Monochloroacetic Acid (CAS No

Total Page:16

File Type:pdf, Size:1020Kb

Monochloroacetic Acid (CAS No ECETOC Joint Assessment of Commodity Chemicals No. 38 Monochloroacetic Acid (CAS No. 79-11-8) and its Sodium Salt (CAS No. 3926-62-3) European Centre for Ecotoxicology Avenue E Nieuwenhuyse 4 (Bte 6) and Toxicology of Chemicals B - 1160 Brussels, Belgium Joint Assessment of Commodity Chemicals No. 38 Monochloroacetic Acid (CAS No. 79-11-8) and its Sodium Salt (CAS No. 3926-62-3) June 1999 ISSN-0773-6339-38 Brussels, June 1999 © ECETOC copyright 1999 Monochloroacetic Acid (CAS No. 79-11-8) and its Sodium Salt (CAS No. 3926-62-3) CONTENTS The ECETOC Scheme for the Joint Assessment of Commodity Chemicals ………………………..i 1. SUMMARY AND CONCLUSIONS.....................................................................................................1 2. IDENTITY, PHYSICAL AND CHEMICAL PROPERTIES, ANALYTICAL METHODS ......................4 2.1 IDENTITY..................................................................................................................................4 2.2 PHYSICAL AND CHEMICAL PROPERTIES............................................................................4 2.3 CONVERSION FACTORS .......................................................................................................7 2.4 ANALYTICAL METHODS.........................................................................................................7 2.4.1 In air.............................................................................................................................7 2.4.2 In water ........................................................................................................................7 2.4.3 In biological media.......................................................................................................8 3. PRODUCTION, STORAGE, TRANSPORT AND USE ......................................................................9 3.1 PRODUCTION..........................................................................................................................9 3.1.1 MCAA ..........................................................................................................................9 3.1.2 SMCA ..........................................................................................................................9 3.2 STORAGE ................................................................................................................................9 3.2.1 MCAA ..........................................................................................................................9 3.2.2 SMCA ..........................................................................................................................9 3.3 TRANSPORT..........................................................................................................................10 3.3.1 MCAA ........................................................................................................................10 3.3.2 SMCA ........................................................................................................................10 3.4 USE.........................................................................................................................................10 4. ENVIRONMENTAL DISTRIBUTION AND TRANSFORMATION....................................................11 4.1 ENVIRONMENTAL SOURCES/EMISSIONS .........................................................................11 4.1.1 Natural sources .........................................................................................................11 4.1.2 Anthropogenic emissions ..........................................................................................11 4.1.3 Concentrations in the environment............................................................................12 4.2 ENVIRONMENTAL DISTRIBUTION ......................................................................................12 4.3 ENVIRONMENTAL FATE AND BIOTRANSFORMATION.....................................................13 4.3.1 Atmospheric Fate ......................................................................................................13 4.3.2 Aquatic Fate...............................................................................................................13 4.3.3 Terrestrial Fate ..........................................................................................................13 4.3.4 Biodegradation...........................................................................................................14 4.3.5 Bioaccumulation ........................................................................................................16 4.3.6 Abiotic Degradation ...................................................................................................17 4.4 EVALUATION .........................................................................................................................17 5. EFFECTS ON ORGANISMS IN THE ENVIRONMENT ...................................................................18 5.1 MICRO-ORGANISMS.............................................................................................................18 5.2 AQUATIC ORGANISMS.........................................................................................................20 5.2.1 Algae..........................................................................................................................20 5.2.2 Aquatic Invertebrates.................................................................................................21 5.2.3 Aquatic Vertebrates ...................................................................................................22 5.3 TERRESTRIAL ORGANISMS ................................................................................................24 5.3.1 Field studies...............................................................................................................24 5.3.2 Accidental exposure ..................................................................................................24 5.3.3 Plant toxicity...............................................................................................................25 5.4 EVALUATION .........................................................................................................................25 6. HUMAN EXPOSURE LEVELS AND OCCUPATIONAL EXPOSURE STANDARDS .....................26 6.1 NON-OCCUPATIONAL EXPOSURE .....................................................................................26 6.2 OCCUPATIONAL EXPOSURE ..............................................................................................27 6.2.1 Skin............................................................................................................................27 6.2.2 Inhalation ...................................................................................................................27 6.3 OCCUPATIONAL EXPOSURE STANDARDS .......................................................................29 6.4. EVALUATION ........................................................................................................................29 7. TOXICOKINETICS AND METABOLISM .........................................................................................30 7.1 ABSORPTION, DISTRIBUTION AND ELIMINATION ............................................................30 7.1.1 Human data ...............................................................................................................30 7.1.2 Animal data................................................................................................................30 7.2 BIOTRANSFORMATION........................................................................................................35 7.3 EVALUATION .........................................................................................................................37 8. BIOCHEMICAL AND PATHOPHYSIOLOGICAL MECHANISMS OF ACUTE MCAA INTOXICATION................................................................................................................................38 8.1 INDUCTION OF LACTIC ACIDOSIS BY MCAA IN EXPERIMENTAL ANIMALS ...................38 8.2 BIOCHEMICAL BASIS OF MCAA TOXICITY .........................................................................38 8.3 PATHOPHYSIOLOGICAL EFFECTS OF MCAA INTOXICATION.........................................39 9. EFFECTS ON EXPERIMENTAL ANIMALS AND IN VITRO TEST SYSTEMS ..............................40 9.1 ACUTE TOXICITY..................................................................................................................40 9.1.1 Oral...............................................................................................................................40 9.1.2 Dermal..........................................................................................................................40 9.1.3 Inhalation......................................................................................................................41 9.1.4 Parenteral Routes ........................................................................................................42 9.1.5 Evaluation.....................................................................................................................42 9.2 IRRITATION OF SKIN, EYE AND RESPIRATORY TRACT, AND SENSITISATION .............50 9.2.1 Skin Irritation ................................................................................................................50
Recommended publications
  • Chlorine Substituted Acetic Acids and Salts. Effect of Salification on Chlorine-35 NQR*
    Chlorine Substituted Acetic Acids and Salts. Effect of Salification on Chlorine-35 NQR* Serge David3, Michel Gourdjib, Lucien Guibéb, and Alain Péneaub a Laboratoire de Chimie Organique Multifonctionnelle, Bätiment 420. b Institut d'Electronique Fondamentale, Bätiment 220, Universite Paris-Sud, 91405 ORSAY Cedex, France. Z. Naturforsch. 51a, 611-619 (1996); received October 10, 1995 The NQR of a quadrupolar probe nucleus is often used to investigate the effect of substituent in molecules. The inductive effect, based on a partial charge migration along the molecular skeleton is the only one present in saturated aliphatics, the conjugative effect appearing in conjugated molecules, especially aromatics. As the stepwise charge migration mechanism, formerly used to explain the inductive effect, is now believed obsolete, we have wanted to reexamined the case of chlorine substituted acetic acids and salts. The data in literature was extended by observing reso- nances and determining NQR frequencies in several acids and salts. The present analysis of the salification of mono-, di- and tri-chloroacetic acids, which is equivalent to a deprotonation or the substitution of the acid hydrogen by a negative unit charge, shows that a model based on the polarization of the chlorine atom(s) by the carboxyle group is consistent with experimental results: the polarization energy appears to be proportional to the NQR frequency shifts; experimental data show a correlation between the NQR frequency shifts accompanying salification and the variations of the intrinsic acidity measured in the gas phase; this, in turn shows that there is a proportionality between the polarization energy and the variations in the acid free enthalpy of dissociation.
    [Show full text]
  • Monochloroacetic Acid, Sodium Monochloroacetate
    Monochloroacetic acid, sodium monochloroacetate MAK Value Documentation, supplement – Translation of the German version from 2019 A. Hartwig1,* MAK Commission2,* 1 Chair of the Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds Keywords: in the Work Area, Deutsche Forschungsgemeinschaft, Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, monochloroacetic acid, sodium 76131 Karlsruhe, Germany monochloroacetate, irritation, 2 Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work oxidative stress, peak limitation, Area, Deutsche Forschungsgemeinschaft, Kennedyallee 40, 53175 Bonn, Germany skin absorption, maximum workplace concentration, MAK * E-Mail: A. Hartwig ([email protected]), MAK Commission ([email protected]) value, prenatal toxicity, hazardous substance Abstract The German Commission for the Investigation of Health Hazards of Chemical Com- pounds in the Work Area has re-evaluated monochloroacetic acid [79-11-8] together with sodium monochloroacetate [3926-62-3] considering all toxicological endpoints. Monochloroacetic acid is a strong acid and dissociates in biological media. Therefore, also data for sodium monochloroacetate are used to evaluate the systemic toxicity. Monochloroacetic acid is corrosive to the eyes but there are no inhalation studies from which a NOAEC for local effects can be derived. Therefore, a maximum con- centration at the workplace (MAK value) of 2 mg/m3 (0.5 ml/m3), which has been set for the better investigated phosphoric acid, is also established for monochloroacetic acid.Asirritationisthecriticaleffect,monochloroaceticacidisclassifiedinPeakLim- Citation Note: itation Category I. By analogy with phosphoric acid, an excursion factor of 2 is set. Hartwig A, MAK Commission.
    [Show full text]
  • 1,2-DICHLOROETHANE 1. Exposure Data
    1,2-DICHLOROETHANE Data were last reviewed in IARC (1979) and the compound was classified in IARC Monographs Supplement 7 (1987a). 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 107-06-2 Chem. Abstr. Name: 1,2-Dichloroethane IUPAC Systematic Name: 1,2-Dichloroethane Synonym: Ethylene dichloride 1.1.2 Structural and molecular formulae and relative molecular mass Cl CH2 CH2 Cl C2H4Cl2 Relative molecular mass: 98.96 1.1.3 Chemical and physical properties of the pure substance (a) Description: Colourless liquid with a pleasant odour (Budavari, 1996) (b) Boiling-point: 83.5°C (Lide, 1995) (c) Melting-point: –35.5°C (Lide, 1995) (d) Solubility: Slightly soluble in water; miscible with ethanol, chloroform and diethyl ether (Lide, 1995; Budavari, 1996) (e) Vapour pressure: 8 kPa at 20°C (Verschueren, 1996) (f) Flash-point: 18°C, open cup (Budavari, 1996) (g) Conversion factor: mg/m3 = 4.0 × ppm 1.2 Production and use World production capacities in 1988 for 1,2-dichloroethane have been reported as follows (thousand tonnes): North America, 9445; western Europe, 9830; Japan, 3068; and other, 8351 (Snedecor, 1993). Production in the United States has been reported as follows (thousand tonnes): 1983, 5200; 1990, 6300; 1991, 6200; 1992, 6900; 1993, 8100 (United States National Library of Medicine, 1997). The total annual production in Canada in 1990 was estimated to be 922 thousand tonnes; more than 1000 thousand tonnes were produced in the United Kingdom in 1991 (WHO, 1995). –501– 502 IARC MONOGRAPHS VOLUME 71 1,2-Dichloroethane is used primarily in the production of vinyl chloride; 99% of total demand in Canada, 90% in Japan and 88% of total production in the United States are used for this purpose.
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water
    PROJECT NO. 4992 Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Prepared by: Keith A. Maruya Charles S. Wong Southern California Coastal Water Research Project Authority 2020 The Water Research Foundation (WRF) is a nonprofit (501c3) organization which provides a unified source for One Water research and a strong presence in relationships with partner organizations, government and regulatory agencies, and Congress. The foundation conducts research in all areas of drinking water, wastewater, stormwater, and water reuse. The Water Research Foundation’s research portfolio is valued at over $700 million. The Foundation plays an important role in the translation and dissemination of applied research, technology demonstration, and education, through creation of research‐based educational tools and technology exchange opportunities. WRF serves as a leader and model for collaboration across the water industry and its materials are used to inform policymakers and the public on the science, economic value, and environmental benefits of using and recovering resources found in water, as well as the feasibility of implementing new technologies. For more information, contact: The Water Research Foundation Alexandria, VA Office Denver, CO Office 1199 North Fairfax Street, Suite 900 6666 West Quincy Avenue Alexandria, VA 22314‐1445 Denver, Colorado 80235‐3098 Tel: 571.384.2100 Tel: 303.347.6100 www.waterrf.org [email protected] ©Copyright 2020 by The Water Research Foundation. All rights reserved. Permission to copy must be obtained from The Water Research Foundation. WRF ISBN: 978‐1‐60573‐503‐0 WRF Project Number: 4992 This report was prepared by the organization(s) named below as an account of work sponsored by The Water Research Foundation.
    [Show full text]
  • (CICAD) 1. 1,2- Dichloroethane
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Concise International Chemical Assessment Document 1 1,2-DICHLOROETHANE First draft prepared by Ms K. Hughes and Ms M.E. Meek, Environmental Health Directorate, Health Canada Please note that thelayout and pagination of this pdf file are not identical to the printed CICAD Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 1998 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organisation (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, the Food and Agriculture Organization of the United Nations, WHO, the United Nations Industrial Development Organization, and the Organisation for Economic Co-operation and Development (Participating Organizations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase coordination in the field of chemical safety.
    [Show full text]
  • United States Patent Office Patented Apr
    3,576,860 United States Patent Office Patented Apr. 27, 1971 2 3,576,860 Further objects, aspects and advantages of the inven PREPARATION OF CHLOROACETYL CHLORIDE . tion will be apparent from the description which follows. Dimitri A. Zazaris, Belleville, Ill., assignor to Chlorination of acetic acid alone in the absence of a Monsanto Company, St. Louis, Mo. catalyst by prior art processes usually requires relatively No Drawing. Filed Dec. 20, 1967, Ser. No. 691,975 5 high temperatures, 110 to 120° C., in order for the re Int, C. C07c53/20 action to occur. Temperature in this range, however, re U.S. C. 260-539 9 Claims Sult in a high yield of dichloroacetic acid. In order to re duce the reaction temperature, acetic anhydride, acetyl chloride, inorganic salts or combination of the three have ABSTRACT OF THE DISCLOSURE O been added to the acetic acid. Reaction ompositions of 85 weight percent acetic anhydride and 15 weight percent Chlorination of acetic anhydride and acetic anhydride acetic acid have been utilized. In the chlorination of this acetic acid mixtures in the presence of lithium chloride to mixture, the product obtained was predominantly mono yield a mixture of monochloroacetyl chloride and mono chloroacetic acid. This is contrary to what would be ex chloroacetic acid having a small concentration of the poly pected since theoretically acetic anhydride should give 1 chlorinated derivatives. mole of acid and 1 mole of acid halide per mole of an hydride. The use of many inorganic salts did not mate rially change this result. Many of the present commercial herbicides, such as the It has previously been determined that the low yield of chloroacetamides and "2,4-D,' utilize a monochloroacetyl 20 monochloroacetyl chloride is due to the interactions of chloride or monochloroacetic acid as an intermediate.
    [Show full text]
  • Acutely / Extremely Hazardous Waste List
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 12
    This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=13377 Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 12 ISBN Committee on Acute Exposure Guideline Levels; Committee on 978-0-309-25501-1 Toxicology; Board on Environmental Studies and Toxicology; Division on Earth and Life Studies; National Research Council 334 pages 6 x 9 PAPERBACK (2012) Visit the National Academies Press online and register for... Instant access to free PDF downloads of titles from the NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL 10% off print titles Custom notification of new releases in your field of interest Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Request reprint permission for this book Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 12 Committee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Division on Earth and Life Studies Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 12 THE NATIONAL ACADEMIES PRESS 500 FIFTH STREET, NW WASHINGTON, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Insti- tute of Medicine.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Creation Date 15-Feb-2011 Revision Date 10-Dec-2020 Revision Number 7 SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1. Product identifier Product Description: Chloroacetic acid Cat No. : 108510000; 108510010; 108510025; 108510040; 108512500 Synonyms MCA CAS-No 79-11-8 EC-No. 201-178-4 Molecular Formula C2 H3 Cl O2 Reach Registration Number 01-2119459589-18 1.2. Relevant identified uses of the substance or mixture and uses advised against Recommended Use Laboratory chemicals. Sector of use SU3 - Industrial uses: Uses of substances as such or in preparations at industrial sites Product category PC21 - Laboratory chemicals Process categories PROC15 - Use as a laboratory reagent Environmental release category ERC6a - Industrial use resulting in manufacture of another substance (use of intermediates) Uses advised against No Information available 1.3. Details of the supplier of the safety data sheet Company UK entity/business name Fisher Scientific UK Bishop Meadow Road, Loughborough, Leicestershire LE11 5RG, United Kingdom EU entity/business name Acros Organics BVBA Janssen Pharmaceuticalaan 3a 2440 Geel, Belgium E-mail address [email protected] 1.4. Emergency telephone number For information US call: 001-800-ACROS-01 / Europe call: +32 14 57 52 11 Emergency Number US:001-201-796-7100 / Europe: +32 14 57 52 99 CHEMTREC Tel. No.US:001-800-424-9300 / Europe:001-703-527-3887 SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture CLP Classification
    [Show full text]
  • Safety Data Sheet MCAA
    SAFETY DATA SHEET MONOCHLOROACETIC ACID 80% - 90% AQ Solution Revision Date: September 2019 Previous date: May 2014 Print Date: September 2019 1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1 Product information Commercial Product Name Monochloroacetic Acid Chemical Formula CICH2CO2H Molecular wt. 94.50 80-90% Solution 1.2 Relevant identified uses of the substance or mixture and uses advised against Use of the Substance/Mixture Recommended restrictions on use Reserved for industrial and professional use. 1.3 Details of the supplier of the safety data sheet Niacet Corporation 400 47th Street Niagara Falls, NY 14304 U.S.A. Telephone +1 716-285-1474 Telefax +1 716-285-1497 [email protected] 1.4 Emergency telephone number For Niacet Corporation, Niagara Falls, U.S.A. products: Chemtrec: +1 (800) 424 9300, +1 (703) 527-3887 2. HAZARDS IDENTIFICATION 2.1 Classification of the substance or mixture Classification according to OSHA Hazards Target Organ Effect (Central Nervous System, Heart, Skeletal Muscle, Kidney), Toxic by ingestion, Toxic by skin absorption, Corrosive Rapidly absorbed through skin Classification according to GHS Classification Acute toxicity, Oral (Category 3) Acute toxicity, Inhalation (Category 3) Skin corrosion (Category 1B) Serious eye damage (Category 1) 1/12 SAFETY DATA SHEET MONOCHLOROACETIC ACID 80% - 90% AQ Solution Revision Date: September 2019 Previous date: May 2014 Print Date: September 2019 Acute aquatic toxicity (Category 1) 2.2 Label elements Labeling according to GHS Label elements, including precautionary statements Pictogram Signal word Danger Hazard statement(s) H301 + H311 Toxic if swallowed or in contact with skin H314 Causes severe skin burns and eye damage.
    [Show full text]