Notes on Banach Algebras and Functional Calculus∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix A. Measure and Integration
Appendix A. Measure and integration We suppose the reader is familiar with the basic facts concerning set theory and integration as they are presented in the introductory course of analysis. In this appendix, we review them briefly, and add some more which we shall need in the text. Basic references for proofs and a detailed exposition are, e.g., [[ H a l 1 ]] , [[ J a r 1 , 2 ]] , [[ K F 1 , 2 ]] , [[ L i L ]] , [[ R u 1 ]] , or any other textbook on analysis you might prefer. A.1 Sets, mappings, relations A set is a collection of objects called elements. The symbol card X denotes the cardi- nality of the set X. The subset M consisting of the elements of X which satisfy the conditions P1(x),...,Pn(x) is usually written as M = { x ∈ X : P1(x),...,Pn(x) }.A set whose elements are certain sets is called a system or family of these sets; the family of all subsystems of a given X is denoted as 2X . The operations of union, intersection, and set difference are introduced in the standard way; the first two of these are commutative, associative, and mutually distributive. In a { } system Mα of any cardinality, the de Morgan relations , X \ Mα = (X \ Mα)and X \ Mα = (X \ Mα), α α α α are valid. Another elementary property is the following: for any family {Mn} ,whichis { } at most countable, there is a disjoint family Nn of the same cardinality such that ⊂ \ ∪ \ Nn Mn and n Nn = n Mn.Theset(M N) (N M) is called the symmetric difference of the sets M,N and denoted as M #N. -
Noncommutative Uniform Algebras
Noncommutative Uniform Algebras Mati Abel and Krzysztof Jarosz Abstract. We show that a real Banach algebra A such that a2 = a 2 , for a A is a subalgebra of the algebra C (X) of continuous quaternion valued functions on a compact setk kX. ∈ H ° ° ° ° 1. Introduction A well known Hirschfeld-Zelazkoú Theorem [5](seealso[7]) states that for a complex Banach algebra A the condition (1.1) a2 = a 2 , for a A k k ∈ implies that (i) A is commutative, and further° ° implies that (ii) A must be of a very speciÞc form, namely it ° ° must be isometrically isomorphic with a uniformly closed subalgebra of CC (X). We denote here by CC (X)the complex Banach algebra of all continuous functions on a compact set X. The obvious question about the validity of the same conclusion for real Banach algebras is immediately dismissed with an obvious counterexample: the non commutative algebra H of quaternions. However it turns out that the second part (ii) above is essentially also true in the real case. We show that the condition (1.1) implies, for a real Banach algebra A,thatA is isometrically isomorphic with a subalgebra of CH (X) - the algebra of continuous quaternion valued functions on acompactsetX. That result is in fact a consequence of a theorem by Aupetit and Zemanek [1]. We will also present several related results and corollaries valid for real and complex Banach and topological algebras. To simplify the notation we assume that the algebras under consideration have units, however, like in the case of the Hirschfeld-Zelazkoú Theorem, the analogous results can be stated for none unital algebras as one can formally add aunittosuchanalgebra. -
The Index of Normal Fredholm Elements of C* -Algebras
proceedings of the american mathematical society Volume 113, Number 1, September 1991 THE INDEX OF NORMAL FREDHOLM ELEMENTS OF C*-ALGEBRAS J. A. MINGO AND J. S. SPIELBERG (Communicated by Palle E. T. Jorgensen) Abstract. Examples are given of normal elements of C*-algebras that are invertible modulo an ideal and have nonzero index, in contrast to the case of Fredholm operators on Hubert space. It is shown that this phenomenon occurs only along the lines of these examples. Let T be a bounded operator on a Hubert space. If the range of T is closed and both T and T* have a finite dimensional kernel then T is Fredholm, and the index of T is dim(kerT) - dim(kerT*). If T is normal then kerT = ker T*, so a normal Fredholm operator has index 0. Let us consider a generalization of the notion of Fredholm operator intro- duced by Atiyah. Let X be a compact Hausdorff space and consider continuous functions T: X —>B(H), where B(H) is the set of bounded linear operators on a separable infinite dimensional Hubert space with the norm topology. The set of such functions forms a C*- algebra C(X) <g>B(H). A function T is Fredholm if T(x) is Fredholm for each x . Atiyah [1, Appendix] showed how such an element has an index which is an element of K°(X). Suppose that T is Fredholm and T(x) is normal for each x. Is the index of T necessarily 0? There is a generalization of this question that we would like to consider. -
C*-Algebraic Spectral Sets, Twisted Groupoids and Operators
C∗-Algebraic Spectral Sets, Twisted Groupoids and Operators Marius M˘antoiu ∗ July 7, 2020 Abstract We treat spectral problems by twisted groupoid methods. To Hausdorff locally compact groupoids endowed with a continuous 2-cocycle one associates the reduced twisted groupoid C∗-algebra. Elements (or multipliers) of this algebra admit natural Hilbert space representations. We show the relevance of the orbit closure structure of the unit space of the groupoid in dealing with spectra, norms, numerical ranges and ǫ-pseudospectra of the resulting operators. As an ex- ample, we treat a class of pseudo-differential operators introduced recently, associated to group actions. We also prove a Decomposition Principle for bounded operators connected to groupoids, showing that several relevant spectral quantities of these operators coincide with those of certain non-invariant restrictions. This is applied to Toeplitz-like operators with variable coefficients and to band dominated operators on discrete metric spaces. Introduction Many applications of C∗-algebras to spectral analysis rely on a very simple principle: a morphism between two C∗-algebras is contractive and reduces the spectrum of elements. In addition, if it is injective, it is isometric and preserves spectra. While working on this project, we became aware of the fact that such a principle works ef- fectively for much more than spectra (and essential spectra). We call C∗-algebraic spectral set a function Σ sending, for any unital C∗-algebra E , the elements E of this one to closed (usually com- pact) subsets Σ(E |E ) of C , having the above mentioned behavior under C∗-morphisms. Definition 1.1 states this formally. -
Regularity Conditions for Banach Function Algebras
Regularity conditions for Banach function algebras Dr J. F. Feinstein University of Nottingham June 2009 1 1 Useful sources A very useful text for the material in this mini-course is the book Banach Algebras and Automatic Continuity by H. Garth Dales, London Mathematical Society Monographs, New Series, Volume 24, The Clarendon Press, Oxford, 2000. In particular, many of the examples and conditions discussed here may be found in Chapter 4 of that book. We shall refer to this book throughout as the book of Dales. Most of my e-prints are available from www.maths.nott.ac.uk/personal/jff/Papers Several of my research and teaching presentations are available from www.maths.nott.ac.uk/personal/jff/Beamer 2 2 Introduction to normed algebras and Banach algebras 2.1 Some problems to think about Those who have seen much of this introductory material before may wish to think about some of the following problems. We shall return to these problems at suitable points in this course. Problem 2.1.1 (Easy using standard theory!) It is standard that the set of all rational functions (quotients of polynomials) with complex coefficients is a field: this is a special case of the “field of fractions" of an integral domain. Question: Is there an algebra norm on this field (regarded as an algebra over C)? 3 Problem 2.1.2 (Very hard!) Does there exist a pair of sequences (λn), (an) of non-zero complex numbers such that (i) no two of the an are equal, P1 (ii) n=1 jλnj < 1, (iii) janj < 2 for all n 2 N, and yet, (iv) for all z 2 C, 1 X λn exp (anz) = 0? n=1 Gap to fill in 4 Problem 2.1.3 Denote by C[0; 1] the \trivial" uniform algebra of all continuous, complex-valued functions on [0; 1]. -
Arxiv:1909.02676V3 [Math.DG] 25 Jul 2021 Elsetu Jcb Arcshv Ipera Pcrm.Mor a of Spectrum)
AN ATLAS ADAPTED TO THE TODA FLOW DAVID MART´INEZ TORRES AND CARLOS TOMEI Abstract. We describe an atlas adapted to the Toda flow on the mani- fold of full flags of any non-compact real semisimple Lie algebra, and on its Hessenberg-type submanifolds. We show that in these local coordinates the Toda flow becomes linear. The local coordinates are used to show that the Toda flow on the manifold of full flags is Morse-Smale, which generalizes the re- sult for traceless matrices in [27] to arbitrary non-compact real semisimple Lie algebras. As a byproduct we describe new features of classical constructions in matrix theory. 1. Introduction The non-periodic Toda lattice is a Hamiltonian model for a wave propagation along n particles in a line proposed by Toda [30]. A change of variables introduced by Flaschka [14] transforms the original O.D.E. into the matrix differential equation X′ = [X, πkX]= T (X), (1) where X runs over Jacobi matrices and πk is the first projection associated to the decomposition of a matrix into its antisymmetric and upper triangular summands. From a mathematical viewpoint (1) is a vector field everywhere defined on the Lie algebra of real traceless matrices. Since it is in Lax form it is tangent to every adjoint orbit and, in particular, to the orbit made of traceless matrices of any fixed simple real spectrum (Jacobi matrices have simple real spectrum). Moreover, formula (1) implies that the Toda vector field T is tangent to any vector subspace which is stable upon taking Lie bracket with antisymmetric matrices. -
Inverse and Implicit Function Theorems for Noncommutative
Inverse and Implicit Function Theorems for Noncommutative Functions on Operator Domains Mark E. Mancuso Abstract Classically, a noncommutative function is defined on a graded domain of tuples of square matrices. In this note, we introduce a notion of a noncommutative function defined on a domain Ω ⊂ B(H)d, where H is an infinite dimensional Hilbert space. Inverse and implicit function theorems in this setting are established. When these operatorial noncommutative functions are suitably continuous in the strong operator topology, a noncommutative dilation-theoretic construction is used to show that the assumptions on their derivatives may be relaxed from boundedness below to injectivity. Keywords: Noncommutive functions, operator noncommutative functions, free anal- ysis, inverse and implicit function theorems, strong operator topology, dilation theory. MSC (2010): Primary 46L52; Secondary 47A56, 47J07. INTRODUCTION Polynomials in d noncommuting indeterminates can naturally be evaluated on d-tuples of square matrices of any size. The resulting function is graded (tuples of n × n ma- trices are mapped to n × n matrices) and preserves direct sums and similarities. Along with polynomials, noncommutative rational functions and power series, the convergence of which has been studied for example in [9], [14], [15], serve as prototypical examples of a more general class of functions called noncommutative functions. The theory of non- commutative functions finds its origin in the 1973 work of J. L. Taylor [17], who studied arXiv:1804.01040v2 [math.FA] 7 Aug 2019 the functional calculus of noncommuting operators. Roughly speaking, noncommutative functions are to polynomials in noncommuting variables as holomorphic functions from complex analysis are to polynomials in commuting variables. -
Self-Adjoint Semigroups with Nilpotent Commutators ∗ Matjaž Omladiˇc A, ,1, Heydar Radjavi B,2
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 436 (2012) 2597–2603 Contents lists available at SciVerse ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Self-adjoint semigroups with nilpotent commutators ∗ Matjaž Omladiˇc a, ,1, Heydar Radjavi b,2 a Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia b Department of Pure Mathematics, University of Waterloo, Waterloo, Canada ARTICLE INFO ABSTRACT Article history: Let P be a projection and let S be a multiplicative semigroup of Received 19 June 2011 linear operators such that SP − PS is nilpotent for every S in S. Accepted 26 October 2011 We study conditions under which this implies the existence of an Available online 5 December 2011 invariant subspace for S and, in particular, when P commutes with Submitted by H. Schneider every member of S. © 2011 Elsevier Inc. All rights reserved. AMS classification: 15A30 47A15 Keywords: Reducibility Semigroups Commutators Nilpotent operators 1. Introduction Several authors have studied the effect of polynomial conditions on reducibility and (simultane- ous) triangularizability of semigroups of operators in the following sense. Let S be a (multiplicative) semigroup of linear operators on a finite-dimensional vector space V over an algebraically closed field. (The semigroup may have to satisfy more conditions to get certain results, e.g., it may be required that it be a group or an algebra.) Let f be a noncommutative polynomial in two variables. One may assume conditions such as f (S, T) = 0forallS and T in S,ortrf (S, T) = 0, or f (S, T) is nilpotent for all pairs. -
Chapter 2 C -Algebras
Chapter 2 C∗-algebras This chapter is mainly based on the first chapters of the book [Mur90]. Material bor- rowed from other references will be specified. 2.1 Banach algebras Definition 2.1.1. A Banach algebra C is a complex vector space endowed with an associative multiplication and with a norm k · k which satisfy for any A; B; C 2 C and α 2 C (i) (αA)B = α(AB) = A(αB), (ii) A(B + C) = AB + AC and (A + B)C = AC + BC, (iii) kABk ≤ kAkkBk (submultiplicativity) (iv) C is complete with the norm k · k. One says that C is abelian or commutative if AB = BA for all A; B 2 C . One also says that C is unital if 1 2 C , i.e. if there exists an element 1 2 C with k1k = 1 such that 1B = B = B1 for all B 2 C . A subalgebra J of C is a vector subspace which is stable for the multiplication. If J is norm closed, it is a Banach algebra in itself. Examples 2.1.2. (i) C, Mn(C), B(H), K (H) are Banach algebras, where Mn(C) denotes the set of n × n-matrices over C. All except K (H) are unital, and K (H) is unital if H is finite dimensional. (ii) If Ω is a locally compact topological space, C0(Ω) and Cb(Ω) are abelian Banach algebras, where Cb(Ω) denotes the set of all bounded and continuous complex func- tions from Ω to C, and C0(Ω) denotes the subset of Cb(Ω) of functions f which vanish at infinity, i.e. -
Algebra Homomorphisms and the Functional Calculus
Pacific Journal of Mathematics ALGEBRA HOMOMORPHISMS AND THE FUNCTIONAL CALCULUS MARK PHILLIP THOMAS Vol. 79, No. 1 May 1978 PACIFIC JOURNAL OF MATHEMATICS Vol. 79, No. 1, 1978 ALGEBRA HOMOMORPHISMS AND THE FUNCTIONAL CALCULUS MARC THOMAS Let b be a fixed element of a commutative Banach algebra with unit. Suppose σ(b) has at most countably many connected components. We give necessary and sufficient conditions for b to possess a discontinuous functional calculus. Throughout, let B be a commutative Banach algebra with unit 1 and let rad (B) denote the radical of B. Let b be a fixed element of B. Let έ? denote the LF space of germs of functions analytic in a neighborhood of σ(6). By a functional calculus for b we mean an algebra homomorphism θr from έ? to B such that θ\z) = b and θ\l) = 1. We do not require θr to be continuous. It is well-known that if θ' is continuous, then it is equal to θ, the usual functional calculus obtained by integration around contours i.e., θ{f) = -±τ \ f(t)(f - ]dt for f eέ?, Γ a contour about σ(b) [1, 1.4.8, Theorem 3]. In this paper we investigate the conditions under which a functional calculus & is necessarily continuous, i.e., when θ is the unique functional calculus. In the first section we work with sufficient conditions. If S is any closed subspace of B such that bS Q S, we let D(b, S) denote the largest algebraic subspace of S satisfying (6 — X)D(b, S) = D(b, S)f all λeC. -
The Weyl Functional Calculus F(4)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF FUNCTIONAL ANALYSIS 4, 240-267 (1969) The Weyl Functional Calculus ROBERT F. V. ANDERSON Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Communicated by Edward Nelson Received July, 1968 I. INTRODUCTION In this paper a functional calculus for an n-tuple of noncommuting self-adjoint operators on a Banach space will be proposed and examined. The von Neumann spectral theorem for self-adjoint operators on a Hilbert space leads to a functional calculus which assigns to a self- adjoint operator A and a real Borel-measurable function f of a real variable, another self-adjoint operatorf(A). This calculus generalizes in a natural way to an n-tuple of com- muting self-adjoint operators A = (A, ,..., A,), because their spectral families commute. In particular, if v is an eigenvector of A, ,..., A, with eigenvalues A, ,..., A, , respectively, and f a continuous function of n real variables, f(A 1 ,..., A,) u = f(b , . U 0. This principle fails when the operators don’t commute; instead we have the Uncertainty Principle, and so on. However, the Fourier inversion formula can also be used to define the von Neumann functional cakuius for a single operator: f(4) = (37F2 1 (Sf)(&) exp( -2 f A,) 4 E’ where This definition generalizes naturally to an n-tuple of operators, commutative or not, as follows: in the n-dimensional Fourier inversion 240 THE WEYL FUNCTIONAL CALCULUS 241 formula, the free variables x 1 ,..,, x, are replaced by self-adjoint operators A, ,..., A, . -
PRINCIPLES of APPLIED MATHEMATICS Transformation and Approximation Revised Edition
PRINCIPLES OF To Kristine, Sammy, and Justin, APPLIED Still my best friends after all these years. MATHEMATICS Transformation and Approximation Revised Edition JAMES P. KEENER University of Utah Salt Lake City, Utah ADVANCED BOOK PROGRAM I ewI I I ~ Member of the Perseus Books Group Contents Preface to First Edition xi Preface to Second Edition xvii 1 Finite Dimensional Vector Spaces 1 1.1 Linear Vector Spaces ....... 1 1.2 Spectral Theory for Matrices . 9 1.3 Geometrical Significance of Eigenvalues 17 1.4 Fredholm Alternative Theorem . 24 1.5 Least Squares Solutions-Pseudo Inverses . 25 1.5.1 The Problem of Procrustes .... 41 Many of the designations used by manufacturers and sellers to distinguish their 42 products are claimed as trademarks. Where those designations appear in this 1.6 Applications of Eigenvalues and Eigenfunctions book and Westview Press was aware of a trademark claim, the designations have 1.6.1 Exponentiation of Matrices . 42 been printed in initial capital letters. 1.6.2 The Power Method and Positive Matrices 43 45 Library of Congress Catalog Card Number: 99-067545 1.6.3 Iteration Methods Further Reading . 47 ISBN: 0-7382-0129-4 Problems for Chapter 1 49 Copyright© 2000 by James P. Keener 2 Function Spaces 59 Westview Press books are available at special discounts for bulk purchases in the 2.1 Complete Vector Spaces .... 59 U.S. by corporations, institutions, and other organizations. For more informa 2.1.1 Sobolev Spaces ..... 65 tion, please contact the Special Markets Department at the Perseus Books Group, 2.2 Approximation in Hilbert Spaces 67 11 Cambridge Center, Cambridge, MA 02142, or call (617) 252-5298.