The Ocean Basins' Their Structure and Evolution the Oceanographycourse Team

Total Page:16

File Type:pdf, Size:1020Kb

The Ocean Basins' Their Structure and Evolution the Oceanographycourse Team THE OCEAN BASINS' THEIR STRUCTURE AND EVOLUTION THE OCEANOGRAPHYCOURSE TEAM Authors Evelyn Brown (Waves, Tides, etc.; Ocean Chemistry) Angela Coiling (Ocean Circulation; Seawater (2nd edn); Case Studies) Dave Park (Waves, Tides, etc.) John Phillips (Case Studies) Dave Rothery (Ocean Basins) John Wright (Ocean Basins; Seawater; Ocean Chemistr3,; Case Studies) Designer Jane Sheppard Graphic Artist Sue Dobson Cartographer Ray Munns Editor Gerry Bearman This Volume forms part of an Open University course. For general availability of all the Volumes in the Oceanography Series, please contact your regular supplier, or in case of difficulty the appropriate Butterworth- Heinemann office. Further information on Open University courses may be obtained from: The Admissions Office, The Open University, P.O. Box 48, Walton Hall, Milton Keynes MK7 6AA, UK, or from the Open University website: http://w w w. ope n. ac. uk Cover illustration: Satellite image showing distribution of phytoplankton pigments in the North Atlantic off the US coast in the region of the Gulf Stream and the Labrador Current. (NASA, and O. Brown and R. Evans, Universit3, of Miami.) THE OCEAN BASINS' THEIR STRUCTURE AND EVOLUTION PREPARED BY JOHN WRIGHT AND DAVID A. ROTHERY FOR THE COURSE TEAM SECOND EDITION REVISED FOR THE COURSE TEAM BY DAVID A. ROTHERY UTTERWORTH EINEMANN in association with THE OPEN UNIVERSITY, WALTON HALL, MILTON KEYNES, MK7 6AA, ENGLAND Butterworth-Heinemann Linacre House, Jordan Hill, Oxford OX2 8DP A division of Reed Educational and Professional Publishing Ltd -~A member of the Reed Elsevier plc group OXFORD AUCKLAND BOSTON JOHANNESBURG MELBOURNE NEW DELHI Copyright 9 1989, 1998 The Open University First edition 1989 Second edition 1998. Reprinted (with corrections) 2001, 2003, 2004 All rights reserved; no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence permitting restricted copying issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London W IP 0LP. This book may not be lent, resold, hired out or otherwise disposed of by way of trade in any form of binding or cover other than that in which it is published, without the prior consent of the Publishers. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library. ISBN 0 7506 3983 0 Library of Congress Cataloguing in Publication Data A catalogue record for this book is available from the Library of Congress. Jointly published by the Open University, Walton Hall, Milton Keynes MK7 6AA and Butterworth-Heinemann. Edited, typeset, illustrated and designed by The Open University Printed in Singapore by Kyodo under the supervision of MRM Graphics Ltd., UK s330vli2.4 ABOUT THIS VOLUME 3 ABOUT THIS SERIES 3 CHAPTER 1 INTRODUCTION 1.1 MAPPING THE OCEANS 5 1.1.1 Navigation 9 1.1.2 Depth measurement 11 1.2 MAPPING THE OCEAN FLOORS 13 1.2.1 Bathymetry from satellites 18 1.3 UNDERWATER GEOLOGY 22 1.4 SUMMARY OF CHAPTER 1 25 CHAPTER 2 THE SHAPE OF OCEAN BASINS 2.1 THE MAIN FEATURESOF OCEAN BASINS 29 2.2 CONTINENTAL MARGINS 30 2.2.1 Aseismic continental margins 31 2.2.2 Seismic continental margins and island arcs 33 2.3 OCEAN RIDGES 35 2.3.1 Ridge topography 36 2.3.2 Age-depth relationships across ridges 37 2.4 TRANSFORM FAULTSAND FRACTUREZONES 38 2.5 THE DEEP OCEAN FLOOR 41 2.5.1 Abyssal plains 41 2.5.2 Seamounts 42 2.5.3 The distribution of submarine volcanoes 43 2.5.4 Aseismic ridges 45 2.6 SATELLITE BATHYMETRY- A CASE STUDY 45 2.7 SUMMARY OF CHAPTER2 52 CHAPTER 3 THE EVOLUTION OF OCEAN BASINS 3.1 THE EVOLUTION OF OCEAN BASINS 55 3.2 THE BIRTH OF AN OCEAN 58 3.2.1 The Red Sea 59 3.3 THE MAJOR OCEAN BASINS 62 3.3.1 The Mediterranean 66 3.4 SUMMARY OF CHAPTER 3 67 CHAPTER 4 THE STRUCTURE AND FORMATION OF OCEANIC LITHOSPHERE 4.1 THE FORMATION OF OCEANIC LITHOSPHERE 71 4.1.1 Pillow lavas: the top of the oceanic crust 74 4.1.2 Why a median valley? 76 4.1.3 Formation of the volcanic layer: two case studies 77 4.2 SEGMENTATION OF OCEANIC SPREADINGAXES 83 4.2.1 Second- and third-order segmentation of fast-spreading axes 84 4.2.2 Second- and third-order segmentation of slow-spreading axes 87 4.2.3 A plausible model for lithospheric growth 88 4.2.4 Changes in spreading pattern 89 4.2.5 Crustal abnormalities 89 4.3 SEAMOUNTS AND VOLCANIC ISLANDS 92 4.4 SUMMARY OF CHAPTER4 94 CHAPTER 5 HYDROTHERMAL CIRCULATION IN OCEANIC CRUST 5.1 THE NATURE OF HYDROTHERMALCIRCULATION 98 5.1.1 Heat flow, convection and permeability 99 5.2 CHEMICAL CHANGES DURING HYDROTHERMAL CIRCULATION 100 5.2.1 Changes in the rocks 101 5.2.2 Changes in seawater 103 5.2.3 Variability in hydrothermal systems 105 5.3 BLACK SMOKERS- AN EXERCISE IN PREDICTION 106 5.3.1 Black smokers, white smokers and warm-water vents 107 5.3.2 The lifetimes of hydrothermal systems 110 5.3.3 Anatomy of a vent field 111 5.4 THE EXTENT OF HYDROTHERMALACTIVITY 112 5.4.1 The biological significance of hydrothermal vent systems 115 5.4.2 Hydrothermal plumes 115 5.4.3 Event plumes 117 5.4.4 Off-axis hydrothermal circulation 118 5.4.5 The extent of hydrothermal metamorphism 120 5.5 MASS TRANSFER BY HYDROTHERMAL CIRCULATION 120 5.6 SUMMARY OF CHAPTER 5 122 CHAPTER 6 PALAEOCEANOGRAPHYAND SEA-LEVEL CHANGES 6.1 THE DISTRIBUTION OF SEDIMENTS 124 6.1.1 Sediments and palaeoceanography 127 6.2 CHANGES IN SEA-LEVEL 129 6.2.1 Different time-scales in sea-level changes 130 6.2.2 Using satellites to monitor sea-level changes 131 6.2.3 The post-glacial rise in sea-level 135 6.2.4 Measuring Quaternary changes in sea-level 136 6.2.5 The growth of an ice-sheet: Antarctica 140 6.2.6 The salinity crisis in the Mediterranean 142 6.2.7 The migration of climatic belts 146 6.2.8 The effect of plate-tectonic processes on sea-level 147 6.2.9 Major transgressions and regressions 148 6.3 SUMMARY OF CHAPTER 6 149 CHAPTER 7 THE BROADER PICTURE 7.1 THE GLOBAL CYCLE 151 7.1.1 Changes in components of the cycle 154 7.1.2 Some effects of short-term changes 155 7.1.3 The steady-state ocean 156 7.2 SOME RATES COMPARED 157 7.3 SUMMARY OF CHAPTER 7 158 APPENDIX THE STRATIGRAPHIC COLUMN 160 SUGGESTED FURTHER READING 161 ANSWERS AND COMMENTS TO QUESTIONS 162 ACKNOWLEDGEMENTS 179 INDEX 181 This is one of a Series of Volumes on Oceanography. It is designed so that it can be read on its own, like any other textbook, or studied as part of $330 Oceanography, a third level course for Open University students. The science of oceanography as a whole is multidisciplinary. However, different aspects fall naturally within the scope of one or other of the major 'traditional' disciplines. Thus, you will get the most out of this Volume if you have some previous experience of studying geology, geochemistry or geophysics. Other Volumes in this Series lie more within the fields of physics, chemistry and biology (and their associated sub-branches). Chapters l to 4 describe the processes that shape the ocean basins, determine the structure and composition of oceanic crust and control the major features of continental margins. Today's ocean basins are geologically ephemeral features, and these Chapters show why. Chapter 5 deals with the 'hot springs' of the deep oceans that result from the circulation of heated seawater through oceanic crust. This phenomenon was not even suspected until the mid-1960s and was not confirmed by observation until some years later. Since then, many people have seen the striking photographs of 'black smokers' at ocean ridges. Chapter 6 summarizes the main patterns of sediment distribution in the ocean basins and shows how sediments can preserve a record of past climatic and sea- level changes. Finally, Chapter 7 considers the role of the oceans as an integral part of global chemical cycles. You will find questions designed to help you to develop arguments and/or test your own understanding as you read, with answers provided at the back of the Volume. Important technical terms are printed in bold type where they are first introduced or defined. The Volumes in this Series are all presented in the same style and format, and together provide a comprehensive introduction to marine science. Ocean Basins deals with the structure and formation of oceanic crust, hydrothermal circulation, and factors affecting sea-level. Seawater considers the seawater solution and leads naturally into Ocean Circulation, which is the 'core' of the Series. It provides a largely non-mathematical treatment of ocean-atmosphere interaction and the dynamics of wind- driven surface current systems, and of density-driven circulation in the deep oceans. Waves, Tides and Shallow-Water Processes introduces the physical processes which control water movement and sediment transport in the nearshore environment (beaches, estuaries, deltas, shelves). Ocean Chemistry and Deep-Sea Sediments is concerned with biogeochemical cycling of elements within the seawater solution and with water-sediment interaction on the ocean floor. Case Studies in Oceanography and Marine Affairs examines the effect of human intervention in the marine environment and introduces the essentials of Law of the Sea.
Recommended publications
  • Mantle Hydration and Cl-Rich Fluids in the Subduction Forearc Bruno Reynard1,2
    Reynard Progress in Earth and Planetary Science (2016) 3:9 Progress in Earth and DOI 10.1186/s40645-016-0090-9 Planetary Science REVIEW Open Access Mantle hydration and Cl-rich fluids in the subduction forearc Bruno Reynard1,2 Abstract In the forearc region, aqueous fluids are released from the subducting slab at a rate depending on its thermal state. Escaping fluids tend to rise vertically unless they meet permeability barriers such as the deformed plate interface or the Moho of the overriding plate. Channeling of fluids along the plate interface and Moho may result in fluid overpressure in the oceanic crust, precipitation of quartz from fluids, and low Poisson ratio areas associated with tremors. Above the subducting plate, the forearc mantle wedge is the place of intense reactions between dehydration fluids from the subducting slab and ultramafic rocks leading to extensive serpentinization. The plate interface is mechanically decoupled, most likely in relation to serpentinization, thereby isolating the forearc mantle wedge from convection as a cold, potentially serpentinized and buoyant, body. Geophysical studies are unique probes to the interactions between fluids and rocks in the forearc mantle, and experimental constrains on rock properties allow inferring fluid migration and fluid-rock reactions from geophysical data. Seismic velocities reveal a high degree of serpentinization of the forearc mantle in hot subduction zones, and little serpentinization in the coldest subduction zones because the warmer the subduction zone, the higher the amount of water released by dehydration of hydrothermally altered oceanic lithosphere. Interpretation of seismic data from petrophysical constrain is limited by complex effects due to anisotropy that needs to be assessed both in the analysis and interpretation of seismic data.
    [Show full text]
  • Physiography of the Seafloor Hypsometric Curve for Earth’S Solid Surface
    OCN 201 Physiography of the Seafloor Hypsometric Curve for Earth’s solid surface Note histogram Hypsometric curve of Earth shows two modes. Hypsometric curve of Venus shows only one! Why? Ocean Depth vs. Height of the Land Why do we have dry land? • Solid surface of Earth is Hypsometric curve dominated by two levels: – Land with a mean elevation of +840 m = 0.5 mi. (29% of Earth surface area). – Ocean floor with mean depth of -3800 m = 2.4 mi. (71% of Earth surface area). If Earth were smooth, depth of oceans would be 2450 m = 1.5 mi. over the entire globe! Origin of Continents and Oceans • Crust is formed by differentiation from mantle. • A small fraction of mantle melts. • Melt has a different composition from mantle. • Melt rises to form crust, of two types: 1) Oceanic 2) Continental Two Types of Crust on Earth • Oceanic Crust – About 6 km thick – Density is 2.9 g/cm3 – Bulk composition: basalt (Hawaiian islands are made of basalt.) • Continental Crust – About 35 km thick – Density is 2.7 g/cm3 – Bulk composition: andesite Concept of Isostasy: I If I drop a several blocks of wood into a bucket of water, which block will float higher? A. A thick block made of dense wood (koa or oak) B. A thin block made of light wood (balsa or pine) C. A thick block made of light wood (balsa or pine) D. A thin block made of dense wood (koa or oak) Concept of Isostasy: II • Derived from Greek: – Iso equal – Stasia standing • Density and thickness of a body determine how high it will float (and how deep it will sink).
    [Show full text]
  • The Nature of the Mohorovicic Discontinuity, a Compromise 1
    JOURNAL OF GEOPHYSICAL RESEARCH VOL. 68, No. 15 AUGUST 1, 1963 The Nature of the Mohorovicic Discontinuity, A Compromise 1 PETER J. WYLLIE Department of Geochemistry and Minemlogy Pennsylvania State Universit.y, University Park Abstract available . The experimental data and steady-state calculations make it difficult M to explain the discontinuity beneath both oceans and continents on the basis of the same change. The phase oceanic M discontinuity may be a chemical discontinuity between basalt and peridotite , and a similar chemical discontinuity ma,y thus be expected b�neath the conti­ nents. Since ayailable experimental data place the basalt-eclogite phase change at about thE' same depth as the continental M discontinuity, intersections may exist between a zone of chemical discontinuity and a phase transition zone, the transition being either basalt-ecloO"ite or feldspathic peridotite-garnet peridotite. Detection of the latter transition by seismic t�'h­ niques ma,y be difficult. The M discontinuity could therefore represent the basalt-eclogite phase change in some localities (e.g. mountain belts) and the chemical discontinuity in others (e.g. oceans and continental shields). Variations in the depth to the chemical discontinuity and in the positions of geoisotherms produce great flexibility in oro genetic models. Interse;­ tions between the two zones at depth could be reflected at the surface by major fault zones separating large structural blocks of different elevations. Chemical discontinuity. The conyentional termediate between dunite and basalt is view that the Moho discontinuity at the base of qualitatively reasonable for the mantle. the crust is caused by a chemical change from Ringwood [1962a, c] adopted a specific model basaltic rock to peridotite has been expounded compounded from the concepts advanced and recently by Hess [1955], Wager [1958], and developed by many petrologists and geochem­ Harris and Rowell [1960].
    [Show full text]
  • Density of Oceanic Crust
    Density of Oceanic Crust Introduction Procedures Certain properties of a substance are both distinctive and Part 1 relatively easy to determine. Density, the ratio between 1. Complete Report Sheet 1 by calculating the missing a sample’s mass and volume at a specific temperature densities. How will you deal with the differences in and pressure (like standard ambient temperature and significant digits? Make sure to include units in your pressure), is one such property. Regardless of the size of a answers. sample, the density of a substance will always remain the 2. Using the depths and densities from your chart, plot same. The density of a rock sample can, therefore, be used a graph on your own paper (or use an electronic in the identification process. graphing tool) and title it Depth vs. Density. Hint: Think about independent and dependent variables. Using a While density may vary only slightly from rock to rock, blue colored pencil, draw a line of best fit from the XY- detailed sampling and correlation with other factors like intercept through the plotted points. depth may reveal important information about the history of a core, or may help to improve the use of seismic Part 2 profiles. The average density of oceanic crust is 3.0 g/cm3, 1. Find the mass and volume for each of the four continental while continental crust has an average of 2.7 g/cm3. samples as instructed by your teacher. How will you deal with error in the laboratory? How about significant Objectives digits? Record your answers in the space provided.
    [Show full text]
  • Peter Castro | Michael E. Huber
    TEACHER’S MANUAL Marine Science Peter Castro | Michael E. Huber SECOND EDITION Waves and Tides Chapter Introduce the BIG IDEA Waves and Tides Have students watch a short video clip of ocean waves 4 breaking on the shore. Have them make observations about the movement of water as the wave breaks and then retreats back to the ocean. If any students have been to the ocean, have them share their experience of the water and the waves. Pose students these questions and let them discuss responses in small groups. 1. Why does the size of a wave change as it approaches the shore? 2. What factors affect the tides and make the tide come in and leave again? 3. What hardships do marine organisms deal with that live in the intertidal zones? Small groups can share back with the whole group on key GO ONLINE To access points their groups discussed. inquiry and investigative activities to accompany this chapter. Ocean Section Pacing Main Idea and Key Questions Literacy Labs and Activities Standards 4.1 Introduc- 1 day Waves carry energy across the sea surface but Key Questions Activity: tion to Wave do not transport water. Making Waves Energy and 1. What are the three most common generating Motion forces of waves? 2. What are the two restoring forces that cause the water surface to return to its undisturbed state? 4.2 Types of 2 days There are several types of waves, each with its 2.d, 5.j, 6.f, Laboratory Manual: Making Waves own characteristics and different ways of 7.e Waves (p.
    [Show full text]
  • Global Sea Level Rise Scenarios for the United States National Climate Assessment
    Global Sea Level Rise Scenarios for the United States National Climate Assessment December 6, 2012 PhotoPhPhototo prpprovidedrovovidideedd bbyy thtthehe GrGGreaterreaeateter LaLLafourcheafofoururchche PoPortrt CoComommissionmimissssioion NOAA Technical Report OAR CPO-1 GLOBAL SEA LEVEL RISE SCENARIOS FOR THE UNITED STATES NATIONAL CLIMATE ASSESSMENT Climate Program Office (CPO) Silver Spring, MD Climate Program Office Silver Spring, MD December 2012 UNITED STATES NATIONAL OCEANIC AND Office of Oceanic and DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Atmospheric Research Dr. Rebecca Blank Dr. Jane Lubchenco Dr. Robert Dietrick Acting Secretary Undersecretary for Oceans and Assistant Administrator Atmospheres NOTICE from NOAA Mention of a commercial company or product does not constitute an endorsement by NOAA/OAR. Use of information from this publication concerning proprietary products or the tests of such products for publicity or advertising purposes is not authorized. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration. Report Team Authors Adam Parris, Lead, National Oceanic and Atmospheric Administration Peter Bromirski, Scripps Institution of Oceanography Virginia Burkett, United States Geological Survey Dan Cayan, Scripps Institution of Oceanography and United States Geological Survey Mary Culver, National Oceanic and Atmospheric Administration John Hall, Department of Defense
    [Show full text]
  • Drilling the Crust at Mid-Ocean Ridges
    or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of Th e Oceanography Society. Send all correspondence to: [email protected] or Th eOceanography PO Box 1931, Rockville, USA.Society, MD 20849-1931, or e to: [email protected] Oceanography correspondence all Society. Send of Th approval portionthe ofwith any articlepermitted only photocopy by is of machine, reposting, this means or collective or other redistirbution articleis has been published in Th SPECIAL ISSUE FEATURE Oceanography Drilling the Crust Threproduction, Republication, systemmatic research. for this and teaching article copy to use in reserved. e is rights granted All OceanographyPermission Society. by 2007 eCopyright Oceanography Society. journal of Th 20, Number 1, a quarterly , Volume at Mid-Ocean Ridges An “in Depth” perspective BY BENOÎT ILDEFONSE, PETER A. RONA, AND DONNA BLACKMAN In April 1961, 13.5 m of basalts were drilled off Guadalupe In the early 1970s, almost 15 years after the fi rst Mohole Island about 240 km west of Mexico’s Baja California, to- attempt, attendees of a Penrose fi eld conference (Confer- gether with a few hundred meters of Miocene sediments, in ence Participants, 1972) formulated the concept of a layered about 3500 m of water. This fi rst-time exploit, reported by oceanic crust composed of lavas, underlain by sheeted dikes, John Steinbeck for Life magazine, aimed to be the test phase then gabbros (corresponding to the seismic layers 2A, 2B, for the considerably more ambitious Mohole project, whose and 3, respectively), which themselves overlay mantle perido- objective was to drill through the oceanic crust down to tites.
    [Show full text]
  • Cretaceous History of Pacific Basin Guyot Reefs: a Reappraisal Based on Geothermal Endo-Upwelling
    PALAEOZ1c01061 ELSEVIER Palaeogeography, Palaeoclimatology, Palaeoecology 112 (1994) 239-260 Cretaceous history of Pacific Basin guyot reefs: a reappraisal based on geothermal endo-upwelling Francis Rougerie a, J.A. Fagerstrom a QRSTQM, B. P. 529, Papeete, Tahiti, French Polynesia Departinent of GeologicalSciences, The Uiziversity of Colorado, Boulder, CO 80309, USA Received 23 July, 1992; revised and accepted 15 April 1994 Abstract The mid-Cretaceous histories (origin, growth, death) of algal-rudist-stromatoporoid reef communities located on many Pacific Basin guyots are complex and controversial. These shallow water, tropical communities originated on volcanic edifices extruded during the Barremian-Albian, grew upward during edifice subsidenceftransgression throughout the Aptian, Albian and Cenomanian and several of them died almost synchronously near the Cenomanian- Turonian boundary. During their periods of origin and growth, we postulate that the reef ecosystems received dissolved oxygen by wave surge and nutrients by geothermal endo-upwelling. By this process oceanic waters of intermediate depth (approx. 500-1500 m) were: (a) drawn into the weathered and fractured volcanic summit and lower part of the older reef and driven upward through the porous framework by the remnant geothermal gradient of the volcanic foundation and (b) emerged at the reef surface to support the high metabolism of the living community. The death of most of the reefs near the Cenomanian-Turonian boundary approximately coincides with the most intense oceanic anoxic event (Om)in Pacific Ocean history. During this OAE the chemistry of the endo-upwelled fluids arriving at the reef surface changed from nutrient/oxygen-rich to dysoxic-anoxic-toxic, and killed the community.
    [Show full text]
  • Subduction Zones
    SUBDUCTION ZONES Robert J. Stern Geosciences Department University of Texas at Dallas Richardson, Texas, USA Received 24 January 2001; revised 24 June 2002; accepted 11 November 2002; published 31 December 2002. [1] Subduction zones are where sediments, oceanic continental crust, and earthquakes caused by the down- crust, and mantle lithosphere return to and reequilibrate going plate present a growing hazard to society. This with Earth’s mantle. Subduction zones are interior ex- overview summarizes our present understanding of sub- pressions of Earth’s 55,000 km of convergent plate mar- duction zones, using perspectives of the incoming plate, gins and are the geodynamic system that builds island downgoing plate, mantle wedge, and arc-trench com- arcs. Excess density of the mantle lithosphere in subduc- plex. Understanding the operation of subduction zones tion zones provides most of the power needed to move stands as one of the great challenges facing the Earth the plates while inducing convection in the overriding sciences in the 21st century and will require the efforts of mantle wedge. Asthenospheric mantle sucked toward global interdisciplinary teams. INDEX TERMS: 1010 Geochemis- the trench by the sinking slab interacts with water and try: Chemical evolution; 1030 Geochemistry: Geochemical cycles incompatible elements rising from the sinking plate, and (0330); 7299 Seismology: General or miscellaneous; 8120 Tectono- this interaction causes the mantle to melt. These melts physics: Dynamics of lithosphere and mantle—general; 8155 Tectono- rise vertically through downwelling mantle to erupt at physics: Plate motions—general; KEYWORDS: island arc, Wadati-Be- arc volcanoes. Subduction zones are thus interior Earth nioff Zone, subduction, tectonics systems of unparalleled scale and complexity.
    [Show full text]
  • Deep-Ocean Basins
    Chapter23 The Ocean Basins ChapterCh t Outline Outli ne 1 ● The Water Planet Divisions of the Global Ocean Exploration of the Ocean 2 ● Features of the Ocean Floor Continental Margins Deep-Ocean Basins 3 ● Ocean-Floor Sediments Sources of Deep Ocean– Basin Sediments Physical Classification of Sediments Why It Matters Oceans cover more than 70 percent of Earth’s surface. Oceans interact with the atmosphere to influence weather and climate. Exploring and analyzing data about the chemistry of ocean water, the geology of the ocean floor, marine ecosystems, and the physics of water movement is critical to understanding natural processes on Earth. 634 Chapter 23 hhq10sena_obacho.inddq10sena_obacho.indd 663434 PDF 88/1/08/1/08 11:09:46:09:46 PPMM Inquiry Lab 20 min Sink or Float? Fill the bottom half of 3-L soda bottle with water to within about 3 inches from the top and place it on a plastic or metal tray to catch any spills. Using small (3-oz) plastic cups, with some paper clips and metal nuts for ballast, see if you can get a cup to sink with air still trapped inside, simulating a submersible. You may need something pointed to make holes in the cups. Questions to Get You Started 1. What is buoyancy and why is it so important for maritime travel? 2. Compare techniques for sinking the cup. Does one method consistently work better than others? 3. What challenges do engineers face when designing submersibles? 635 hhq10sena_obacho.inddq10sena_obacho.indd 663535 PDF 88/1/08/1/08 11:09:58:09:58 PPMM These reading tools will help you learn the material in this chapter.
    [Show full text]
  • Exploring Deep Oceanic Crust Off Hawai'i
    Workshop Reports Sci. Dril., 29, 69–82, 2021 https://doi.org/10.5194/sd-29-69-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Workshop report: Exploring deep oceanic crust off Hawai‘i Susumu Umino1, Gregory F. Moore2, Brian Boston3, Rosalind Coggon4, Laura Crispini5, Steven D’Hondt6, Michael O. Garcia2, Takeshi Hanyu7, Frieder Klein8, Nobukazu Seama9, Damon A. H. Teagle4, Masako Tominaga10, Mikiya Yamashita7,11, Michelle Harris12, Benoit Ildefonse13, Ikuo Katayama14, Yuki Kusano15, Yohey Suzuki16, Elizabeth Trembath-Reichert17, Yasuhiro Yamada18, Natsue Abe18, Nan Xiao18, and Fumio Inagaki18 1School of Geosciences and Civil Engineering, College of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan 2Department of Earth Sciences, University of Hawai‘i at Manoa,¯ Honolulu, HI 96822, USA 3Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA 4School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, UK 5Department of Earth, Environment and Life Sciences, University of Genoa, 16126 Genoa, Italy 6Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA 7Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan 8Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 9Department of Planetology, Graduate School of Science,
    [Show full text]
  • *Oceanology, Phycal Sciences, Resource Materials, *Secondary School Science Tdpntifitrs ESFA Title III
    DOCUMENT RESUME ED 043 501 SE 009 343 TTTLE High School Oceanography. INSTITUTION Falmouth Public Schools, Mass. SPONS AGPNCY Bureau of Elementary and Secondary Education (DHFW/OF) ,Washington, D.C. PUB DATE Jul 70 NOTE 240p. EDRS PRICt FDRS Price MP -81.00 HC-$12.10 DESCRIPTORS *Course Content, *Curriculum, Geology, *Instructional Materials, Marine Rioloov, *Oceanology, Phycal Sciences, Resource Materials, *Secondary School Science TDPNTIFItRS ESFA Title III ABSTRACT This book is a compilation of a series of papers designed to aid high school teachers in organizing a course in oceanography for high school students. It consists of twel7p papers, with references, covering each of the following: (1) Introduction to Oceanography.(2) Geology of the Ocean, (3) The Continental Shelves, (ft) Physical Properties of Sea Water,(e) Waves and Tides, (f) Oceanic Circulation,(7) Air-Sea Interaction, (P) Sea Ice, (9) Chemical Oceanography, (10) Marine Biology,(11) The Origin and Development of Life in the Sea, and (12) Aquaculture, Its Status and Potential. The topics sugoeste0 are intended to give a balanced ,:overage to the sublect matter of oceanography and provide for a one semester course. It is suggested that the topics be presented with as much laboratory and field work as possible. This work was prepared under an PSt% Title III contract. (NB) Title III Public Law 89-10 ESEA Project 1 HIGH SCHOOL OCEANOGRAPHY I S 111119411 Of Mittm. 11K111011Witt 010 OfItutirCm ImStOCum111 PAS 11t1 t10100ocli WC lit IS MIMI 110mMt MS01 01 Wit It1)01 *Ms lit6 il. P) Of Vim 01 C1stiOtS SIM 10 1011HISSI11t t#ItiS111 OMR 011C CO Mita 10k1)01 tot MKT.
    [Show full text]