithm to manipulate dependencies in the input. This is especially problematic as many important problems in the streaming model require randomized algorithms, as they are known to not admit any deterministic algorithms that use sublinear space. In this paper, we introduce adversarially robust streaming algorithms for central machine learning and algorithmic tasks, such as regression and clustering, as well as their more general counterparts, subspace embedding, low-rank approximation, and coreset construction. For regression and other numerical linear algebra related tasks, we consider the row arrival streaming model. Our results are based on a simple, but powerful, observation that many importance sampling-based algorithms give rise to adversarial robustness which is in contrast to sketching based algorithms, which are very prevalent in the streaming literature but suffer from adversarial attacks. In addition, we show that the well-known merge and reduce paradigm in streaming is adversarially robust.
    [Show full text]
  • Oblivious Transfer of Bits
    Oblivious transfer of bits Abstract. We consider the topic Oblivious transfer of bits (OT), that is a powerful primitive in modern cryptography. We can devide our project into these parts: In the first part: We would clarify the definition OT, we would give a precise characterization of its funcionality and use. Committed oblivious transfer (COT) is an enhancement involving the use of commitments, which can be used in many applications of OT covering particular malicious adversarial behavior, it cannot be forgotten. In the second part: We would describe the history of some important discoveries, that preceded present knowledge in this topic. Some famous discovers as Michael O. Rabin or Claude Crépeau could be named with their works. In the third part: For OT, many protocols covering the transfer of bits are known, we would introduce and describe some of them. The most known are Rabin's oblivious transfer protocol, 1-2 oblivious transfer, 1-n oblivious transfer. These would be explained with examples. In the fourth part: We also need to discuss the security of the protocols and attacs, that are comitted. Then security of mobile computing. In the fifth part: For the end, we would give some summary, also interests or news in this topic, maybe some visions to the future evolution. 1 Introduction Oblivious transfer of bits (often abbreviated OT) is a powerful primitive in modern cryptography especially in the context of multiparty computation where two or more parties, mutually distrusting each other, want to collaborate in a secure way in order to achieve a common goal, for instance, to carry out an electronic election, so this is its applicability.
    [Show full text]
  • Verifiable Random Functions
    Verifiable Random Functions y z Silvio Micali Michael Rabin Salil Vadhan Abstract random string of the proper length. The possibility thus ex- ists that, if it so suits him, the party knowing the seed s may We efficiently combine unpredictability and verifiability by declare that the value of his pseudorandom oracle at some x f x extending the Goldreich–Goldwasser–Micali construction point is other than s without fear of being detected. It f s of pseudorandom functions s from a secret seed , so that is for this reason that we refer to these objects as “pseudo- s f knowledge of not only enables one to evaluate s at any random oracles” rather than using the standard terminology f x x NP point , but also to provide an -proof that the value “pseudorandom functions” — the values s come “out f x s is indeed correct without compromising the unpre- of the blue,” as if from an oracle, and the receiver must sim- s f dictability of s at any other point for which no such a proof ply trust that they are computed correctly from the seed . was provided. Therefore, though quite large, the applicability of pseu- dorandom oracles is limited: for instance, to settings in which (1) the “seed owner”, and thus the one evaluating 1Introduction the pseudorandom oracle, is totally trusted; or (2) it is to the seed-owner’s advantage to evaluate his pseudorandom oracle correctly; or (3) there is absolutely nothing for the PSEUDORANDOM ORACLES. Goldreich, Goldwasser, and seed-owner to gain from being dishonest. Micali [GGM86] show how to simulate a random ora- f x One efficient way of enabling anyone to verify that s b cle from a-bit strings to -bit strings by means of a con- f x really is the value of pseudorandom oracle s at point struction using a seed, that is, a secret and short random clearly consists of publicizing the seed s.However,this string.
    [Show full text]
  • Choosing T-Out-Of-N Secrets by Oblivious Transfer
    ++ I&S CHOOSING T-OUT-OF-N SECRETS BY OBLIVIOUS TRANSFER Jung-San LEE and Chin-Chen CHANG Abstract: Oblivious Transfer (OT) has been regarded as one of the most signifi- cant cryptography tools in recent decades. Since the mechanism of OT is widely used in many applications such as e-commerce, secret information exchange, and games, various OT schemes have been proposed to improve its functionality and efficiency. In 2001, Naor and Pinkas proposed a secure 1-out-of-n OT protocol, in which the sender has n messages and the chooser can get one of these n messages in each protocol run. What is more, the sender cannot find which message has been chosen by the chooser and the chooser knows only the correct message. In 2004, Wakaha and Ryota proposed a secure t-out-of-n OT protocol, which is an extension of the 1-out-of-n OT protocol proposed by Naor and Pinkas. Wakaha and Ryota’s t- out-of-n OT protocol allows the chooser to get t messages from the sender simulta- neously in each protocol run. Besides, the sender cannot know what the chooser has chosen and the chooser can only know the exact t messages. However, getting deep understanding of Wakaha and Ryota’s protocol, it could be concluded that it still lacks efficiency such that it is hard to be applied in real-world applications. In this article, a secure and efficient t-out-of-n OT protocol based on the Generalized Chi- nese Remainder Theorem is proposed, in which the chooser can securely get t mes- sages from the sender simultaneously in each protocol run.
    [Show full text]
  • Download This PDF File
    T G¨ P 2012 C N Deadline: December 31, 2011 The Gödel Prize for outstanding papers in the area of theoretical computer sci- ence is sponsored jointly by the European Association for Theoretical Computer Science (EATCS) and the Association for Computing Machinery, Special Inter- est Group on Algorithms and Computation Theory (ACM-SIGACT). The award is presented annually, with the presentation taking place alternately at the Inter- national Colloquium on Automata, Languages, and Programming (ICALP) and the ACM Symposium on Theory of Computing (STOC). The 20th prize will be awarded at the 39th International Colloquium on Automata, Languages, and Pro- gramming to be held at the University of Warwick, UK, in July 2012. The Prize is named in honor of Kurt Gödel in recognition of his major contribu- tions to mathematical logic and of his interest, discovered in a letter he wrote to John von Neumann shortly before von Neumann’s death, in what has become the famous P versus NP question. The Prize includes an award of USD 5000. AWARD COMMITTEE: The winner of the Prize is selected by a committee of six members. The EATCS President and the SIGACT Chair each appoint three members to the committee, to serve staggered three-year terms. The committee is chaired alternately by representatives of EATCS and SIGACT. The 2012 Award Committee consists of Sanjeev Arora (Princeton University), Josep Díaz (Uni- versitat Politècnica de Catalunya), Giuseppe Italiano (Università a˘ di Roma Tor Vergata), Mogens Nielsen (University of Aarhus), Daniel Spielman (Yale Univer- sity), and Eli Upfal (Brown University). ELIGIBILITY: The rule for the 2011 Prize is given below and supersedes any di fferent interpretation of the parametric rule to be found on websites on both SIGACT and EATCS.
    [Show full text]