Plasmid Replication Initiator Interactions with Origin 13-Mers and Polymerase Subunits Contribute to Strand-Specific Replisome Assembly

Total Page:16

File Type:pdf, Size:1020Kb

Plasmid Replication Initiator Interactions with Origin 13-Mers and Polymerase Subunits Contribute to Strand-Specific Replisome Assembly Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly Aleksandra Wawrzycka, Marta Gross, Anna Wasaznik, and Igor Konieczny1 Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk, Poland Edited by Charles C. Richardson, Harvard Medical School, Boston, MA, and approved June 23, 2015 (received for review March 11, 2015) Although the molecular basis for replisome activity has been around the DNA with the use of the clamp loader (reviewed in extensively investigated, it is not clear what the exact mechanism ref. 18). The scenario for the polymerase assembly at the repli- for de novo assembly of the replication complex at the replication cation origin is mainly assumed, based on investigations of the origin is, or how the directionality of replication is determined. mechanism of leading and lagging DNA strand synthesis, con- Here, using the plasmid RK2 replicon, we analyze the protein in- ducted with in vitro assays on primed circular DNA but not on teractions required for Escherichia coli polymerase III (Pol III) ho- supercoiled templates. It is not clear how the replisome is as- loenzyme association at the replication origin. Our investigations sembled on supercoiled dsDNA after origin opening and revealed that in E. coli, replisome formation at the plasmid origin whether the helicase interactions with primase and τ-subunit are involves interactions of the RK2 plasmid replication initiation pro- the only factors contributing to de novo replisome assembly at tein (TrfA) with both the polymerase β-andα-subunits. In the the replication origin. presence of other replication proteins, including DnaA, helicase, In case of bacterial plasmids, involvement of both the plasmid- primase and the clamp loader, TrfA interaction with the β-clamp encoded Rep and the host-encoded replication initiator DnaA contributes to the formation of the β-clamp nucleoprotein complex was reported as essential for origin opening and helicase com- on origin DNA. By reconstituting in vitro the replication reaction on plex recruitment (19–21). DNA replication of the broad-host- ssDNA templates, we demonstrate that TrfA interaction with the range plasmid RK2 (reviewed in ref. 19) is initiated by the RK2 β-clamp and sequence-specific TrfA interaction with one strand of plasmid encoded Rep protein (TrfA), which binds to direct re- the plasmid origin DNA unwinding element (DUE) contribute to peats (iterons) localized at the plasmid’s replication origin (oriV) strand-specific replisome assembly. Wild-type TrfA, but not the (22) (Fig. 1A). In contrast to DnaA (23), TrfA, as well as other TrfA QLSLF mutant (which does not interact with the β-clamp), in plasmid Reps, does not contain a DNA binding domain (DBD). the presence of primase, helicase, Pol III core, clamp loader, and Instead, the plasmid Reps are similar to eukaryotic replication β-clamp initiates DNA synthesis on ssDNA template containing initiators and contain a winged helix (WH) domain for DNA 13-mers of the bottom strand, but not the top strand, of DUE. Re- interaction (24, reviewed in 25). TrfA interaction with the iterons sults presented in this work uncovered requirements for anchoring leads to origin opening assisted by host HU and DnaA proteins polymerase at the plasmid replication origin and bring insights of (26). TrfA plays a crucial role in DnaB helicase recruitment and how the directionality of DNA replication is determined. positioning at the AT-rich region of the oriV (27, 28). In contrast to DnaA protein, no data for plasmid Rep filament formation on DNA replication initiation | polymerase III | β-clamp | Rep | plasmid RK2 ssDNA have been provided to date. Recently, it was shown that TrfA interacts with ssDNA containing 13-mer sequences of one NA synthesis of prokaryotic and eukaryotic replicons re- Dquires the coordinated action of several enzymes (reviewed Significance in detail in 1, 2). These enzymes cooperate to form specific nu- cleoprotein complexes during the course of DNA replication. Research on DNA replication initiation has not revealed the ex- The formation of the initial complex is a result of a replication act mechanism for replication complex de novo assembly at the initiation protein (Rep) or origin recognition complex binding to ori origin or how the directionality of replication is determined. To dsDNA within the origin of DNA replication initiation ( ). This date, no evidence for direct involvement of a replication initia- interaction of the replication initiators with DNA results in ori- tion protein (Rep) in the process of polymerase recruitment has gin opening [i.e., destabilization of the DNA unwinding element been reported. This work demonstrates that a plasmid Rep, in (DUE)]. Origin opening provides ssDNA for helicase (3, 4), addition to its already described functions in origin opening and primase (5), and polymerase. helicase recruitment, can serve as a DNA polymerase anchoring It has been demonstrated that during the opening of the oriC factor. Through its interaction with 13-mer sequences on one bacterial chromosomal origin ( ), the chromosomal replica- strand of initially unwound DNA and interactions with the tion initiator, DnaA, binds to specific sequences (DnaA boxes) subunits of DNA polymerase, the initiation protein facilitates (6) and forms a filament on ssDNA (7, 8). Specific interaction strand-specific replisome assembly at the replication origin. This between DnaA and the DnaB helicase (9, 10) recruits the heli- step determines the direction of DNA replication. case and contributes to its loading by a helicase loader, the DnaC τ protein (11). Interactions between DnaB and the -subunit of Author contributions: I.K. designed research; A. Wawrzycka, M.G., and A. Wasaznik per- polymerase (12), as well as DnaB and primase (13), contribute to formed research; A. Wawrzycka, M.G., and I.K. analyzed data; and A. Wawrzycka and I.K. replisome assembly at Escherichia coli oriC. The primase re- wrote the paper. quires contact with single-stranded DNA-binding protein (SSB) The authors declare no conflict of interest. (14) to remain bound to the RNA primer. Disruption of this This article is a PNAS Direct Submission. interaction mediated by the polymerase clamp loader leads to Freely available online through the PNAS open access option. β primase displacement (14); -clamp loading on primed DNA 1To whom correspondence should be addressed. Email: [email protected]. (15, 16); and, finally, interaction of the polymerase core subunits edu.pl. β – β with the -clamp loaded template (14, 17). -clamp loading is a This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. complex reaction involving clamp opening and then positioning 1073/pnas.1504926112/-/DCSupplemental. E4188–E4196 | PNAS | Published online July 20, 2015 www.pnas.org/cgi/doi/10.1073/pnas.1504926112 Downloaded by guest on October 1, 2021 changed into Ala). Wild-type TrfA (wt TrfA) and TrfA variants PNAS PLUS A with alterations within the QLSLF motif were purified by affinity chromatography (Materials and Methods). To assess the quality of the purified proteins, we performed an analysis of the iso- thermal CD spectra (Fig. S1) and calculated the content of the respective secondary structures for each TrfA variant. The re- sults did not reveal any substantial differences in the secondary BCstructure’s content of the analyzed TrfA variants in comparison to the wt TrfA. We then determined how the TrfA variants interacted with the β-clamp using surface plasmon resonance (SPR) (SI Materials and Methods and Fig. S2). The wt TrfA immobilized on a CM5 sensor chip interacted with the β-clamp, whereas TrfA ΔLF–β-clamp complex formation was severely impaired. Under the same experimental conditions, TrfA F138A interacted with the β-clamp, although slightly less efficiently than was observed for the wt TrfA. To determine whether the mutations in the QLSLF motif that altered TrfA’s interaction with the β-clamp influenced RK2 DNA synthesis, we tested the replication activity of the purified TrfA variants in an in vitro replication assay. The test was based on E. coli cell crude extract (FII) that allows replication of D supercoiled dsDNA in the presence of the plasmid replication initiator, TrfA. The soluble FII extract contains all proteins necessary for plasmid DNA synthesis, including polymerase III (Pol III) holoenzyme and chaperones for TrfA activation. DNA synthesis in this assay, measured as the total amount of in- corporated nucleotides, reached a maximum when 90 nM wt TrfA was added to the assay mix and was inhibited by larger BIOCHEMISTRY amounts of this protein (Fig. 1B). Based on the amount of nu- cleotides incorporated into the template, we calculated that 25% of DNA templates were typically copied, similar to results pre- Δ Fig. 1. TrfA LF is not active in RK2 DNA replication either in vitro or in sented by others during experiments with an oriC in vitro system vivo. (A) Plasmid RK2 minimal origin of replication. The scheme presents the (31, 32). TrfA ΔLF was defective in DNA synthesis; replication RK2 origin (oriV) region comprising the cluster of 17-bp direct repeats (iterons), four DnaA boxes, and the DUE region with four 13-mers. (B)In reactions carried out in the presence of varying amounts of this vitro replication with a crude extract (FII) prepared from E. coli C600. (C)In mutant protein remained at background levels. Replication ac- vitro DNA replication reaction reconstituted with purified proteins (Recon. tivity of the TrfA F138A mutant was reduced in comparison to system). (B and C) Both in vitro replication experiments were established wt TrfA but showed a similar activity profile with a peak at with increasing amounts of wt TrfA or TrfA mutants as noted (0, 30, 60, 90, 90 nM protein and an inhibition of DNA synthesis at larger 120, 150, 210, and 300 nM) (results are presented from n = 3 replicates, with amounts of protein.
Recommended publications
  • Replisome Assembly at Oric, the Replication Origin of E. Coli, Reveals an Explanation for Initiation Sites Outside an Origin
    Molecular Cell, Vol. 4, 541±553, October, 1999, Copyright 1999 by Cell Press Replisome Assembly at oriC, the Replication Origin of E. coli, Reveals an Explanation for Initiation Sites outside an Origin Linhua Fang,*§ Megan J. Davey,² and Mike O'Donnell²³ have not been addressed. For example, is the local un- *Microbiology Department winding sufficiently large for two helicases to assemble Joan and Sanford I. Weill Graduate School of Medical for bidirectional replication, or does one helicase need Sciences of Cornell University to enter first and expand the bubble via helicase action New York, New York 10021 to make room for the second helicase? The known rep- ² The Rockefeller University and licative helicases are hexameric and encircle ssDNA. Howard Hughes Medical Institute Which strand does the initial helicase(s) at the origin New York, New York 10021 encircle, and if there are two, how are they positioned relative to one another? Primases generally require at least transient interaction with helicase to function. Can Summary primase function with the helicase(s) directly after heli- case assembly at the origin, or must helicase-catalyzed This study outlines the events downstream of origin DNA unwinding occur prior to RNA primer synthesis? unwinding by DnaA, leading to assembly of two repli- Chromosomal replicases are comprised of a ring-shaped cation forks at the E. coli origin, oriC. We show that protein clamp that encircles DNA, a clamp-loading com- two hexamers of DnaB assemble onto the opposing plex that uses ATP to assemble the clamp around DNA, strands of the resulting bubble, expanding it further, and a DNA polymerase that binds the circular clamp, yet helicase action is not required.
    [Show full text]
  • Initiation of Enzymatic Replication at the Origin of the Escherichia
    Proc. Nati. Acad. Sci. USA Vol. 82, pp. 3954-3958, June 1985 Biochemistry Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: Primase as the sole priming enzyme (DNA/orC/plasmids) ARIE VAN DER ENDEt, TANIA A. BAKER, TOHRU OGAWA*, AND ARTHUR KORNBERG Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305 Contributed by Arthur Kornberg, January 28, 1985 ABSTRACT The enzymatic replication of plasmids con- MATERIALS AND METHODS taining the unique (245 base pair) origin of the Escherichia coli chromosome (oriC) can be initiated with any of three enzyme DNAs and Reagents. pCM959 (4) was a gift from M. Meijer priming systems: primase alone, RNA polymerase alone, or (University of Amsterdam, The Netherlands); pTOA7 (T. both combined (Ogawa, T., Baker, T. A., van der Ende, A. & Ogawa) was constructed by inserting the Hae II-Acc I Kornberg, A. (1985) Proc. Natl. Acad. Sci. USA 82, oriC-containing fragment from M13oriC26 (7) via EcoRI 3562-3566). At certain levels of auxiliary proteins linkers into EcoRI-cleaved pMAPCdSG10, a deletion deriva- (topoisomerase I, protein HU, and RNase H), the solo primase tive of pBR327 (W. A. Segraves, personal communication); system is efficient and responsible for priming synthesis of all pSY317, M13oriC26, M13oriC2LB5, and M13AE101 are DNA strands. Replication of oriC plasmids is here separated described in Table 1 and elsewhere (3, 7). Tricine, creatine into four stages: (i) formation of an isolable, prepriming phosphate, ribo- and deoxyribonucleoside triphosphates complex requiring oriC, dnaA protein, dnaB protein, dnaC (rNTPs and dNTPs) were from Sigma; a-32P-labeled dTTP, protein, gyrase, single-strand binding protein, and ATP; (ii) rATP, rUTP, rGTP, and rCTP (>400 Ci/mmol; 1 Ci = 37 formation of a primed template by primase; (iii) rapid, GBq) were from Amersham.
    [Show full text]
  • Recruitment of Terminal Protein to the Ends of Streptomyces Linear Plasmids and Chromosomes by a Novel Telomere-Binding Protein Essential for Linear DNA Replication
    Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication Kai Bao1 and Stanley N. Cohen1,2,3 1Department of Genetics and 2Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5120, USA Bidirectional replication of Streptomyces linear plasmids and chromosomes from a central origin produces unpaired 3؅-leading-strand overhangs at the telomeres of replication intermediates. Filling in of these overhangs leaves a terminal protein attached covalently to the 5؅ DNA ends of mature replicons. We report here the essential role of a novel 80-kD DNA-binding protein (telomere-associated protein,Tap) in this process. Biochemical studies,yeast two-hybrid analysis,and immunopre cipitation/immunodepletion ,experiments indicate that Tap binds tightly to specific sequences in 3؅ overhangs and also interacts with Tpg bringing Tpg to telomere termini. Using DNA microarrays to analyze the chromosomes of tap mutant bacteria,we demonstrate that survivors of Tap ablation undergo telomere deletion,chromosome circularization,and amplification of subtelomeric DNA. Microarray-ba sed chromosome mapping at single-ORF resolution revealed common endpoints for independent deletions,identi fied amplified chromosomal ORFs adjacent to these endpoints,and quantified the copy number of these ORFs. Sequence analysis confirmed chromosome circularization and revealed the insertion of adventitious DNA between joined chromosome ends. Our results show that Tap is required for linear DNA replication in Streptomyces and suggest that it functions to recruit and position Tpg at the telomeres of replication intermediates.
    [Show full text]
  • Chromosome Duplication in Saccharomyces Cerevisiae
    | YEASTBOOK GENOME ORGANIZATION AND INTEGRITY Chromosome Duplication in Saccharomyces cerevisiae Stephen P. Bell*,1 and Karim Labib†,1 *Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and yMedical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom ORCID ID: 0000-0002-2876-610X (S.P.B.) ABSTRACT The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation. KEYWORDS DNA replication; cell cycle; chromatin; chromosome duplication; genome stability;
    [Show full text]
  • Changing Perspectives on the Role of Dnaa-ATP in Orisome Function and Timing Regulation
    fmicb-10-02009 August 28, 2019 Time: 17:19 # 1 REVIEW published: 29 August 2019 doi: 10.3389/fmicb.2019.02009 Changing Perspectives on the Role of DnaA-ATP in Orisome Function and Timing Regulation Alan C. Leonard1*, Prassanna Rao2, Rohit P. Kadam1 and Julia E. Grimwade1 1 Laboratory of Microbial Genetics, Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States, 2 Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States Bacteria, like all cells, must precisely duplicate their genomes before they divide. Regulation of this critical process focuses on forming a pre-replicative nucleoprotein complex, termed the orisome. Orisomes perform two essential mechanical tasks that configure the unique chromosomal replication origin, oriC to start a new round of chromosome replication: (1) unwinding origin DNA and (2) assisting with loading of the replicative DNA helicase on exposed single strands. In Escherichia coli, a necessary orisome component is the ATP-bound form of the bacterial initiator protein, DnaA. DnaA- ATP differs from DnaA-ADP in its ability to oligomerize into helical filaments, and in its ability to access a subset of low affinity recognition sites in the E. coli replication origin. Edited by: The helical filaments have been proposed to play a role in both of the key mechanical Ludmila Chistoserdova, tasks, but recent studies raise new questions about whether they are mandatory for University of Washington, allADP United States orisome activity. It was recently shown that a version of E. coli oriC (oriC ), whose Reviewed by: multiple low affinity DnaA recognition sites bind DnaA-ATP and DnaA-ADP similarly, was Anders Løbner-Olesen, fully occupied and unwound by DnaA-ADP in vitro, and in vivo suppressed the lethality University of Copenhagen, Denmark of DnaA mutants defective in ATP binding and ATP-specific oligomerization.
    [Show full text]
  • Cryptic Single-Stranded-DNA Binding Activities of the Phage P And
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 1154–1159, February 1997 Biochemistry Cryptic single-stranded-DNA binding activities of the phage l P and Escherichia coli DnaC replication initiation proteins facilitate the transfer of E. coli DnaB helicase onto DNA (phage l DNA replicationyE. coli DNA replicationyregulation of DNA helicase action) BRIAN A. LEARN,SOO-JONG UM*, LI HUANG†, AND ROGER MCMACKEN‡ Department of Biochemistry, School of Hygiene and Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205 Communicated by Thomas Kelly, Johns Hopkins University, Baltimore, MD, December 5, 1996 (received for review October 2, 1996) ABSTRACT The bacteriophage l P and Escherichia coli tight complex with the hexameric DnaB helicase (16) and the DnaC proteins are known to recruit the bacterial DnaB repli- helicase is recruited to the viral origin through interactions of the cative helicase to initiator complexes assembled at the phage and PzDnaB complex with the O-some (7, 11, 12). This second-stage bacterial origins, respectively. These specialized nucleoprotein nucleoprotein structure is seemingly unreactive until it is partially assemblies facilitate the transfer of one or more molecules of disassembled by the action of the E. coli DnaJ, DnaK, and GrpE DnaB helicase onto the chromosome; the transferred DnaB, in molecular chaperone system (8–10, 17). This disassembly reac- turn, promotes establishment of a processive replication fork tion stimulates DnaB helicase action by freeing DnaB from its apparatus. To learn more about the mechanism of the DnaB strong association with the P protein, an interaction which is transfer reaction, we investigated the interaction of replication known to suppress the ATPase and helicase activities of DnaB initiation proteins with single-stranded DNA (ssDNA).
    [Show full text]
  • Cloning and Characterization of a Senescence Inducing and Class II Tumor Suppressor Gene in Ovarian Carcinoma at Chromosome Region 6Q27
    Oncogene (2001) 20, 980 ± 988 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Cloning and characterization of a senescence inducing and class II tumor suppressor gene in ovarian carcinoma at chromosome region 6q27 Francesco Acquati1,8, Cristina Morelli2,8, Raaella Cinquetti1, Marco Giorgio Bianchi1, Davide Porrini1, Liliana Varesco3, Viviana Gismondi3, Romina Rocchetti4, Simona Talevi4, Laura Possati4, Chiara Magnanini2, Maria G Tibiletti5, Barbara Bernasconi5, Maria G Daidone6, Viji Shridhar7, David I Smith7, Massimo Negrini2, Giuseppe Barbanti-Brodano2 and Roberto Taramelli*,1 1Dipartimento di Biologia Strutturale e Funzionale, Universita' dell'Insubria, Varese, Italy; 2Dipartimento di Medicina Sperimentale e Diagnostica, Sezione di Microbiologia, UniversitaÁ di Ferrara, I-44100 Ferrara, Italy; 3Istituto Nazionale per la Ricerca sul Cancro Genova, Italy; 4Istituto di Scienze Biomediche, UniversitaÁ di Ancona, I-60131 Ancona, Italy; 5Laboratorio di Anatomia Patologica, Ospedale di Circolo, Varese, Italy; 6Dipartimento Oncologia Sperimentale, Istituto Nazionale Tumori, Milano, Italy; 7Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA Cytogenetic, molecular and functional analysis has Introduction shown that chromosome region 6q27 harbors a senes- cence inducing gene and a tumor suppressor gene Abnormalities of the long arm of chromosome 6 are involved in several solid and hematologic malignancies. associated with several solid neoplasms including We have cloned at 6q27 and characterized the carcinomas of the ovary (Saito et al., 1992; Foulkes RNASE6PL gene which belongs to a family of et al., 1993; Cooke et al., 1996; Orphanos et al., 1995; cytoplasmic RNases highly conserved from plants, to Tibiletti et al., 1996), breast (Develee et al., 1991; man.
    [Show full text]
  • 6.Start.Stop.07.Ppt [Read-Only]
    Accessory factors summary 1. DNA polymerase can’t replicate a genome. Solution ATP? No single stranded template Helicase + The ss template is unstable SSB (RPA (euks)) - No primer Primase (+) No 3’-->5’ polymerase Replication fork Too slow and distributive SSB and sliding clamp - Sliding clamp can’t get on Clamp loader (γ/RFC) + Lagging strand contains RNA Pol I 5’-->3’ exo, RNAseH - Lagging strand is nicked DNA ligase + Helicase introduces + supercoils Topoisomerase II + and products tangled 2. DNA replication is fast and processive DNA polymerase holoenzyme 1 Maturation of Okazaki fragments Topoisomerases control chromosome topology Catenanes/knots Topos Relaxed/disentangled •Major therapeutic target - chemotherapeutics/antibacterials •Type II topos transport one DNA through another 2 Starting and stopping summary 1. DNA replication is controlled at the initiation step. 2. DNA replication starts at specific sites in E. coli and yeast. 3. In E. coli, DnaA recognizes OriC and promotes loading of the DnaB helicase by DnaC (helicase loader) 4. DnaA and DnaC reactions are coupled to ATP hydrolysis. 5. Bacterial chromosomes are circular, and termination occurs opposite OriC. 6. In E. coli, the helicase inhibitor protein, tus, binds 7 ter DNA sites to trap the replisome at the end. 7. Eukaryotic chromosomes are linear, and the chromosome ends cannot be replicated by the replisome. 8. Telomerase extends the leading strand at the end. 9. Telomerase is a ribonucleoprotein (RNP) with RNA (template) and reverse-transcriptase subunits. Isolating DNA sequences that mediate initiation 3 Different origin sequences in different organisms E. Coli (bacteria) OriC Yeast ARS (Autonomously Replicating Sequences) Metazoans ???? Initiation in prokaryotes and eukaryotes Bacteria Eukaryotes ORC + other proteins load MCM hexameric helicases MCM (helicase) + RPA (ssbp) Primase + DNA pol α PCNA:pol δ + RFC MCM (helicase) + RPA (ssbp) PCNA:pol δ + RFC (clamp loader) Primase + DNA pol α PCNA:pol δ + DNA ligase 4 Crystal structure of DnaA:ATP revealed mechanism of origin assembly 1.
    [Show full text]
  • Diversity of DNA Replication in the Archaea
    G C A T T A C G G C A T genes Review Diversity of DNA Replication in the Archaea Darya Ausiannikava * and Thorsten Allers School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-115-823-0304 Academic Editor: Eishi Noguchi Received: 29 November 2016; Accepted: 20 January 2017; Published: 31 January 2017 Abstract: DNA replication is arguably the most fundamental biological process. On account of their shared evolutionary ancestry, the replication machinery found in archaea is similar to that found in eukaryotes. DNA replication is initiated at origins and is highly conserved in eukaryotes, but our limited understanding of archaea has uncovered a wide diversity of replication initiation mechanisms. Archaeal origins are sequence-based, as in bacteria, but are bound by initiator proteins that share homology with the eukaryotic origin recognition complex subunit Orc1 and helicase loader Cdc6). Unlike bacteria, archaea may have multiple origins per chromosome and multiple Orc1/Cdc6 initiator proteins. There is no consensus on how these archaeal origins are recognised—some are bound by a single Orc1/Cdc6 protein while others require a multi- Orc1/Cdc6 complex. Many archaeal genomes consist of multiple parts—the main chromosome plus several megaplasmids—and in polyploid species these parts are present in multiple copies. This poses a challenge to the regulation of DNA replication. However, one archaeal species (Haloferax volcanii) can survive without replication origins; instead, it uses homologous recombination as an alternative mechanism of initiation. This diversity in DNA replication initiation is all the more remarkable for having been discovered in only three groups of archaea where in vivo studies are possible.
    [Show full text]
  • Repa and Dnaa Proteins Are Required for Initiation of R1 Plasmid
    Proc. Nadl. Acad. Sci. USA Vol. 84, pp. 4781-4785, July 1987 Biochemistry RepA and DnaA proteins are required for initiation of R1 plasmid replication in vitro and interact with the oriR sequence (DNA replication origin/initiation protein/Escherichia coli replication proteins/DNase I-protection analysis) HISAO MASAI AND KEN-ICHI ARAI Department of Molecular Biology, DNAX Research Institute of Molecular and Cellular Biology, 901 California Avenue, Palo Alto, CA 94304 Communicated by Masayasu Nomura, March 11, 1987 ABSTRACT RepA, an initiation protein of R1 plasmid MATERIALS AND METHODS replication, was purified from an Escherichia coli strain overproducing the protein. The purified RepA protein specif- E. coli Strains and Plasmids. The strains and sources were ically initiated replication in vitro of plasmid DNA bearing the C600, W3110, and HB101 from laboratory stocks; WM433 replication origin ofR1 plasmid (oriR). The replication, strictly (dnaA204) and WM434 (dnaA205) from W. Messer (Max dependent on added RepA protein, was independent of host Planck Institute) (9); PC2 (dnaC2) from J. A. Wechsler RNA polymerase but required other host replication functions (Columbia University) (10); FA22 (dnaB) from I. Herskowitz (DnaB and DnaC proteins, the single-stranded-DNA-binding (University of California, San Francisco) (11); JC206 (ssb) protein SSB, and DNA gyrase). The replication was also from the E. coli genetic stock center (Yale University) (12); completely dependent on the host DnaA function. In filter and X lysogens carrying the temperature-sensitive cI repres- binding assays in high salt (0.5 M KCI) conditions, RepA sor gene cI857, MZ-1 (D. Court, unpublished), from D. specifically binds to both supercoiled and linear plasmid DNA Bramhill (Stanford University).
    [Show full text]
  • DNA Replication
    Semiconservative Replication DNA Replication Chapter 11 Wikipedia Kornberg’s DNA Polymerase I DNA Polymerase Reaction Requirements for DNA synthesis DNA Polymerase Mg++ dNTP single stranded DNA template Priming 3’ OH Consider how the active site descriminates among the dNTP’s. Other Enzymatic Activities Origin of Replication E. coli DNA Polymerases 9 mers- TTATTTCCAC Enzymatic Activities I II III . 5’-3’ synthesis + + + Pair 13mers GATCTCTTATTAG Required Primer + + + Order of Interaction 1. dnaA binds 9mers 3’-5’ Exonuclease + + + 2. dnaBC bind dnaA and 13mer -dnaB ATP dependent (Proofreading Activity) helicase 3. ssbp bind unwound DNA stabilizing it 5’-3’ Exonuclease 4. Gyrase (topoisomerase) relieves torsional stress (Replacement Activity) + - - . 5. Primase (dnaG) synthesizes short primers 6. DNA polymerase III initiates synthesis DNA Polymerase III mutation lethal – essential to replication DNA Polymerase I mutation viable – higher rate of mutation DNA Polymerase II mutation viable – function unknown 1 dnaA Discontinuous Replication DNA Polymerase synthesizes 5’-3’ only http://oregonstate.edu/instruction/bb492/figletters/FigH3.html Two Replication Forks Replication Fork http://oregonstate.edu/instruction/bb492/figletters/FigH2.html DNA Polymerase Clamp Replication Fork Improved Processivity http://www.wehi.edu.au/education/wehi-tv/dna/replication.html 2 Simultaneous Synthesis Eukaryotic Issues • Size of Genome • Ends of Linear Chromosomes Movie Size of Eukaryotic Genome Multiple Origins of Replication Genome Size – E coli 4.6 Mbp
    [Show full text]
  • Origin DNA Melting—An Essential Process with Divergent Mechanisms
    G C A T T A C G G C A T genes Review Origin DNA Melting—An Essential Process with Divergent Mechanisms Matthew P. Martinez †, John M. Jones †, Irina Bruck and Daniel L. Kaplan * Department of Biomedical Sciences, Florida State University College of Medicine, 1115 W. Call St., Tallahassee, FL 32306, USA; [email protected] (M.P.M.); [email protected] (J.M.J.); [email protected] (I.B.) * Correspondence: [email protected]; Tel.: +1-850-645-0237 † These two authors contributed equally to this work. Academic Editor: Eishi Noguchi Received: 21 November 2016; Accepted: 3 January 2017; Published: 11 January 2017 Abstract: Origin DNA melting is an essential process in the various domains of life. The replication fork helicase unwinds DNA ahead of the replication fork, providing single-stranded DNA templates for the replicative polymerases. The replication fork helicase is a ring shaped-assembly that unwinds DNA by a steric exclusion mechanism in most DNA replication systems. While one strand of DNA passes through the central channel of the helicase ring, the second DNA strand is excluded from the central channel. Thus, the origin, or initiation site for DNA replication, must melt during the initiation of DNA replication to allow for the helicase to surround a single-DNA strand. While this process is largely understood for bacteria and eukaryotic viruses, less is known about how origin DNA is melted at eukaryotic cellular origins. This review describes the current state of knowledge of how genomic DNA is melted at a replication origin in bacteria and eukaryotes.
    [Show full text]