A Mathematician Looks at Wolfram's New Kind of Science, Volume 50

Total Page:16

File Type:pdf, Size:1020Kb

A Mathematician Looks at Wolfram's New Kind of Science, Volume 50 A Mathematician Looks at Wolfram’s New Kind of Science Lawrence Gray A New Kind of Science properties. His ac- Stephen Wolfram tivities in this direc- Wolfram Media, Inc., 2002 tion were inter- ISBN 1-579-955008-8, $44.95 rupted when he became occupied n May 2002 Stephen Wolfram finally unveiled with the develop- his self-proclaimed masterpiece, A New Kind ment and promotion of Science (hereinafter referred to as ANKS). of Mathematica. But Published by Wolfram’s own company, the he felt that the ideas I1,280-page volume contains his thoughts on in several of his CA everything from the physics of the universe to the papers had never re- mysteries of human behavior, all based on the ally been “absorbed” results of several years of analyzing the graphical by other scientists output of some very simple computer programs. (ANKS, p. 882), so in The scope of the book is impressive, covering a 1991 he began work bewildering variety of mathematical models and on the book that he hopes will start a scientific rev- illustrated by 973 high-resolution black and white olution. pictures. There are whole chapters devoted to Do we need this revolution? According to Wol- biology, physics, and human perception, with fram, “traditional” mathematics and science are shorter sections touching on such unexpected doomed: mathematics because of its emphasis on subjects as free will and extraterrestrial art. The rigorous proof, and science because of its prefer- extensive historical and technical notes at the end ence for models that can make accurate predictions. of the book (349 pages of small print) provide He says that the most interesting problems presented fascinating background material. by nature are likely to be formally undecidable or The primary mathematical focus of the book is computationally irreducible (ANKS, pp. 7, 794–5, a class of discrete-time dynamical systems called and 1138), rendering proofs and predictions cellular automata, or “CAs”. (See the next section impossible. Mathematicians and scientists have for definitions and examples.) Back in the 1980s, managed to keep busy only by carefully choosing Wolfram introduced several ideas that had a sig- to work on the relatively small set of problems nificant impact on CA research, and he also dis- that have simple solutions (ANKS, p. 3). covered a number of specific CAs with intriguing There is more: most mathematical models in science are based on the assumption that time and Lawrence Gray is professor of mathematics at the School space are continuous, whereas Wolfram says that of Mathematics, University of Minnesota, Minneapolis. His time and space are discrete. He would have us email address is [email protected]. 200 NOTICES OF THE AMS VOLUME 50, NUMBER 2 abandon models based on calculus and Euclidean suggest that such models are out there somewhere, geometry in favor of discrete systems like CAs and Wolfram provides many examples from all (ANKS, p. 8). Indeed, he sees the entire universe areas of science to try to show us that they can as a CA-like system that likely follows a simple actually be found. dynamical rule, and the better part of Chapter 9 Am I convinced? Not really. Wolfram’s brand of consists of some clever speculation on the exact computer experimentation is a potentially power- nature of such a rule. ful scientific tool. Indeed, I find that by far the To make his argument convincing, Wolfram most valuable aspect of the book is that it brings needed a simple CA that was capable of highly together so many interesting examples of CAs and complex behavior. Enter the CA known as “Rule 110”, related models that first found the light of day in whose dynamical rule is about as simple as possi- one of his computer searches. But can he really ble, as you will see later in this review. The model justify statements like this: “…the new kind of sci- was discovered by Wolfram in the 1980s, when ence that I develop in this book is for the first time he conjectured that its behavior was “universal”, able to make meaningful statements about even im- meaning that it could be used to simulate a mensely complex behavior” (ANKS, p. 3)? universal Turing machine. The conjecture was Wolfram loves to tell us why other scientific proved in the 1990s by Matthew Cook, a former theories cannot handle complexity. But in these employee of Wolfram Research. discussions, he badly mischaracterizes his com- Rule 110 is featured prominently throughout petition. Here is a typical example: “The field of ANKS, and it provides the primary motivation for nonlinear dynamics is concerned with analyzing Wolfram’s scientific philosophy, which is that the more complicated equations [than linear ones]. Its key to understanding complex behavior can be greatest success has been with so-called soliton found in very simple discrete systems. He has been equations for which careful manipulation leads to pushing this idea for twenty years. But in ANKS we a property similar to linearity. But the kinds of find a much more provocative version, the “Prin- systems that I discuss in this book typically show ciple of Computational Equivalence”, which we are much more complex behavior, and have no such told is a “new law of nature” that “has vastly richer simplifying properties” (ANKS, pp. 15–6). He is par- implications than…any [other] single collection ticularly hard on chaos theory, which he more or of laws in science” (ANKS, pp. 720 and 726). The less reduces to a trivial observation about sensitive entire final chapter of the book is devoted to this dependence on initial conditions: “Indeed, all that principle, but, surprisingly, Wolfram does not it shows is that if there is complexity in the details provide us with a definitive statement of it. Here of the initial conditions, then this complexity will is my attempt, pieced together from various phrases eventually appear in the large-scale behavior of in Chapter 12 of ANKS: the system” (ANKS, p. 13). He claims to have ex- amples of dynamical systems that exhibit chaotic Except for those trajectories that are behavior without sensitive dependence on initial obviously simple, almost all of the conditions. But his examples are highly question- trajectories of a (natural or theoretical) able, as I will later explain when I discuss his no- dynamical system can be viewed as tion of “intrinsic randomness generation”. computations of equivalent sophistica- Wolfram provides very little hard evidence for tion, which is to say that they are the Principle of Computational Equivalence. The universal (see ANKS, pp. 716–9). key phrase “obviously simple” is pretty much left Thus, if you observe a trajectory of some system, undefined, except to say that it covers systems such as a CA or a differential equation or the that are attracted to periodic orbits or follow some weather or even a bucket of rusting nails, then other easily detectable pattern. Even when the prin- either you will see something that is obviously ciple is taken at face value, serious doubts about simple, or else arbitrarily complex computations both its validity and practical significance have will pass before your eyes. been raised (see the list of reviews given below). I Wolfram’s attitude toward traditional mathe- will raise a few more later on, when I discuss fault- matics and science is consistent with his principle. tolerant computation and universal CAs. After all, if everything nontrivial behaves like a Despite the provocative attitude and high-minded universal Turing machine, then it is a waste of time speculation, there is plenty to enjoy in the book, to try to find ways to predict anything that is not especially the very accessible and very extensive already obvious. He advises scientists to start doing coverage of so many different kinds of discrete what he has been doing for the past two decades, models. In addition to CAs, we find mobile cellular which is to systematically explore simple CAs and automata, Turing machines, substitution systems, related discrete systems, searching for models to sequential substitution systems, tag systems, cyclic match various interesting natural phenomena. The tag systems, register machines, and causal Principle of Computational Equivalence seems to networks. For each type of system, Wolfram presents FEBRUARY 2003N OTICES OF THE AMS 201 and carefully explains numerous examples, ex- criticisms and questions Wolfram’s rejection pertly illustrated by instructive and thought- of natural selection as a significant factor in provoking graphics. I am familiar with Turing evolution.) machines, for example, but had not seen their work- 6. “The World According to Wolfram” by Brian ings graphically depicted as in ANKS. Interesting Hayes, in The American Scientist, July–August statistics are given about the range of behaviors in 2002. (Counters some of Wolfram’s claims of these systems, based on Wolfram’s own computer discovery.) experiments. 7. “Blinded by Science” by Jordan Ellenberg, in It is also a lot of fun watching Wolfram find Slate, posted on July 2, 2002. (This is a most connections with the real world. Some of them are entertaining and intelligent review.) original to Wolfram, many are not, and it is un- 8. “Is the Universe a Universal Computer?” by fortunately not always so easy to determine which Melanie Mitchell, in Science, October 4, 2002. is which. But it is great having them all together in (Takes Wolfram to task for several of his one book. Particularly impressive is the chapter grandiose assertions.) where he attempts to capture modern physics, in- Each of these articles finds something significant cluding relativity theory and quantum mechanics, to praise in ANKS (clarity, enthusiasm, expert in a CA-like system.
Recommended publications
  • A MATHEMATICIAN's SURVIVAL GUIDE 1. an Algebra Teacher I
    A MATHEMATICIAN’S SURVIVAL GUIDE PETER G. CASAZZA 1. An Algebra Teacher I could Understand Emmy award-winning journalist and bestselling author Cokie Roberts once said: As long as algebra is taught in school, there will be prayer in school. 1.1. An Object of Pride. Mathematician’s relationship with the general public most closely resembles “bipolar” disorder - at the same time they admire us and hate us. Almost everyone has had at least one bad experience with mathematics during some part of their education. Get into any taxi and tell the driver you are a mathematician and the response is predictable. First, there is silence while the driver relives his greatest nightmare - taking algebra. Next, you will hear the immortal words: “I was never any good at mathematics.” My response is: “I was never any good at being a taxi driver so I went into mathematics.” You can learn a lot from taxi drivers if you just don’t tell them you are a mathematician. Why get started on the wrong foot? The mathematician David Mumford put it: “I am accustomed, as a professional mathematician, to living in a sort of vacuum, surrounded by people who declare with an odd sort of pride that they are mathematically illiterate.” 1.2. A Balancing Act. The other most common response we get from the public is: “I can’t even balance my checkbook.” This reflects the fact that the public thinks that mathematics is basically just adding numbers. They have no idea what we really do. Because of the textbooks they studied, they think that all needed mathematics has already been discovered.
    [Show full text]
  • Jet Development in Leading Log QCD.Pdf
    17 CALT-68-740 DoE RESEARCH AND DEVELOPMENT REPORT Jet Development in Leading Log QCD * by STEPHEN WOLFRAM California Institute of Technology, Pasadena. California 91125 ABSTRACT A simple picture of jet development in QCD is described. Various appli- cations are treated, including transverse spreading of jets, hadroproduced y* pT distributions, lepton energy spectra from heavy quark decays, soft parton multiplicities and hadron cluster formation. *Work supported in part by the U.S. Department of Energy under Contract No. DE-AC-03-79ER0068 and by a Feynman Fellowship. 18 According to QCD, high-energy e+- e annihilation into hadrons is initiated by the production from the decaying virtual photon of a quark and an antiquark, ,- +- each with invariant masses up to the c.m. energy vs in the original e e collision. The q and q then travel outwards radiating gluons which serve to spread their energy and color into a jet of finite angle. After a time ~ 1/IS, the rate of gluon emissions presumably decreases roughly inversely with time, except for the logarithmic rise associated with the effective coupling con­ 2 stant, (a (t) ~ l/log(t/A ), where It is the invariant mass of the radiating s . quark). Finally, when emissions have degraded the energies of the partons produced until their invariant masses fall below some critical ~ (probably c a few times h), the system of quarks and gluons begins to condense into the observed hadrons. The probability for a gluon to be emitted at times of 0(--)1 is small IS and may be est~mated from the leading terms of a perturbation series in a (s).
    [Show full text]
  • The "Greatest European Mathematician of the Middle Ages"
    Who was Fibonacci? The "greatest European mathematician of the middle ages", his full name was Leonardo of Pisa, or Leonardo Pisano in Italian since he was born in Pisa (Italy), the city with the famous Leaning Tower, about 1175 AD. Pisa was an important commercial town in its day and had links with many Mediterranean ports. Leonardo's father, Guglielmo Bonacci, was a kind of customs officer in the North African town of Bugia now called Bougie where wax candles were exported to France. They are still called "bougies" in French, but the town is a ruin today says D E Smith (see below). So Leonardo grew up with a North African education under the Moors and later travelled extensively around the Mediterranean coast. He would have met with many merchants and learned of their systems of doing arithmetic. He soon realised the many advantages of the "Hindu-Arabic" system over all the others. D E Smith points out that another famous Italian - St Francis of Assisi (a nearby Italian town) - was also alive at the same time as Fibonacci: St Francis was born about 1182 (after Fibonacci's around 1175) and died in 1226 (before Fibonacci's death commonly assumed to be around 1250). By the way, don't confuse Leonardo of Pisa with Leonardo da Vinci! Vinci was just a few miles from Pisa on the way to Florence, but Leonardo da Vinci was born in Vinci in 1452, about 200 years after the death of Leonardo of Pisa (Fibonacci). His names Fibonacci Leonardo of Pisa is now known as Fibonacci [pronounced fib-on-arch-ee] short for filius Bonacci.
    [Show full text]
  • The Astronomers Tycho Brahe and Johannes Kepler
    Ice Core Records – From Volcanoes to Supernovas The Astronomers Tycho Brahe and Johannes Kepler Tycho Brahe (1546-1601, shown at left) was a nobleman from Denmark who made astronomy his life's work because he was so impressed when, as a boy, he saw an eclipse of the Sun take place at exactly the time it was predicted. Tycho's life's work in astronomy consisted of measuring the positions of the stars, planets, Moon, and Sun, every night and day possible, and carefully recording these measurements, year after year. Johannes Kepler (1571-1630, below right) came from a poor German family. He did not have it easy growing Tycho Brahe up. His father was a soldier, who was killed in a war, and his mother (who was once accused of witchcraft) did not treat him well. Kepler was taken out of school when he was a boy so that he could make money for the family by working as a waiter in an inn. As a young man Kepler studied theology and science, and discovered that he liked science better. He became an accomplished mathematician and a persistent and determined calculator. He was driven to find an explanation for order in the universe. He was convinced that the order of the planets and their movement through the sky could be explained through mathematical calculation and careful thinking. Johannes Kepler Tycho wanted to study science so that he could learn how to predict eclipses. He studied mathematics and astronomy in Germany. Then, in 1571, when he was 25, Tycho built his own observatory on an island (the King of Denmark gave him the island and some additional money just for that purpose).
    [Show full text]
  • A New Kind of Science; Stephen Wolfram, Wolfram Media, Inc., 2002
    A New Kind of Science; Stephen Wolfram, Wolfram Media, Inc., 2002. Almost twenty years ago, I heard Stephen Wolfram speak at a Gordon Confer- ence about cellular automata (CA) and how they can be used to model seashell patterns. He had recently made a splash with a number of important papers applying CA to a variety of physical and biological systems. His early work on CA focused on a classification of the behavior of simple one-dimensional sys- tems and he published some interesting papers suggesting that CA fall into four different classes. This was original work but from a mathematical point of view, hardly rigorous. What he was essentially claiming was that even if one adds more layers of complexity to the simple rules, one does not gain anything be- yond these four simples types of behavior (which I will describe below). After a two decade hiatus from science (during which he founded Wolfram Science, the makers of Mathematica), Wolfram has self-published his magnum opus A New Kind of Science which continues along those lines of thinking. The book itself is beautiful to look at with almost a thousand pictures, 850 pages of text and over 300 pages of detailed notes. Indeed, one might suggest that the main text is for the general public while the notes (which exceed the text in total words) are aimed at a more technical audience. The book has an associated web site complete with a glowing blurb from the publisher, quotes from the media and an interview with himself to answer questions about the book.
    [Show full text]
  • PARTON and HADRON PRODUCTION in E+E- ANNIHILATION Stephen Wolfram California Institute of Technology, Pasadena, California 91125
    549 * PARTON AND HADRON PRODUCTION IN e+e- ANNIHILATION Stephen Wolfram California Institute of Technology, Pasadena, California 91125 Ab stract: The production of showers of partons in e+e- annihilation final states is described according to QCD , and the formation of hadrons is dis­ cussed. Resume : On y decrit la production d'averses d� partons dans la theorie QCD qui forment l'etat final de !'annihilation e+ e , ainsi que leur transform­ ation en hadrons. *Work supported in part by the U.S. Department of Energy under contract no. DE-AC-03-79ER0068. SSt1 Introduction In these notes , I discuss some attemp ts e ri the cl!evellope1!1t of - to d s c be hadron final states in e e annihilation events ll>Sing. QCD. few featm11res A (barely visible at available+ energies} of this deve l"'P"1'ent amenab lle· are lt<J a precise and formal analysis in QCD by means of pe·rturbatirnc• the<J ry. lfor the mos t part, however, existing are quite inadle<!i""' lte! theoretical mett:l�ods one must therefore simply try to identify dl-iimam;t physical p.l:ten<0melilla tt:he to be expected from QCD, and make estll!att:es of dne:i.r effects , vi.th the hop·e that results so obtained will provide a good appro�::illliatimn to eventllLal'c ex­ act calculations . In so far as such estllma�es r necessa�y� pre�ise �r..uan- a e titative tests of QCD are precluded . On the ott:her handl , if QC!Ji is ass11l!med correct, then existing experimental data to inve•stigate its be­ may \JJ:SE•«f havior in regions not yet explored by theoreticalbe llJleaums .
    [Show full text]
  • Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
    omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag.
    [Show full text]
  • The Problem of Distributed Consensus: a Survey Stephen Wolfram*
    The Problem of Distributed Consensus: A Survey Stephen Wolfram* A survey is given of approaches to the problem of distributed consensus, focusing particularly on methods based on cellular automata and related systems. A variety of new results are given, as well as a history of the field and an extensive bibliography. Distributed consensus is of current relevance in a new generation of blockchain-related systems. In preparation for a conference entitled “Distributed Consensus with Cellular Automata and Related Systems” that we’re organizing with NKN (= “New Kind of Network”) I decided to explore the problem of distributed consensus using methods from A New Kind of Science (yes, NKN “rhymes” with NKS) as well as from the Wolfram Physics Project. A Simple Example Consider a collection of “nodes”, each one of two possible colors. We want to determine the majority or “consensus” color of the nodes, i.e. which color is the more common among the nodes. A version of this document with immediately executable code is available at writings.stephenwolfram.com/2021/05/the-problem-of-distributed-consensus Originally published May 17, 2021 *Email: [email protected] 2 | Stephen Wolfram One obvious method to find this “majority” color is just sequentially to visit each node, and tally up all the colors. But it’s potentially much more efficient if we can use a distributed algorithm, where we’re running computations in parallel across the various nodes. One possible algorithm works as follows. First connect each node to some number of neighbors. For now, we’ll just pick the neighbors according to the spatial layout of the nodes: The algorithm works in a sequence of steps, at each step updating the color of each node to be whatever the “majority color” of its neighbors is.
    [Show full text]
  • Famous Mathematicians Key
    Infinite Secrets AIRING SEPTEMBER 30, 2003 Learning More Dzielska, Maria. Famous Mathematicians Hypatia of Alexandria. Cambridge, MA: Harvard University The history of mathematics spans thousands of years and touches all parts of the Press, 1996. world. Likewise, the notable mathematicians of the past and present are equally Provides a biography of Hypatia based diverse.The following are brief biographies of three mathematicians who stand out on several sources,including the letters for their contributions to the fields of geometry and calculus. of Hypatia’s student Synesius. Hypatia of Alexandria Bhaskara wrote numerous papers and Biographies of Women Mathematicians books on such topics as plane and spherical (c. A.D. 370–415 ) www.agnesscott.edu/lriddle/women/ Born in Alexandria, trigonometry, algebra, and the mathematics women.htm of planetary motion. His most famous work, Contains biographical essays and Egypt, around A.D. 370, Siddhanta Siromani, was written in A.D. comments on woman mathematicians, Hypatia was the first 1150. It is divided into four parts: “Lilavati” including Hypatia. Also includes documented female (arithmetic), “Bijaganita” (algebra), resources for further study. mathematician. She was ✷ ✷ ✷ the daughter of Theon, “Goladhyaya” (celestial globe), and a mathematician who “Grahaganita” (mathematics of the planets). Patwardhan, K. S., S. A. Naimpally, taught at the school at the Alexandrine Like Archimedes, Bhaskara discovered and S. L. Singh. Library. She studied astronomy, astrology, several principles of what is now calculus Lilavati of Bhaskaracharya. centuries before it was invented. Also like Delhi, India:Motilal Banarsidass, 2001. and mathematics under the guidance of her Archimedes, Bhaskara was fascinated by the Explains the definitions, formulae, father.She became head of the Platonist concepts of infinity and square roots.
    [Show full text]
  • Purchase a Nicer, Printable PDF of This Issue. Or Nicest of All, Subscribe To
    Mel says, “This is swell! But it’s not ideal—it’s a free, grainy PDF.” Attain your ideals! Purchase a nicer, printable PDF of this issue. Or nicest of all, subscribe to the paper version of the Annals of Improbable Research (six issues per year, delivered to your doorstep!). To purchase pretty PDFs, or to subscribe to splendid paper, go to http://www.improbable.com/magazine/ ANNALS OF Special Issue THE 2009 IG® NOBEL PRIZES Panda poo spinoff, Tequila-based diamonds, 11> Chernobyl-inspired bra/mask… NOVEMBER|DECEMBER 2009 (volume 15, number 6) $6.50 US|$9.50 CAN 027447088921 The journal of record for inflated research and personalities Annals of © 2009 Annals of Improbable Research Improbable Research ISSN 1079-5146 print / 1935-6862 online AIR, P.O. Box 380853, Cambridge, MA 02238, USA “Improbable Research” and “Ig” and the tumbled thinker logo are all reg. U.S. Pat. & Tm. Off. 617-491-4437 FAX: 617-661-0927 www.improbable.com [email protected] EDITORIAL: [email protected] The journal of record for inflated research and personalities Co-founders Commutative Editor VP, Human Resources Circulation (Counter-clockwise) Marc Abrahams Stanley Eigen Robin Abrahams James Mahoney Alexander Kohn Northeastern U. Research Researchers Webmaster Editor Associative Editor Kristine Danowski, Julia Lunetta Marc Abrahams Mark Dionne Martin Gardiner, Tom Gill, [email protected] Mary Kroner, Wendy Mattson, General Factotum (web) [email protected] Dissociative Editor Katherine Meusey, Srinivasan Jesse Eppers Rose Fox Rajagopalan, Tom Roberts, Admin Tom Ulrich Technical Eminence Grise Lisa Birk Psychology Editor Dave Feldman Robin Abrahams Design and Art European Bureau Geri Sullivan Art Director emerita Kees Moeliker, Bureau Chief Contributing Editors PROmote Communications Peaco Todd Rotterdam Otto Didact, Stephen Drew, Ernest Lois Malone Webmaster emerita [email protected] Ersatz, Emil Filterbag, Karen Rich & Famous Graphics Steve Farrar, Edinburgh Desk Chief Hopkin, Alice Kaswell, Nick Kim, Amy Gorin Erwin J.O.
    [Show full text]
  • Professor Shiing Shen CHERN Citation
    ~~____~__~~Doctor_~______ of Science honoris cau5a _-___ ____ Professor Shiing Shen CHERN Citation “Not willing to yield to the saints of ancient mathematics. In his own words, his objective is and modem times / He alone ascends the towering to bring about a situation in which “Chinese height.” This verse, written by Professor Wu-zhi mathematics is placed on a par with Western Yang, the father of Nobel Laureate in Physics mathematics and is independent of the latter. That Professor Chen-Ning Yang, to Professor Shiing Shen is, Chinese mathematics must be on the same level CHERN, fully reflects the high achievements as its Western counterpart, though not necessarily attained by Professor Chern during a career that bending its efforts in the same direction.” has spanned over 70 years. Professor Chern was born in Jiaxing, Zhejiang Professor Chern has dedicated his life to the Province in 1911, and displayed considerable study of mathematics. In his early thirties, he mathematical talent even as a child. In 1930, after realized the importance of fiber bundle structure. graduating from the Department of Mathematics From an entirely new perspective, he provided a at Nankai University, he was admitted to the simple intrinsic proof of the Gauss-Bonnet Formula graduate school of Tsinghua University. In 1934, 24 and constructed the “Chern Characteristic Classes”, he received funding to study in Hamburg under thus laying a solid foundation for the study of global the great master of geometry Professor W Blaschke, differential geometry as a whole. and completed his doctoral dissertation in less than a year.
    [Show full text]
  • An Outstanding Mathematician Sergei Ivanovich Adian Passed Away on May 5, 2020 in Moscow at the Age of 89
    An outstanding mathematician Sergei Ivanovich Adian passed away on May 5, 2020 in Moscow at the age of 89. He was the head of the Department of Mathematical Logic at Steklov Mathematical Institute of the Russian Academy of Sciences (since 1975) and Professor of the Department of Mathematical Logic and Theory of Algorithms at the Mathematics and Mechanics Faculty of Moscow M.V. Lomonosov State University (since 1965). Sergei Adian is famous for his work in the area of computational problems in algebra and mathematical logic. Among his numerous contributions two major results stand out. The first one is the Adian—Rabin Theorem (1955) on algorithmic unrecognizability of a wide class of group-theoretic properties when the group is given by finitely many generators and relators. Natural properties covered by this theorem include those of a group being trivial, finite, periodic, and many others. A simpler proof of the same result was obtained by Michael Rabin in 1958. Another seminal contribution of Sergei Adian is his solution, together with his teacher Petr Novikov, of the famous Burnside problem on periodic groups posed in 1902. The deluding simplicity of its formulation fascinated and attracted minds of mathematicians for decades. Is every finitely generated periodic group of a fixed exponent n necessarily finite? Novikov—Adian Theorem (1968) states that for sufficiently large odd numbers n this is not the case. By a heroic effort, in 1968 Sergei Adian finished the solution of Burnside problem initiated by his teacher Novikov, having overcome in its course exceptional technical difficulties. Their proof was arguably one of the most difficult proofs in the whole history of Mathematics.
    [Show full text]