Supporting Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ANP32A and ANP32B Are Key Factors in the Rev Dependent CRM1 Pathway
bioRxiv preprint doi: https://doi.org/10.1101/559096; this version posted February 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 ANP32A and ANP32B are key factors in the Rev dependent CRM1 pathway 2 for nuclear export of HIV-1 unspliced mRNA 3 Yujie Wang1, Haili Zhang1, Lei Na 1, Cheng Du1, Zhenyu Zhang1, Yong-Hui Zheng1,2, Xiaojun Wang1* 4 1State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese 5 Academy of Agricultural Sciences, Harbin 150069, China 6 2Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 7 USA. 8 * Address correspondence to Xiaojun Wang, [email protected]. 9 10 11 12 13 14 15 16 17 18 19 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/559096; this version posted February 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 22 Abstract 23 The nuclear export receptor CRM1 is an important regulator involved in the shuttling of various cellular 24 and viral RNAs between the nucleus and the cytoplasm. HIV-1 Rev interacts with CRM1 in the late phase of 25 HIV-1 replication to promote nuclear export of unspliced and single spliced HIV-1 transcripts. However, the 26 knowledge of cellular factors that are involved in the CRM1-dependent viral RNA nuclear export remains 27 inadequate. Here, we identified that ANP32A and ANP32B mediate the export of unspliced or partially spliced 28 viral mRNA via interacting with Rev and CRM1. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Discovery of the First Genome-Wide Significant Risk Loci for ADHD
bioRxiv preprint doi: https://doi.org/10.1101/145581; this version posted June 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Discovery of the first genome-wide significant risk loci for ADHD Ditte Demontis,1,2,3† Raymond K. Walters,4,5† Joanna Martin,5,6,7 Manuel Mattheisen,1,2,3,8,9 Thomas D. Als,1,2,3 Esben Agerbo,1,10,11 Rich Belliveau,5 Jonas Bybjerg-Grauholm,1,12 Marie Bækvad-Hansen,1,12 Felecia Cerrato,5 Kimberly Chambert,5 Claire Churchhouse,4,5,13 Ashley Dumont,5 Nicholas Eriksson,14 Michael Gandal,15,16,17,18 Jacqueline Goldstein,4,5,13 Jakob Grove,1,2,3,19 Christine S. Hansen,1,12,20 Mads E. Hauberg,1,2,3 Mads V. Hollegaard,1,12 Daniel P. Howrigan,4,5 Hailiang Huang,4,5 Julian Maller,5,21 Alicia R. Martin,4,5,13 Jennifer Moran,5 Jonatan Pallesen,1,2,3 Duncan S. Palmer,4,5 Carsten B. Pedersen,1,10,11 Marianne G. Pedersen,1,10,11 Timothy Poterba,4,5,13 Jesper B. Poulsen,1,12 Stephan Ripke,4,5,13,22 Elise B. Robinson,4,23 Kyle F. Satterstrom,4,5,13 Christine Stevens,5 Patrick Turley,4,5 Hyejung Won,15,16 ADHD Working Group of the Psychiatric Genomics Consortium (PGC), Early Lifecourse & Genetic Epidemiology (EAGLE) Consortium, 23andMe Research Team, Ole A. -
Identification of FBXL4 As a Metastasis Associated Gene in Prostate Cancer
Identification of FBXL4 as a Metastasis Associated Gene in Prostate Cancer Elzbieta Stankiewicz1 , Xueying Mao1, D Chas Mangham2 , Lei Xu1, Marc Yeste- Velasco1, Gabrielle Fisher3, Bernard North3, Tracy Chaplin1, Bryan Young4, Yuqin Wang1, Jasmin Kaur Bansal1, Sakunthala Kudahetti1, Lucy Spencer1, Christopher S Foster5, Henrik Moller6, Peter Scardino7, R Tim Oliver1, Jonathan Shamash1, Jack Cuzick3, Colin S Cooper8, Daniel M Berney1,+, Yong-Jie Lu1,+,* 1 Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK 2 The Robert Jones and Agnes Hunt Orthopaedic Hospital, Department of Pathology, Oswestry, Shropshire SY10 7AG, UK 3 Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London EC1 6BQ, UK 4 Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK 5 Division of Cellular and Molecular Pathology, University of Liverpool, Liverpool L69 3BX, UK 6 King's College London, Cancer Epidemiology and Population Health, London SE1 9RT, UK 7 Department of Urology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA 1 8 School of Medicine, University of East Anglia, Norwich, NR4 7TJ, UK +These authors contributed equally as senior role *Corresponding author: Yong-Jie Lu, Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, Telephone number: 442078823563, Fax: 442078823884, e-mail address: [email protected] 2 Abstract Prostate cancer is the most common cancer among western men, with a significant mortality and morbidity reported for advanced metastatic disease. Current understanding of metastatic disease is limited due to difficulty of sampling as prostate cancer mainly metastasizes to bone. -
Towards a Molecular Understanding of Microrna-Mediated Gene Silencing
REVIEWS NON-CODING RNA Towards a molecular understanding of microRNA-mediated gene silencing Stefanie Jonas and Elisa Izaurralde Abstract | MicroRNAs (miRNAs) are a conserved class of small non-coding RNAs that assemble with Argonaute proteins into miRNA-induced silencing complexes (miRISCs) to direct post-transcriptional silencing of complementary mRNA targets. Silencing is accomplished through a combination of translational repression and mRNA destabilization, with the latter contributing to most of the steady-state repression in animal cell cultures. Degradation of the mRNA target is initiated by deadenylation, which is followed by decapping and 5ʹ‑to‑3ʹ exonucleolytic decay. Recent work has enhanced our understanding of the mechanisms of silencing, making it possible to describe in molecular terms a continuum of direct interactions from miRNA target recognition to mRNA deadenylation, decapping and 5ʹ‑to‑3ʹ degradation. Furthermore, an intricate interplay between translational repression and mRNA degradation is emerging. Deadenylation MicroRNAs (miRNAs) are conserved post-transcriptional recruit additional protein partners to mediate silenc- 5,6 Shortening of mRNA poly(A) regulators of gene expression that are integral to ing . Silencing occurs through a combination of tails. In eukaryotes, this almost all known biological processes, including translational repression, deadenylation, decapping and process is catalysed by the cell growth, proliferation and differentiation, as well 5ʹ‑to‑3ʹ mRNA degradation5,6 (FIG. 1). The GW182 pro- consecutive but partially as organismal metabolism and development1. The teins play a central part in this process and are among redundant action of two 5,6 cytoplasmic deadenylase number of miRNAs encoded within the genomes of the most extensively studied AGO partners . -
Fine Mapping Studies of Quantitative Trait Loci for Baseline Platelet Count in Mice and Humans
Fine mapping studies of quantitative trait loci for baseline platelet count in mice and humans A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Melody C Caramins December 2010 University of New South Wales ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. This thesis is dedicated to my father. Dad, thanks for the genes – and the environment! ACKNOWLEDGEMENTS “Nothing can come out of nothing, any more than a thing can go back to nothing.” - Marcus Aurelius Antoninus A PhD thesis is never the work of one person in isolation from the world at large. I would like to thank the following people, without whom this work would not have existed. Thank you firstly, to all my teachers, of which there have been many. Undoubtedly, the greatest debt is owed to my supervisor, Dr Michael Buckley. -
Macropinocytosis Requires Gal-3 in a Subset of Patient-Derived Glioblastoma Stem Cells
ARTICLE https://doi.org/10.1038/s42003-021-02258-z OPEN Macropinocytosis requires Gal-3 in a subset of patient-derived glioblastoma stem cells Laetitia Seguin1,8, Soline Odouard2,8, Francesca Corlazzoli 2,8, Sarah Al Haddad2, Laurine Moindrot2, Marta Calvo Tardón3, Mayra Yebra4, Alexey Koval5, Eliana Marinari2, Viviane Bes3, Alexandre Guérin 6, Mathilde Allard2, Sten Ilmjärv6, Vladimir L. Katanaev 5, Paul R. Walker3, Karl-Heinz Krause6, Valérie Dutoit2, ✉ Jann N. Sarkaria 7, Pierre-Yves Dietrich2 & Érika Cosset 2 Recently, we involved the carbohydrate-binding protein Galectin-3 (Gal-3) as a druggable target for KRAS-mutant-addicted lung and pancreatic cancers. Here, using glioblastoma patient-derived stem cells (GSCs), we identify and characterize a subset of Gal-3high glio- 1234567890():,; blastoma (GBM) tumors mainly within the mesenchymal subtype that are addicted to Gal-3- mediated macropinocytosis. Using both genetic and pharmacologic inhibition of Gal-3, we showed a significant decrease of GSC macropinocytosis activity, cell survival and invasion, in vitro and in vivo. Mechanistically, we demonstrate that Gal-3 binds to RAB10, a member of the RAS superfamily of small GTPases, and β1 integrin, which are both required for macro- pinocytosis activity and cell survival. Finally, by defining a Gal-3/macropinocytosis molecular signature, we could predict sensitivity to this dependency pathway and provide proof-of- principle for innovative therapeutic strategies to exploit this Achilles’ heel for a significant and unique subset of GBM patients. 1 University Côte d’Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging (IRCAN), Nice, France. 2 Laboratory of Tumor Immunology, Department of Oncology, Center for Translational Research in Onco-Hematology, Swiss Cancer Center Léman (SCCL), Geneva University Hospitals, University of Geneva, Geneva, Switzerland. -
A. Cellular Senescence
Generation of antisense RNAs at convergent gene loci in cells undergoing senescence Maharshi Krishna Deb To cite this version: Maharshi Krishna Deb. Generation of antisense RNAs at convergent gene loci in cells undergo- ing senescence. Human genetics. Université Paul Sabatier - Toulouse III, 2016. English. NNT : 2016TOU30274. tel-03209213 HAL Id: tel-03209213 https://tel.archives-ouvertes.fr/tel-03209213 Submitted on 27 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 5)µ4& &OWVFEFMPCUFOUJPOEV %0$503"5%&-6/*7&34*5²%&506-064& %ÏMJWSÏQBS Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) 1SÏTFOUÏFFUTPVUFOVFQBS DEB Maharshi Krishna -F mercredi 30 mars 2016 5Jtre : Generation of antisense RNAs at convergent gene loci in cells undergoing senescence École doctorale et discipline ou spécialité : ED BSB : Génétique moléculaire 6OJUÏEFSFDIFSDIF CNRS-UMR5088; LBCMCP %JSFDUFVS T EFʾÒTF Dr. TROUCHE Didier Co-Directeur/trice(s) de Thèse : Dr. NICOLAS Estelle 3BQQPSUFVST Prof. GILSON Eric, Dr. LIBRI Domenico, Dr. VERDEL Andre "VUSF T NFNCSF T EVKVSZ Prof. GLEIZES Pierre Emmanuel, President of Jury Dr. TROUCHE Didier, Thesis Supervisor This thesis is dedicated to any patients who may get cured with treatments manifesting from this work. -
Supplementary Data
SUPPLEMENTARY DATA A cyclin D1-dependent transcriptional program predicts clinical outcome in mantle cell lymphoma Santiago Demajo et al. 1 SUPPLEMENTARY DATA INDEX Supplementary Methods p. 3 Supplementary References p. 8 Supplementary Tables (S1 to S5) p. 9 Supplementary Figures (S1 to S15) p. 17 2 SUPPLEMENTARY METHODS Western blot, immunoprecipitation, and qRT-PCR Western blot (WB) analysis was performed as previously described (1), using cyclin D1 (Santa Cruz Biotechnology, sc-753, RRID:AB_2070433) and tubulin (Sigma-Aldrich, T5168, RRID:AB_477579) antibodies. Co-immunoprecipitation assays were performed as described before (2), using cyclin D1 antibody (Santa Cruz Biotechnology, sc-8396, RRID:AB_627344) or control IgG (Santa Cruz Biotechnology, sc-2025, RRID:AB_737182) followed by protein G- magnetic beads (Invitrogen) incubation and elution with Glycine 100mM pH=2.5. Co-IP experiments were performed within five weeks after cell thawing. Cyclin D1 (Santa Cruz Biotechnology, sc-753), E2F4 (Bethyl, A302-134A, RRID:AB_1720353), FOXM1 (Santa Cruz Biotechnology, sc-502, RRID:AB_631523), and CBP (Santa Cruz Biotechnology, sc-7300, RRID:AB_626817) antibodies were used for WB detection. In figure 1A and supplementary figure S2A, the same blot was probed with cyclin D1 and tubulin antibodies by cutting the membrane. In figure 2H, cyclin D1 and CBP blots correspond to the same membrane while E2F4 and FOXM1 blots correspond to an independent membrane. Image acquisition was performed with ImageQuant LAS 4000 mini (GE Healthcare). Image processing and quantification were performed with Multi Gauge software (Fujifilm). For qRT-PCR analysis, cDNA was generated from 1 µg RNA with qScript cDNA Synthesis kit (Quantabio). qRT–PCR reaction was performed using SYBR green (Roche). -
UNIVERSITY of CALIFORNIA RIVERSIDE Investigations Into The
UNIVERSITY OF CALIFORNIA RIVERSIDE Investigations into the Role of TAF1-mediated Phosphorylation in Gene Regulation A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Cell, Molecular and Developmental Biology by Brian James Gadd December 2012 Dissertation Committee: Dr. Xuan Liu, Chairperson Dr. Frank Sauer Dr. Frances M. Sladek Copyright by Brian James Gadd 2012 The Dissertation of Brian James Gadd is approved Committee Chairperson University of California, Riverside Acknowledgments I am thankful to Dr. Liu for her patience and support over the last eight years. I am deeply indebted to my committee members, Dr. Frank Sauer and Dr. Frances Sladek for the insightful comments on my research and this dissertation. Thanks goes out to CMDB, especially Dr. Bachant, Dr. Springer and Kathy Redd for their support. Thanks to all the members of the Liu lab both past and present. A very special thanks to the members of the Sauer lab, including Silvia, Stephane, David, Matt, Stephen, Ninuo, Toby, Josh, Alice, Alex and Flora. You have made all the years here fly by and made them so enjoyable. From the Sladek lab I want to thank Eugene, John, Linh and Karthi. Special thanks go out to all the friends I’ve made over the years here. Chris, Amber, Stephane and David, thank you so much for feeding me, encouraging me and keeping me sane. Thanks to the brothers for all your encouragement and prayers. To any I haven’t mentioned by name, I promise I haven’t forgotten all you’ve done for me during my graduate years. -
USP48 Governs Cell Cycle Progression by Regulating the Protein Level of Aurora B
International Journal of Molecular Sciences Article USP48 Governs Cell Cycle Progression by Regulating the Protein Level of Aurora B Ainsley Mike Antao 1,†, Kamini Kaushal 1,† , Soumyadip Das 1, Vijai Singh 2 , Bharathi Suresh 1, Kye-Seong Kim 1,3,* and Suresh Ramakrishna 1,3,* 1 Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; [email protected] (A.M.A.); [email protected] (K.K.); [email protected] (S.D.); [email protected] (B.S.) 2 Department of Biosciences, School of Science, Indrashil University, Rajpur, Ahmedabad 382740, Gujarat, India; [email protected] 3 College of Medicine, Hanyang University, Seoul 04763, Korea * Correspondence: [email protected] (K.-S.K.); [email protected] (S.R.) † These authors contributed equally. Abstract: Deubiquitinating enzymes play key roles in the precise modulation of Aurora B—an essential cell cycle regulator. The expression of Aurora B increases before the onset of mitosis and decreases during mitotic exit; an imbalance in these levels has a severe impact on the fate of the cell cycle. Dysregulation of Aurora B can lead to aberrant chromosomal segregation and accumulation of errors during mitosis, eventually resulting in cytokinesis failure. Thus, it is essential to identify the precise regulatory mechanisms that modulate Aurora B levels during the cell division cycle. Using a deubiquitinase knockout strategy, we identified USP48 as an important candidate that can regulate Aurora B protein levels during the normal cell cycle. Here, we report that USP48 interacts with and Citation: Antao, A.M.; Kaushal, K.; stabilizes the Aurora B protein. -
GENOME EDITING in AFRICA’S AGRICULTURE 2021 an EARLY TAKE-OFF TABLE of CONTENTS Abbreviations and Acronyms 3
GENOME EDITING IN AFRICA’S AGRICULTURE 2021 AN EARLY TAKE-OFF TABLE OF CONTENTS Abbreviations and Acronyms 3 1. Introduction 4 1.1 Milestones in Plant Breeding 5 1.2 How CRISPR genome editing works in agriculture 6 2 . Genome editing projects and experts in eastern Africa 7 2.1 Kenya 8 2.2 Ethiopia 14 2.3 Uganda 15 3 . Gene editing projects and experts in southern Africa 17 3.1 South Africa 18 4. Gene editing projects and experts in West Africa 19 4.1 Nigeria 20 5. Gene editing projects and experts in Central Africa 21 5.1 Cameroon 22 6. Gene editing projects and experts in North Africa 23 6.1 Egypt 24 7. Conclusion 25 8. CRISPR genome editing: inside a crop breeder’s toolkit 26 9. Regulatory Approaches for Genome Edited Products in Various Countries 27 10. Communicating about Genome Editing in Africa 28 2 ABBREVIATIONS AND ACRONYMS CRISPR Clustered Regularly Interspaced Short Palindromic Repeats DNA Deoxyribonucleic acid GM Genetically Modified GMO Genetically Modified Organism HDR Homology Directed Repair ISAAA International Service for the Acquisition of Agri-biotech Applications NHEJ Non Homologous End Joining PCR Polymerase Chain Reaction RNA Ribonucleic Acid LGS1 Low germination stimulant 1 3 1.0 INTRODUCTION Genome editing (also referred to as gene editing) comprises a arm is provided with the CRISPR-Cas9 cassette, homology-directed group of technologies that give scientists the ability to change an repair (HDR) will occur, otherwise the cell will employ non- organism’s DNA. These technologies allow addition, removal or homologous end joining (NHEJ) to create small indels at the cut site alteration of genetic material at particular locations in the genome.