Helicase Loader Complex Reveals Insights Into the Mechanism of Bacterial Primosome Assembly
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Replisome Assembly at Oric, the Replication Origin of E. Coli, Reveals an Explanation for Initiation Sites Outside an Origin
Molecular Cell, Vol. 4, 541±553, October, 1999, Copyright 1999 by Cell Press Replisome Assembly at oriC, the Replication Origin of E. coli, Reveals an Explanation for Initiation Sites outside an Origin Linhua Fang,*§ Megan J. Davey,² and Mike O'Donnell²³ have not been addressed. For example, is the local un- *Microbiology Department winding sufficiently large for two helicases to assemble Joan and Sanford I. Weill Graduate School of Medical for bidirectional replication, or does one helicase need Sciences of Cornell University to enter first and expand the bubble via helicase action New York, New York 10021 to make room for the second helicase? The known rep- ² The Rockefeller University and licative helicases are hexameric and encircle ssDNA. Howard Hughes Medical Institute Which strand does the initial helicase(s) at the origin New York, New York 10021 encircle, and if there are two, how are they positioned relative to one another? Primases generally require at least transient interaction with helicase to function. Can Summary primase function with the helicase(s) directly after heli- case assembly at the origin, or must helicase-catalyzed This study outlines the events downstream of origin DNA unwinding occur prior to RNA primer synthesis? unwinding by DnaA, leading to assembly of two repli- Chromosomal replicases are comprised of a ring-shaped cation forks at the E. coli origin, oriC. We show that protein clamp that encircles DNA, a clamp-loading com- two hexamers of DnaB assemble onto the opposing plex that uses ATP to assemble the clamp around DNA, strands of the resulting bubble, expanding it further, and a DNA polymerase that binds the circular clamp, yet helicase action is not required. -
Curr.Opin.Chem. Biol., 15, 587-594
Available online at www.sciencedirect.com Bacterial replicases and related polymerases Charles S McHenry Bacterial replicases are complex, tripartite replicative replication that are conserved among all life forms are machines. They contain a polymerase, Pol III, a b2 processivity illustrated in Figure 1. factor and a DnaX complex ATPase that loads b2 onto DNA and chaperones Pol III onto the newly loaded b2. Many Structure and function of a, the catalytic bacteria encode both a full length t and a shorter g form of subunit DnaX by a variety of mechanisms. The polymerase catalytic Like all polymerases, Pol III a contains palm, thumb and subunit of Pol III, a, contains a PHP domain that not only binds fingers domains, in the shape of a cupped right hand 2+ to prototypical e Mg -dependent exonuclease, but also Figure 2. However, apo-enzyme structures of the full 2+ contains a second Zn -dependent proofreading length Thermus aquaticus (Taq) and a truncated version of exonuclease, at least in some bacteria. Replication of the E. coli (Eco) a subunit revealed a big surprise: the palm chromosomes of low GC Gram-positive bacteria require two domain has the basic fold of the X family of DNA Pol IIIs, one of which, DnaE, appears to extend RNA primers a polymerases, which includes the slow, non-processive only short distance before handing the product off to the major Pol bs [1 ,2 ]. replicase, PolC. Other bacteria encode a second Pol III (ImuC) that apparently replaces Pol V, required for induced A ternary complex of a dideoxy-terminated primer-tem- mutagenesis in E. -
Initiation of Enzymatic Replication at the Origin of the Escherichia
Proc. Nati. Acad. Sci. USA Vol. 82, pp. 3954-3958, June 1985 Biochemistry Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: Primase as the sole priming enzyme (DNA/orC/plasmids) ARIE VAN DER ENDEt, TANIA A. BAKER, TOHRU OGAWA*, AND ARTHUR KORNBERG Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305 Contributed by Arthur Kornberg, January 28, 1985 ABSTRACT The enzymatic replication of plasmids con- MATERIALS AND METHODS taining the unique (245 base pair) origin of the Escherichia coli chromosome (oriC) can be initiated with any of three enzyme DNAs and Reagents. pCM959 (4) was a gift from M. Meijer priming systems: primase alone, RNA polymerase alone, or (University of Amsterdam, The Netherlands); pTOA7 (T. both combined (Ogawa, T., Baker, T. A., van der Ende, A. & Ogawa) was constructed by inserting the Hae II-Acc I Kornberg, A. (1985) Proc. Natl. Acad. Sci. USA 82, oriC-containing fragment from M13oriC26 (7) via EcoRI 3562-3566). At certain levels of auxiliary proteins linkers into EcoRI-cleaved pMAPCdSG10, a deletion deriva- (topoisomerase I, protein HU, and RNase H), the solo primase tive of pBR327 (W. A. Segraves, personal communication); system is efficient and responsible for priming synthesis of all pSY317, M13oriC26, M13oriC2LB5, and M13AE101 are DNA strands. Replication of oriC plasmids is here separated described in Table 1 and elsewhere (3, 7). Tricine, creatine into four stages: (i) formation of an isolable, prepriming phosphate, ribo- and deoxyribonucleoside triphosphates complex requiring oriC, dnaA protein, dnaB protein, dnaC (rNTPs and dNTPs) were from Sigma; a-32P-labeled dTTP, protein, gyrase, single-strand binding protein, and ATP; (ii) rATP, rUTP, rGTP, and rCTP (>400 Ci/mmol; 1 Ci = 37 formation of a primed template by primase; (iii) rapid, GBq) were from Amersham. -
Crystallographic Studies of the E. Coli DNA Replication Restart Primosome
A Thesis entitled Crystallographic studies of the E. coli DNA replication restart primosome by Aude E. Izaac Submitted as partial fulfillment of the requirements for the Master of Science in Chemistry Adviser: Dr. Timothy C. Mueser Graduate School The University of Toledo May 2005 Copyright © 2005 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Crystallographic studies of the E. coli DNA replication restart primosome Aude Izaac Submitted as partial fulfillment of the requirements for the Master of Science in Chemistry The University of Toledo May 2005 Understanding the mechanisms of DNA replication has been one of the main research topics in biochemistry for decades, due to the tremendous potential applications involved, such as medical treatments and better knowledge of the biological evolution of organisms. In this perspective, macromolecular X-ray crystallography provides a very powerful tool. By solving the 3-dimensional structure of the proteins involved in replication mechanisms, one can get a good insight at complicated biological systems at the atomic level. It is also important to study the protein-protein and protein-substrate interactions when they form biological complexes. iii This work focused on studying several proteins which are associated with the assembly of the replication restart primosome in Escherichia coli, during the repair of damaged DNA. The crystallization of PriA, the most important of the restart primosome proteins, was investigated. Two truncations of PriA (the PriA N and PriA NI domains) were expressed, purified and characterized to be prepared for crystallization. -
Arthur Kornberg Discovered (The First) DNA Polymerase Four
Arthur Kornberg discovered (the first) DNA polymerase Using an “in vitro” system for DNA polymerase activity: 1. Grow E. coli 2. Break open cells 3. Prepare soluble extract 4. Fractionate extract to resolve different proteins from each other; repeat; repeat 5. Search for DNA polymerase activity using an biochemical assay: incorporate radioactive building blocks into DNA chains Four requirements of DNA-templated (DNA-dependent) DNA polymerases • single-stranded template • deoxyribonucleotides with 5’ triphosphate (dNTPs) • magnesium ions • annealed primer with 3’ OH Synthesis ONLY occurs in the 5’-3’ direction Fig 4-1 E. coli DNA polymerase I 5’-3’ polymerase activity Primer has a 3’-OH Incoming dNTP has a 5’ triphosphate Pyrophosphate (PP) is lost when dNMP adds to the chain E. coli DNA polymerase I: 3 separable enzyme activities in 3 protein domains 5’-3’ polymerase + 3’-5’ exonuclease = Klenow fragment N C 5’-3’ exonuclease Fig 4-3 E. coli DNA polymerase I 3’-5’ exonuclease Opposite polarity compared to polymerase: polymerase activity must stop to allow 3’-5’ exonuclease activity No dNTP can be re-made in reversed 3’-5’ direction: dNMP released by hydrolysis of phosphodiester backboneFig 4-4 Proof-reading (editing) of misincorporated 3’ dNMP by the 3’-5’ exonuclease Fidelity is accuracy of template-cognate dNTP selection. It depends on the polymerase active site structure and the balance of competing polymerase and exonuclease activities. A mismatch disfavors extension and favors the exonuclease.Fig 4-5 Superimposed structure of the Klenow fragment of DNA pol I with two different DNAs “Fingers” “Thumb” “Palm” red/orange helix: 3’ in red is elongating blue/cyan helix: 3’ in blue is getting edited Fig 4-6 E. -
Glycolytic Pyruvate Kinase Moonlighting Activities in DNA Replication
Glycolytic pyruvate kinase moonlighting activities in DNA replication initiation and elongation Steff Horemans, Matthaios Pitoulias, Alexandria Holland, Panos Soultanas, Laurent Janniere To cite this version: Steff Horemans, Matthaios Pitoulias, Alexandria Holland, Panos Soultanas, Laurent Janniere. Gly- colytic pyruvate kinase moonlighting activities in DNA replication initiation and elongation. 2020. hal-02992157 HAL Id: hal-02992157 https://hal.archives-ouvertes.fr/hal-02992157 Preprint submitted on 10 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Glycolytic pyruvate kinase moonlighting activities in DNA replication initiation and elongation Steff Horemans1, Matthaios Pitoulias2, Alexandria Holland2, Panos Soultanas2¶ and Laurent Janniere1¶ 1 : Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France 2 : Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK Short title: PykA moonlighting activity in DNA replication Key Words: DNA replication; replication control; central carbon metabolism; glycolytic enzymes; replication enzymes; cell cycle; allosteric regulation. ¶ : Corresponding authors Laurent Janniere: [email protected] Panos Soultanas : [email protected] 1 SUMMARY Cells have evolved a metabolic control of DNA replication to respond to a wide range of nutritional conditions. -
Replication Fork Assembly at Recombination Intermediates Is Required for Bacterial Growth
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 3552–3555, March 1999 Biochemistry Replication fork assembly at recombination intermediates is required for bacterial growth i JOING LIU†,LIEWEI XU‡,STEVEN J. SANDLER§, AND KENNETH J. MARIANS†‡¶ †Molecular Biology Graduate Program and ‡Biochemistry and Structural Biology Graduate Program, Cornell University Graduate School of Medical Sciences, New York, NY 10021; §Department of Microbiology, University of Massachusetts at Amherst, Amherst, MA 01003; and ¶Molecular Biology Program, Memorial Sloan–Kettering Cancer Center, New York, NY 10021 Edited by Charles M. Radding, Yale University School of Medicine, New Haven, CT, and approved January 27, 1999 (received for review November 16, 1998) ABSTRACT PriA, a 3* 3 5* DNA helicase, directs assem- (12). Single-stranded DNA-binding protein (SSB) was purified bly of a primosome on some bacteriophage and plasmid DNAs. according to Minden and Marians (13). The DNA polymerase Primosomes are multienzyme replication machines that con- III holoenzyme was reconstituted either from Pol III* and b tribute both the DNA-unwinding and Okazaki fragment- subunit as described by Wu et al. (14) or from purified subunits priming functions at the replication fork. The role of PriA in as described by Marians et al. (15). chromosomal replication is unclear. The phenotypes of priA Preparation of D Loop Template DNA. A 100-nt-long oli- null mutations suggest that the protein participates in repli- gonucleotide having the sequence 59-ACATACATAAAGG- cation restart at recombination intermediates. We show here TGGCAACGCCATTCGAAATGAGCTCCATATGCTAG- that PriA promotes replication fork assembly at a D loop, an CTAGGGAGGCCCCCGTCACAATCAATAGAAAATT- intermediate formed during initiation of homologous recom- CATATGGTTTACCAGCGC-39 was annealed to f1R408 bination. -
The Molecular Coupling Between Substrate Recognition and ATP Turnover in A
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.21.345918; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The molecular coupling between substrate recognition and ATP turnover in a AAA+ hexameric helicase loader Neha Puri1,2, Amy J. Fernandez1, Valerie L. O’Shea Murray1,3, Sarah McMillan4, James L. Keck4, James M. Berger1,* 1Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205 2Bristol Myers Squibb, 38 Jackson Road, Devens, MA 01434 3Saul Ewing Arnstein & Lehr, LLP, Centre Square West, 1500 Market Street, 38th Floor, Philadelphia, PA 19102 4Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706 *Corresponding author Email: [email protected] Keywords: DNA replication, AAA+ ATPase, Helicase, Meier-Gorlin Syndrome 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.21.345918; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT In many bacteria and in eukaryotes, replication fork establishment requires the controlled loading of hexameric, ring-shaped helicases around DNA by AAA+ ATPases. How loading factors use ATP to control helicase deposition is poorly understood. -
Dna Replication in Archaea: Priming, Transferase, and Elongation Activities
DNA REPLICATION IN ARCHAEA: PRIMING, TRANSFERASE, AND ELONGATION ACTIVITIES by Zhongfeng Zuo Bachelor degree, Beijing Technology and Business University, 1999 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2012 UNIVERSITY OF PITTSBURGH THE KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Zhongfeng Zuo It was defended on January 27, 2012 and approved by Stephen G. Weber, Professor, Department of Chemistry Billy Day, Professor, Department of Chemistry, Department of Pharmacy Renã A. S. Robinson, Assistant Professor, Department of Chemistry Dissertation Advisor: Michael A. Trakselis, Assistant Professor, Department of Chemistry ii DNA REPLICATION IN ARCHAEA: PRIMING, TRANSFERASE, AND ELONGATION ACTIVITIES Zhongfeng Zuo, Ph.D University of Pittsburgh, 2012 Copyright © by Zhongfeng Zuo 2012 iii DNA REPLICATION IN ARCHAEA: PRIMING, TRANSFERASE, AND ELONGATION ACTIVITIES Zhongfeng Zuo, Ph.D University of Pittsburgh, 2012 We have biochemically characterized the bacterial-like DnaG primase contained within the hyperthermophilic crenarchaeon Sulfolobus solfataricus (Sso ) and compared in vitro priming kinetics with those of the eukaryotic-like primase (PriS&L) also found in Sso . Sso DnaG exhibited metal- and temperature-dependent profiles consistent with priming at high temperatures. The distribution of primer products for Sso DnaG was discrete but highly similar to the distribution of primer products produced by the homologous Escherichia coli DnaG. The predominant primer length was 13 bases, although less abundant products of varying sizes are also present. Sso DnaG was found to bind DNA cooperatively as a dimer with a moderate dissociation constant. -
Supplementary Data TMAO Microbiome R1
BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut Content for Supplementary Data Tables Tables Page Annotation guide for taxonomic features. 1 Supplementary Data 1a. Microbial associations with TMAO, and intakes 7 of choline and red meat. Supplementary Data 1b. Microbial associations with TMAO in 8 15 sensitivity analysis models. Supplementary Data 2a. Associations of intakes of choline and red meat, 21 or other TMAO precursors with TMAO levels, stratified by TMAO- associated abundant species, in full models and additionally adjusted for other TMAO precursors or TMAO predicting species. Supplementary Data 2b. Associations of intakes of choline and red meat, 34 or other TMAO precursors with TMAO levels, stratified by TMAO- producer status, additionally adjusted for other TMAO precursors. Supplementary Data 2c. Associations of intakes of choline and red meat, 37 or other TMAO precursors with TMAO levels, stratified by TMAO- producer status, in 6 different sensitivity analysis models. Supplementary Data 2d. Associations of intakes of red meat with HDLC 39 and HBA1c levels, stratified by TMAO-producer status or TMAO- associated abundant species. Supplementary Data 3a. Association of DNA gene clusters within 40 TMAO-associated species with plasma TMAO levels, and intakes of choline and red meat. Supplementary Data 3b. Association of transcriptions of gene clusters 46 (RNA/DNA ratio) within TMAO-associated species with plasma TMAO levels, and intakes of choline and red meat. Supplementary Data 4a. Association of DNA enzyme within TMAO- 62 associated species with plasma TMAO levels, and intakes of choline and red meat. -
Recruitment of Terminal Protein to the Ends of Streptomyces Linear Plasmids and Chromosomes by a Novel Telomere-Binding Protein Essential for Linear DNA Replication
Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication Kai Bao1 and Stanley N. Cohen1,2,3 1Department of Genetics and 2Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5120, USA Bidirectional replication of Streptomyces linear plasmids and chromosomes from a central origin produces unpaired 3-leading-strand overhangs at the telomeres of replication intermediates. Filling in of these overhangs leaves a terminal protein attached covalently to the 5 DNA ends of mature replicons. We report here the essential role of a novel 80-kD DNA-binding protein (telomere-associated protein,Tap) in this process. Biochemical studies,yeast two-hybrid analysis,and immunopre cipitation/immunodepletion ,experiments indicate that Tap binds tightly to specific sequences in 3 overhangs and also interacts with Tpg bringing Tpg to telomere termini. Using DNA microarrays to analyze the chromosomes of tap mutant bacteria,we demonstrate that survivors of Tap ablation undergo telomere deletion,chromosome circularization,and amplification of subtelomeric DNA. Microarray-ba sed chromosome mapping at single-ORF resolution revealed common endpoints for independent deletions,identi fied amplified chromosomal ORFs adjacent to these endpoints,and quantified the copy number of these ORFs. Sequence analysis confirmed chromosome circularization and revealed the insertion of adventitious DNA between joined chromosome ends. Our results show that Tap is required for linear DNA replication in Streptomyces and suggest that it functions to recruit and position Tpg at the telomeres of replication intermediates. -
Crystal Structure of Prib, a Component of the Escherichia Coli Replication Restart Primosome
Structure, Vol. 12, 1967–1975, November, 2004, 2004 Elsevier Ltd. All rights reserved. DOI 10.1016/j.str.2004.09.004 Crystal Structure of PriB, a Component of the Escherichia coli Replication Restart Primosome Matthew Lopper,1 James M. Holton,2 in vitro conversion of bacteriophage φX174 single- and James L. Keck1,* stranded DNA (ssDNA) to its duplex replicative form 1Department of Biomolecular Chemistry (Schekman et al., 1975). Historically, this system pro- University of Wisconsin Medical School vided a model for lagging strand DNA synthesis wherein 550 Medical Sciences Center the role of the primosome is to repeatedly synthesize 1300 University Avenue short RNA oligonucleotides along the DNA template to Madison, Wisconsin 53706 prime Okazaki fragment synthesis. The seven proteins 2 Physical Biosciences Division comprising the primosome, PriA, PriB, PriC, DnaT, Lawrence Berkeley National Laboratory DnaB, DnaC, and DnaG, were isolated biochemically University of California, Berkeley based on this system (Schekman et al., 1975; Wickner Berkeley, California 94720 and Hurwitz, 1974). Subsequently, it was shown that E. coli possesses two primosomes: one that catalyzes replisome assembly at the bacterial origin of replication Summary (oriC) and involves three of the defined primosome pro- teins (DnaB, DnaC, and DnaG), and a second that initi- Maintenance of genome stability following DNA dam- ates replication at the φX174 origin (primosome assem- age requires origin-independent reinitiation of DNA bly site, pas) and involves all seven proteins. While DnaB replication at repaired replication forks. In E. coli, PriA, (the replicative helicase), DnaC (the helicase loading PriB, PriC, and DnaT play critical roles in recognizing protein), and DnaG (primase) were established as essen- repaired replication forks and reloading the replisome tial factors in chromosomal DNA replication initiating at onto the template to reinitiate DNA replication.