AnnexinA1asanewfunctionallinkerbetween actinfilamentsandphagosomesduring phagocytosis Dissertation zur ErlangungdesakademischenGrades doctorrerumnaturalium(Dr.rer.nat.) derMathematischNaturwissenschaftlichenFakultät derUniversitätRostock vorgelegtvon DevangPatel ausAhmedabad,India

Rostock,September2010

urn:nbn:de:gbv:28-diss2011-0019-0

Gutachter:

PDDr.SergeiA.Kuznetsov,UniversityofRostock,Germany

Prof.DrGarethGriffiths,UniversityofOslo,Norway

DatumdesWissenschaftlichenKolloquium: 10.01.2011

maara pairvaar nao Apa-Na (To my Family) Tableofcontents I

TableofContents

1. Summary...... 1 2. Introduction...... 3

2.1. Phagocytosis...... 4 2.1.1. Phagocyticreceptors...... 5 2.1.2. Phagocyticsignalling...... 8 2.1.3. Phagosomematuration...... 9 2.2. Actincytoskeletonduringphagocytosis...... 10 2.2.1. RhofamilyGTPasesandactindynamics...... 11 2.2.2. Actinpolymerisationandnucleationatsitesofphagosomeformation....12 2.2.3. Actindrivenphagosomeinternalisation...... 13

2.2.4. Actinseveringanddepolymerisation...... 13

2.2.5. TheRoleoftheCytoskeletonduringPhagosomalMaturation...... 14 2.3. ...... 16

2.3.1. Annexinsstructure...... 16

2.3.2. Cellulardistributionofannexins...... 19

2.4. A1...... 19

2.5. Aimofthestudy...... 22 3. MaterialsandMethods...... 23

3.1. CellBiology...... 24

3.1.1. Cultivationofcells...... 24

3.1.2. IsolationofLatexBeadPhagosomes(LBP)andcytosol...... 25 3.1.3. Isolationofmacrophagecytosol...... 26 3.1.4. Radiolabellingoftotalcell...... 27

3.1.5. Fixationandlabellingofcells...... 28 3.1.6. Macrophagetransfection...... 28 3.2. Preparationofligandscoupledlatexbeads...... 29 3.2.1. Couplingoflatexbeadstofishskingelatin(gelatinbeads)...... 30

3.2.2. CouplingoflatexbeadstoIgG(Fcfragment,Fcbeads)...... 31 3.2.3. Couplingoflatexbeadstomannan(manbeads)...... 31 3.3. Microscopy...... 32 3.4. ProteinChemistry...... 32 Tableofcontents II

3.4.1. Gelfiltration...... 32 3.4.2. Ammoniumprecipitation...... 33 3.4.3. Cationchromatography...... 33 3.4.4. IsolationofGactinfromrabbitmuscle...... 34 3.4.5. AnnexinA1purification...... 35 3.4.6. SDSPAGE...... 36 3.4.7. Immunoblotting...... 37 3.4.8. LiquidChromatographyandtandemMassSpectroscopy(LCMS/MS)...38 3.5. Invitroassays...... 39 3.5.1. ActinbindingAssay(ABA)...... 39 3.5.2. Actinnucleationassay...... 41 3.6. Othermethods...... 42

3.6.1. Fluorography...... 42 4. Results...... 44

4.1. IdentificationofnovelABPfacilitateFactinLBPinteractioninvitro...... 45

4.1.1. J774.A1macrophagecytosolstimulatesFactinLBPinteractioninvitro...45

4.1.2. SizeexclusionchromatographyofJ774.A1cytosol...... 47

4.1.3. Proteinfractionationusingammoniumsulphateprecipitationmethod...49

4.1.4. Proteinfractionationusingcationchromatography...... 50

4.1.5. Proteomicanalysisofphosphocelluloseeluted...... 50

4.1.6. Recombinant annexin A1 stimulates FactinLBP interaction in a Ca2+ dependentmannerinvitro...... 52

4.1.7. AnnexinA1ispresentonisolatedgelatinLBPandbindstogelatinLBPin Ca2+dependentmanner...... 53 4.1.8. AntiannexinA1antibodiesinhibitFactinLBPinteraction...... 55

4.1.9. Effect of nucleotides and phospholipids on Annexin A1 FactinLBP bindingactivity...... 55

4.1.10.Annexin A1 knockdown cells show impaired phagocytosis of gelatin beads 56

4.1.11.Spatial and temporal colocalisation of annexin A1 and Factin during phagocytosis58 4.1.12.AnnexinA1knockdowndoesnotaltergelatinLBPmaturation...... 61 4.1.13.AnnexinA1couldnotsupportactinnucleationongelatinLBP...... 61 Tableofcontents III

4.2. Ligandreceptor interaction decide the involvement of annexin A1 during macrophagephagocytosis...... 63

4.2.1. Different receptor derived nonstripped LBP show different Factin bindingaffinity....... 63

4.2.2. Recombinant annexin A1 stimulates FactinLBP interaction of non strippedandsaltstrippedLBP...... 64

4.2.3. Annexin A1 knockdown macrophages show reduced Fcbeads phagocytosisbutdoesnotaffectmanbeadsphagocytosis...... 65 4.2.4. Annexin A1 does not colocalise with Factin on naive manLBP but stronglycolocaliseonFcLBP....... 66 4.3. ExogenousannexinA1altermacrophagephagocyticactivity....... 67 4.4. StimulusdependentinvolvementofannexinA2asafunctionallinkerbetween FactinandLBP...... 68

4.4.1. Annexin A2 can stimulate FcLBP and manLBP binding to Factin but failedtostimulategelatinLBP...... 68

4.4.2. AnnexinA1andannexinA2competesforthesamebindingsiteon differentLBP....... 69

4.4.3. 69 5. Discussion...... 70

5.1. AnnexinA1stimulatesFactinandgelatinLBPinteraction,invitro....... 71

5.2. AnnexinA1actsasafunctionallinkerbetweenFactinandgelatinLBP,invivo. 73

5.3. Nterminal domain might not be important for Factin and LBP binding activity. 75

5.4. Ligandreceptor interaction regulates the involvement of annexin A1 in phagocytosis...... 76 5.5. ExtracellularannexinA1modulatesmacrophagephagocyticactivity....... 78 6. References...... 80 Acknowledgment...... 90 CurriculumVitae...... 91 Declaration...... 93 Supplementary...... 94

Summary 1

1. Summary

Summary 2

Remodellingoftheactincytoskeletonplaysakeyroleinparticleinternalisationand phagosome maturation processes. Actin binding proteins (ABPs) are the main players in actin remodelling, but the precise role of these proteins in phagocytosis needs to be investigated.Annexins,agroupofABPs,arefoundtobepresentonphagosomes.

InthecurrentstudyIidentifiedannexinA1asafactor,whichbindstoisolatedlatex beadphagosomes(LBP)inthepresenceofCa2+andfacilitatesFactinLBPinteractioninvitro.

InmacrophagestheassociationofendogenousannexinA1withgelatinLBPmembranesis stronglycorrelatedwiththespatialandtemporalaccumulationofFactinatthegelatinLBP.

AnnexinA1wasfoundonphagocyticcupsandaroundearlyphagosomes,wheretheFactin prominently concentrated. After uptake was completed, annexin A1 along with Factin dissociated from the nascent LBP surface. At later stages of phagocytosis annexin A1 transiently concentrated only around those gelatinLBP, which showed transient Factin accumulation (“flashing”). Reduction of annexin A1 expression resulted in impaired phagocytosisandactinflashing.ThesedataidentifyannexinA1asanimportantcomponent of phagocytosis that appears to link actin accumulation to different steps of phagosome formation.1

Moreover,IalsoprovedthatreceptorsignallingregulatesannexinA1recruitmenton differentphagosomes.AnnexinA1waspresentonFcLBPbutnotonmanLBP.Althoughin invitroconditionannexinA1wasabletostimulateFactinLBPinteractionforalltestedLBP, knockdown experiments reviled that annexin A1 is important for well defined FcRs mediated phagocytosis but not in mannose receptor mediated phagocytosis. Furthermore, extracellularannexinA1alsohaddistincteffectondifferentreceptormediatedphagocytosis.

Extracellular annexin A1 strongly reduces Fcbeads internalisation but equally stimulates manbeadsphagocytosis.

Obtained results demonstrate that annexin A1 is important for different stages phagocytosisandhavedifferentroleindifferentreceptorsmediatedphagocytosis.

1PapersubmittedtoJournalofCellSci.andcurrentlyinpress Introduction 3

2. Introduction

Introduction 4

2.1. Phagocytosis

Eukaryotic cells internalise a variety of particles during their lifetime. Cells have evolved a variety of strategies to internalise particles and solutes, including pinocytosis, receptormediatedendocytosisandphagocytosis(UnderhillandOzinsky,2002;Vieiraetal.,

2002)).Theuptakeofparticles>0.5minsizeistermedphagocytosis(Greek:phagoeating, cytevesselandosisprocess),whereasparticles<0.5maretakenupbyreceptormediated endocytosis or pinocytosis. Receptor mediated endocytosis is a specific process through whichmacromolecules,virusesandsmallparticlesareinternalisedinthecells.Pinocytosis usually refers to the uptake of fluid and solutes. Pinocytosis and receptormediated endocytosis share a clathrinbased mechanism and usually occur independently of actin polymerisation.Bycontrast,phagocytosisoccursbyanactindependentmechanismandis usuallyindependentofclathrin.

Althoughprimitiveorganismsusephagocytosisprimarilyforacquisitionofnutrients, phagocytosis in metazoans occurs in specialised phagocytic cells, such as macrophages, dendritic cells and neutrophils. Although a large number of mammalian cell types are capable of phagocytosis, their phagocytic efficiency varies greatly. To distinguish this varying ability, terms nonprofessional phagocytes, paraprofessional phagocytes and professionalphagocytesusedwhichreferringtocellswithlow,averageandhighphagocytic competence respectively (Rabinovitch, 1995). Professional phagocytes include mainly neutrophilsandcellsofthemonocytic/macrophagelineage,sentinelsoftheimmunesystem that hunt and destroy any foreign particles, apoptotic or defective host cells. Professional phagocytes have evolved into an extraordinarily complex process underlying a variety of criticalbiologicalphenomena.Inadditiontointernalisationanddegradationofpathogenic microbes, professional phagocytes trigger activation of the innate and adaptive immune responseafterantigenpresentationatthesurfaceofthephagocyticcell.

Inmammalsprofessionalphagocytescanbedividedintotwogroups:mononuclear phagocytes and polymorphonuclear phagocytes. Mononuclear cells include macrophages, monocytes and dendritic cells, while second group includes neutrophils which are short livingcells.Macrophagesarelonglivingcellsthatcanbelocatedindifferenttissues,suchas theconnectivetissue,thesubmucosaofthegastrointestinaltract,thelungs,theliver,the central nervous system, bones and throughout the spleen, where they remove senescent bloodcells(Janewayetal.2004).Allthosecelltypes originatefrom pluripotent stem cells Introduction 5 present in the bone marrow that differentiate in response to hematopoietic factors. After differentiation,mononuclearphagocytesarereleasedinthebloodandremaincirculatingas monocytes, unless they are recruited to sites of inflammation by chemotactic signals and becomemacrophageswhichenterthetissues.

Figure1Receptorandsignallinginteractionsduringphagocytosisofmicrobes.Multiplereceptors simultaneously recognise microbes both through direct binding and by binding to opsonins on the microbesurface.Receptorengagementinducesmanyintracellularsignals,andseveralmoleculesare utilised in many pathways. Signalling during phagocytosis may subsequently serve to activate or inhibitfurtherphagocytosisandmicrobeinducedresponses.adaptedfrom(UnderhillandOzinsky, 2002)

2.1.1. Phagocyticreceptors

Phagocytosis is initiated by the interaction of surface receptors with their cognate ligand. Ligands can be endogenous components of the particle, exemplified by lipopolysaccharides of bacteria and phosphatidylserine in apoptotic cells. Internalisation triggeredbyendogenousligandsoftheparticleisknownasnonopsonic(Ofeketal.,1995).

The immune system is equipped with a variety of receptors that recognise nonopsonic ligands, including CD14 that binds to lipopolysaccharides, as well as receptors that recognisespecificallyphosphatidylserine,mannoseorfucoseresidues(Schutt,1999).Other Introduction 6 class of the ligands areknown as opsonins, which are hostderived proteins that coat the surfaceofaparticle.ThebestcharacterisedopsoninsarethecomplementfragmentC3b,iC3b andIgGantibodies.C3bandiC3Bbindrelativelynonspecificallytothesurfaceofforeign particles, whereas IgG molecules attach to the phagocytic target by recognising specific surfaceepitopes.C3boriC3bopsonisedparticlesarerecognisedbycomplementreceptors members of the integrin super family, while IgGopsonised particles engage FcRs

(KwiatkowskaandSobota,1999).Inanycase,receptorengagementleadstointernalisation of the particle into a phagosome by a complex sequence of events that require kinase activation, alterations in phospholipids metabolism, remodelling of the actin cytoskeleton andaccelerationofmembranetraffic(KwiatkowskaandSobota,1999).

2.1.1.1. Fcreceptors

In mammals, binding of immunoglobulins (Igs) to foreign particles (opsonisation) leads to the prompt clearance of those particles from the organism. The conserved Fc domainsoftheIgsarerecognisedbyFcreceptors(FcRs)presentonprofessionalphagocytes, such as macrophages and neutrophils. An opsonised particle binds to Fcreceptors and is rapidlyinternalisedbyanactindependentextensionoftheplasmamembranearoundthe opsonisedparticle.Thisprocessisaccompaniedbytheproductionofproinflammatoryand toxicmolecules,suchastheproductionofsuperoxideandthereleaseofcytokinesfromthe phagocyticcell(GarciaGarciaandRosales,2002).ThemajorIgopsoninisIgG,whichbinds tothecorrespondingFcgammareceptors(FcRs),althoughIgAandIgEalsohavecognate

Fcreceptors(FcRsandFcRs,respectively)thatareinvolvedinphagocytosis(Swansonand

Hoppe,2004).TherearethreeclassesofFcRs:FcRI,FcRIIandFcRIII.Eachclassconsists ofseveralreceptorisoformswhicharetheproductofdifferentandsplicingvariants

(Ravetch and Bolland, 2001). Except FcRIIIA and all the other FcRs, FcRIIIB lacks a transmembraneregionandacytoplasmictail.Thisreceptorisanchoredtothemembraneby aglycolphosphatidylinositolmoiety(GarciaGarciaandRosales,2002;RavetchandBolland,

2001;SwansonandHoppe,2004).

2.1.1.2. Complementreceptors

Another major group of receptors that mediate phagocytosis by professional phagocytes is the complement receptors. Complementreceptormediated phagocytosis is morphologicallydistinctfromthatmediatedbyFcRs,althoughbothprocessesrequireactin Introduction 7 polymerisation.Complementopsonisedparticlesgetinternalised,withminimalmembrane disturbanceandthisdoesnotusuallyleadtoaninflammatoryresponseorthegenerationof superoxide(Ofeketal.,1995;Smithetal.,1999)..Thecomplementsystemisevolutionarily much older than adaptive immunity and is presenteven in simple organisms such as sea urchins and yet still represents an important part of the innate immune system in higher organisms,including(Smithetal.,1999).C3biswellcharacterisedmoleculethatcan bindtomoleculesonmicrobialsurfacesandactslikeanopsoninandisrecognisedbythe complementreceptor1(CR1).C3bcanbefurthermodifiedbyplasmafactorsHandI,which convertittoiC3b.iC3bisaverypotentopsoninthatcanberecognisedbytheCR3andCR4.

The complement receptors CR1, CR3 and CR4, are expressed on macrophages and neutrophilsandarecapableofmediatingphagocytosis(Ofeketal.,1995;Smithetal.,1999).

2.1.1.3. Mannosereceptor

The mannose receptor (MR) (CD206) is a typeI transmembrane protein that is characterised as a Group VI Ctype lectin. It shares the same overall structure with three other receptors (phospholipase A2 receptor, ENDO 180 and DEC205) which together are knownastheMRfamily(StahlandEzekowitz,1998).TheMRonmacrophagesrecognises mannose and fucose on the surfaces of pathogens and mediates phagocytosis of the organisms. The high affinity of this receptor for branched mannose and fucose oligosaccharides makes the MR a phagocytic receptor with broad pathogen specificity.

Structurally,itconsistsofanextracellularregioncontaininganaminoterminalcysteinerich domain,a fibronectin type II repeat domain,eight CTLDs, a transmembraneregion anda shortcytoplasmictail.Thecytoplasmictailiscrucialtoboththeendocyticandphagocytic functionsofthereceptor,butlittleisknownaboutthesignalsthatleadtophagocytosis(East and Isacke, 2002; Stahl and Ezekowitz, 1998).Its expression was originally thought to be restricted to mammalian tissue macrophages but it is now known to be expressed on lymphaticandhepaticepithelium,kidneymesangialcells,trachealsmoothmusclecellsand retinalpigmentepithelium.Expressionhasalsobeenobservedonmonocytederived

DCs (East and Isacke, 2002; Stahl and Ezekowitz, 1998) Several studies suggested that exclusive activation of the mannose receptor cannot induce phagocytosis and other co receptors are usually needed (Kang et al., 2005; Taylor et al., 2005). In addition to this, depending on the recognised ligands, also proinflammatory signals can be also generated uponMRligation(EastandIsacke,2002;StahlandEzekowitz,1998). Introduction 8

Otherthanabovethementionedreceptorstherearemanyotherreceptorsarereported tobeinvolvedinphagocyticprocess.Ligandsbindingtotheircognatereceptorstriggerthe cellular signalling which decides the fate and composition of the phagosome. Every receptorsgenerateauniquesignatureonthephagosome(Hoffmannetal.,2010).

2.1.2. Phagocyticsignalling

The signalling pathways elicited by a wide array of membrane receptors involve tyrosinephosphorylationcascades,followedbyactivationofmanydownstreamsignalling molecules. Phagocytosis involves tyrosine kinases in many cases, although the need for tyrosinekinasesmaynotbearequirementforallphagocyticsystems.

Phagocytosis mediated by FcRs is largely mediated by kinases of the Src and

Syk/Zap70families.FcRligandinteractioninducesthephosphorylationofspecifictyrosine residueslocatedwithinspecialaminoacidmotifs,namedImmunoreceptorTyrosinebased

ActivationMotifs(ITAMs)onthecytoplasmicportionofFcyRIIAandonaccessorychains thatassociatewithotherFcRs(GarciaGarciaandRosales,2002).ITAMphosphorylationby enzymes of the Src tyrosinekinase family promotes Syk docking to ITAMs and Syk activation.ThereisabundantgeneticandbiochemicalevidencesupportingtheroleforSrc andSykfamilykinasesintheregulationofFcRmediatedphagocytosis(GarciaGarciaand

Rosales, 2002; Kwiatkowska and Sobota, 1999; Niedergang and Chavrier, 2004). Although some members of the Src kinase family have been found associated to specific FcRs, it is currently not clear whether this association is related to receptorspecific signalling pathways. It is also possible that all kinases of the Src family converge into a common signallingpathwaythatregulatesphagocytosis(Grovesetal.,2008).

ParticipationoftyrosinekinasesinCRmediatedphagocytosisiscontroversial.Early reportsdemonstratedthatphagocytosisofcomplementopsonisedzymosan(yeastcellwall) and of complementopsonised erythrocytes is unaffected by tyrosine kinase inhibitors

(Grovesetal.,2008;KwiatkowskaandSobota,1999;NiedergangandChavrier,2004).This ruled out the participation of tyrosine kinases in this type of phagocytosis. This notion is furthersupportedbythefactthatmacrophagesfromSyk/miceshownormallevelsofCR mediated phagocytosis (Kiefer et al., 1998). However, 2 integrin stimulation by adhesive ligands, or by artificial integrin crosslinking with antibodies induces various cellular responses in a Src and/or Syk kinasedependent manner (Mayadas and Cullere, 2005). Introduction 9

Additionally,itwasreportedthatCR4mediatedphagocytosisofMycobacteriumtuberculosis induced tyrosine phosphorylation of several proteins.However, the direct involvement of tyrosine phosphorylation in CR4mediated phagocytosis was not evaluated. Whether tyrosinekinasesareindeeddispensableduringCRmediatedphagocytosisremainsunclear.

There are several proteins reported to be involved in signalling during the phagocytosis.BelowIsummarisedtheroleofsomeimportantsignallingmoleculesduring

Fc receptor (FcR), complement receptor (CR) and apoptotic cell receptor mediated phagocytosis.

SignallingMolecule FcR CR ACR

Phosphatidylinositol3Kinase + + +

ProteinKinaseC + + +

PhospholipaseA2 + + N.D.

PhospholipaseC + +/

PhospholipaseD + N.D

ExtracellularsignalregulatedKinase + +/ +/

(+=important,=Notimportant,+/Notclear,N.D.=notevaluated)

Muchworkremainstobedoneindescribingthesignallingpathwayselicitedbymany phagocytic receptors. In particular a detailed understanding of the signalling pathways regulatingCRmediatedphagocytosis,mannosereceptorandphagocytosisofapoptoticcells isstilllacking(AderemandUnderhill,1999).

2.1.3. Phagosomematuration

Once internalised with help of actin dynamics (explained bellow), the phagosome maturesviaaseriesoffusionandfissioneventswithendocyticpathway.Theactinfilaments that surround newly internalised phagosomes rapidly depolymerise, which leaves the phagosome membrane available to fuse with endosomes and lysosomes. The phagosomal membrane undergoes a progressive maturation, and its composition changes, first containingcomponentsoftheplasmamembrane,thenearlyendosomesandsubsequently acquiringmarkersfoundinthelateendosomeandlysosomecompartments.Ingeneral,the earliest markers seen within the first few minutes after sealing of the phagosome include rab5, EEA1, PIP2 and other components of the early endosomes (Aderem and Underhill,

1999;Araki,2006;Castellanoetal.,2001;Hoffmannetal.,2010;MayandMachesky,2001). Introduction 10

Consistentwiththeacquisitionoftheprotonpump,acidificationofthephagosomerapidly occurs. Loss of the plasma membrane and endosomal proteins then coincides with the acquisition of late endosome/lysosome components. These include lysosomeassociated membraneproteins(LAMPs),rab7,cathepsinDandotherhydrolyticenzymes.Duringthis period the pH of the phagosome continues to drop to levels consistentwith the lysosome

(pH5)(AderemandUnderhill,1999;Araki,2006;Haas,2007;Hoffmannetal.,2010;Vieiraet al.,2002).Thetimingofthesestepsappearstodependonthetypeofparticlebeingingested andthenatureofthereceptors beingengaged.Latexbeadsareparticularlyslowandthis slowtimecoursehasbeenusefulincharacterisingthemechanismsofmembranedeliveryto thephagosome(Haas,2007;Hoffmannetal.,2010;UnderhillandOzinsky,2002;Vieiraetal.,

2002).

2.2. Actincytoskeletonduringphagocytosis

Muchworkremainstobedoneindescribingthesignallingpathwayselicitedbymany phagocytic receptors. However, phagocytosis appears to be regulated by key signalling moleculesthataresharedbymostphagocyticsystems.Intheend,however,allphagocytic systems must exploit the dynamic nature of the cytoskeleton to achieve particle internalisation.Phagocyticsignallingpathways,inallsystems,aredesignedtoactivatemany cytoskeletonremodellingmolecules.Theactinandmicrotubulecytoskeletonsparticipatein thephagocyticprocessindifferentways.Theactincytoskeletonisrequiredforpseudopod extension,andasastructuralframeworkformyosindrivenphagosomeinternalisation.On theotherhand,themicrotubulecytoskeletonappearstobenecessaryforlocalactivationof

Rho family GTPases at sites of phagosome formation. Different phagocytic systems show particularcytoskeletonrequirementstoachieveparticleinternalisation.

One of the earliest differences observed between different phagocytic systems were structural. These differences were found through microscopy studies. FcRmediated phagocytosis and apoptotic cell phagocytosis occur with extensive pseudopod extension surrounding the phagocytic targets. CRmediated phagocytosis, in contrast, occurs in the absence of pseudopod extension, and complementopsonised phagocytic targets appear to rather sink into the cell. These differences may reflect the cytoskeletal requirements for particleinternalisation.TheactincytoskeletonisrequiredforparticleinternalisationbyFcR, Introduction 11 andalsobyreceptorsforapoptoticcells,whereasCRmediatedphagocytosisdependsonthe actinandmicrotubulecytoskeletons.

2.2.1. RhofamilyGTPasesandactindynamics

Signalling elements critical to the control of actin reorganisation during a variety of phagocyticsignallingprocessesaretheRhoGTPbindingproteins.RhofamilyGTPasesplay akeyroleinthebiochemicalregulationoftheactinandpossiblymicrotubulecytoskeletons during phagocytosis (Chimini and Chavrier, 2000; Niedergang and Chavrier, 2005). The mechanism of activation of Rho family GTPases involves the transition from an inactive,

GDPbound, to an active GTPbound state. This transition is catalysed by guanine nucleotideexchange factors (GEFs) (Niedergang and Chavrier, 2005). When activated and bound to GTP, they interact with downstream effectors, for example to mediate Arp2/3 recruitmentandactinpolymerisationduringphagocytosis.InactiveGDPbound,Rhofamily

G proteins are thought to be cytosolic and bound to a guanine dissociation inhibitor

(GDI)(ChiminiandChavrier,2000;NiedergangandChavrier,2005).

Vavandp190RhoGEFareGEFsthatareimplicatedinphagocytosis.Differentialuseof these GEFs has been observed among phagocytic systems (Groves et al., 2008; May and

Machesky, 2001; Niedergang and Chavrier, 2005). Vav participates in FcRmediated phagocytosis,butnotinCRmediatedphagocytosis(Grovesetal.,2008;MayandMachesky,

2001;NiedergangandChavrier,2005).DuringFcRmediatedphagocytosisVavisrecruited to sites of phagosome formation where it specifically activates Rac. CRmediated phagocytosis,ontheotherhand,appearstodependonp190RhoGEF(Grovesetal.,2008;May andMachesky,2001; Niedergangand Chavrier,2005). Interestingly, pl90RhoGEF has been shown to interact with the microtubule cytoskeleton. Activation of Rho family GTPases during apoptotic cell phagocytosis, on the other hand, appears to be mediated by phosphorylationdependentadaptermoleculeswithassociatedGEFactivity,suchasp130cas,

CrkII,Dockl80,andELMO1(ChiminiandChavrier,2000).FcRmediatedphagocytosisis regulated by the Rho family members Rac and Cdc42, but apparently not by Rho. In contrast,phagocytosisofcomplementopsonisedtargetsdependsonRho,butisindependent ofRacandCdc42(CaronandHall,1998).However,whenthelectinsiteonCR3isengaged bymicroorganismderivedsugarligands,phagocytosisproceedsinaRac/Cdc42dependent Introduction 12 manner and is accompanied of extensive pseudopod extension, structurally resembling

FcRmediatedphagocytosis(ChesaroneandGoode,2009).

2.2.2. Actinpolymerisationandnucleationatsitesofphagosomeformation

A predominant feature of phagocytosis is the accumulation of actin and associated proteinsatthebaseoftheformingphagosome.Ithaslongbeenrecognisedthatremodelling of actin filaments is required for efficient particle internalisation and studies of the regulationofactinreorganisationhaveidentifiedseveralproteinsandlipidswithdirectroles in this process. Rho family GTPases have a fundamental role in the regulation of the formation of actin filaments that are necessary for pseudopod extension, and for myosin drivenparticleinternalisation.RhofamilyGTPasespromoteactinpolymerisationatsitesof phagocytosis by recruiting actin nucleationpromoting factors (NPFs), and the actin nucleatingcomplexArp2/3(BaumandKunda,2005;MayandMachesky,2001).WhileNPFs inducetheactivationoftheArp2/3complex,thelatterhasadirectroleintheformationand branchingofnewactinfilaments.AlthoughtherecruitmentofNPFsatsitesofphagosome formationcouldbeachievedthroughdifferentwaysamongphagocyticsystems,allofthem requiretheactivityoftheArp2/3complexforparticleinternalisation.Arp2/3recruitmentto formingphagosomescanbeachievedbyitsinteractionwithNPFs,withadaptermolecules, orwithsomemyosinisoforms(Castellanoetal.,2001;ChesaroneandGoode,2009;Mayand

Machesky,2001)

IntheFcRphagocyticsystem,activeRacandCdc42atformingphagosomesinduce thelocalrecruitmentofthehematopoieticspecificNPFWASP(WiskottAldrichSyndrome

Protein).WASPrecruitmenttoformingphagosomesmaybemediatedthrough its direct interaction with active Rac/Cdc42. WASP recruitment then results in Arp2/3 activation at thesesites.ActiveArp2/3inturnregulatestheformationofactinfibresthatarenecessaryfor pseudopodextension(Castellanoetal.,2001;ChesaroneandGoode,2009;GarciaGarciaand

Rosales,2002;MayandMachesky,2001).

The participation of WASP in CRmediated phagocytosis has not been evaluated.

However, CRmediated phagocytosis does depend on Arp2/3 recruitment to forming phagosomes.DuringCRmediatedphagocytosistheArp2/3complexisrecruitedinaRho dependent manner. In this system Arp2/3 recruitment to forming phagosomes is a down stream event, occurring after activation of the Rho kinasemyosin II signalling pathway. Introduction 13

Additionally, Arp2/3 may be recruited to forming phagosomes by its interaction with myosin I, the only myosin isoform known to directly interact with Arp2/3. Because phagocytosisbyCRsproceedsintheabsenceofpseudopodextension,themostlikelyrole foractinfilamentsinthissystem,istoprovidethestructuralframeworkformyosindriven phagosome internalisation (Castellano et al., 2001; Chesarone and Goode, 2009; May and

Machesky,2001)

2.2.3. Actindrivenphagosomeinternalisation

Inadditiontotheroleofactinpolymerisationforpseudopodextension,actinfilaments provide the structural framework for the myosindriven contractile activity, necessary for particleinternalisation(MayandMachesky,2001).Thisactindependentcontractileactivity is mediated by several myosin isoforms. Myosins are motorproteins that couple their

ATPaseactivitytomovementalongactinfilaments(Castellanoetal.,2001).Bycouplingits movement to adapter molecules, myosins can thus regulate the transport of vesicles, organelles and other particles along actin filaments. Several myosin isoforms have been found located around phagosomes, suggesting that some of them are required for phagosomeinternalisation(ChesaroneandGoode,2009).

MyosinIIappearstoberequiredforFcRmediatedphagocytosis.1Pharmacological inhibition of myosin II, or of its upstream activator MLCK results in phagocytosis arrest.

Othermyosinisoforms,includingmyosinIC,myosinVandmyosinIXb,havebeenfound locatedaroundphagosomesduringFcRmediatedphagocytosis.Itisthuspossiblethatat least one of them participates in phagosome internalisation (Araki, 2006). CRmediated phagocytosis also depends on myosin II activity. Myosin I has also been found located aroundphagosomesduringCRmediatedphagocytosis.Additionallytothepossiblerolefor thesemyosinisoformsinphagosomeinternalisation,theymayalsoparticipateinactinfibre formationbyrecruitingtheArp2/3complexatformingphagosomes.Themyosinisoforms requiredforphagosomeinternalisationduringapoptoticcellphagocytosishavenotyetbeen identified(Castellanoetal.,2001;ChesaroneandGoode,2009;MayandMachesky,2001)

2.2.4. Actinseveringanddepolymerisation

During phagocytosis, as in many actindependent cellular processes, actin dynamics are not restricted to nucleation and polymerisation but are also regulated by Introduction 14 capping/uncapping,depolymerisationandsevering(Wearetal.,2000).Disassemblyofactin filamentsoccursbothduringinternalisation,albeitatverylowlevels,andaftercompletion of uptake. In any case, every stage of actin disassembly requires a precise spatial and temporalcoordinationofanarrayofactindepolymerisingproteins.Yet,itappearsthatitis notjustthepresenceofspecificfunctionalproteinsbutalsotheabsenceand/ordepletionof signallingmoleculespreviouslyinvolvedinearlierstagesofphagocytosis,thatcontributeto the control of actin disassembly. Prompt disappearance of Factin from phagosomes has been observed in Dictyostelium and in mammalian phagocytes; following closure of the phagocytic cup (Chesarone and Goode, 2009; Dominguez, 2009; Wear et al., 2000). The hydrolysis of phosphatidylinositol 4, 5 bisphosphate (PIP2) from the phagosomal membranethatcoincideswiththedissociationoftheactinnetwork(ChesaroneandGoode,

2009; Dominguez, 2009; Wear et al., 2000). This is consistent with the idea that optimal

WASP/NWASPinduced,Arp2/3dependentactinpolymerisationdependsontwoinputson

WASP:activeCdc42andPIP2.Cdc42activityneednotbeterminated;ifWASPisnolonger localisedoractivatedbyPIP2,itwillnotbeabletobindandactivatetheArp2/3complex, haltingactinnucleationandpolymerisation(ChesaroneandGoode,2009;Dominguez,2009).

2.2.5. Theroleofthecytoskeletonduringphagosomalmaturation

Compartments of the endocytic/exocytic pathway occupy characteristic locations withincells.Theintracellularlocationofthesecompartments,aswellasthetrafficbetween them,isdependentupontheintegrityofthemicrotubulenetwork.Inananalogousmanner, thematuringphagosomalcompartmentisdependentuponthemicrotubulenetworkforits transformationintoaphagolysosomes.Afteraphagosomeisformedatthecellperiphery,it is transported toward the interior of the cell in a microtubuledependent fashion. While phagosome motility has been observed in both directions along microtubules, dynein mediatedminusenddirectedmovementseemstopredominateoverkinesinmediatedplus enddirectedmovement,consistentwiththecentripetalmovementofphagosomesobserved incells.Theassociationofphagosomeswithmicrotubulesappearstobenecessaryfortheir maturation, as indicated by decreases in phagosomal acquisition of lateendosomal and lysosomalmarkers,includingLAMP2,(Desjardinsetal.,1994b;Desjardinsetal.,1994a)and by inhibition of phagosomelysosome fusion in cells treated with microtubule depolymerisingagents(Blockeretal.,1996).Themechanismbywhichphagosomesassociate Introduction 15 with microtubules is yet to be discovered. One possibility is through members of the rab family of GTPases discussed above. Rab4a, rab5 and rab11 have been shown to associate with phagosomes and have demonstrated interactions with microtubules (Chimini and

Chavrier,2000).

Reorganisation of the actinbased cytoskeleton is important during phagosomal maturationaswellasphagosomeformation.Asinthecaseofmicrotubulesdescribedabove, actinmicrofilamentsappeartoplayaroleinthecentripetalmovementofphagosomeafter theirformation.Whilesmallphagosomes(approximately1mindiameter)canmovealong microtubules, a mechanism for phagosomal motility has been proposed that implicates myosininthegenerationofforcetomovelargerphagosomesalongactinfilaments(Mayand

Machesky,2001;ToyoharaandInaba,1989).Ithasalsobeenproposedthatassemblyofactin filamentsonthesurfaceofthephagosomecouldgeneratemotility(Defacqueetal.,2000).In thismodel,membersoftheezrin,radixin,moesin(ERM)familyofproteinsaredescribedas regulators of actin nucleation that may initiate the formation of actin structures on the surfaceofphagosomes.Thismodelissupportedbythedemonstrationthatezrinandmoesin cannucleateFactinassemblyonthesurfaceofphagosomesinvitro(Defacqueetal.,2000).In addition to supporting phagosomal motility, Factin filaments may contribute to the maturationofthefullyformedphagosomebyfacilitatingthedeliveryofotherendosomal compartmentstothephagosome. Studiesinanin vitro system suggest that an appropriate levelofactinfilamentassemblyisrequiredtoallowphagosomeendosomefusion.Enough actin filaments are needed, emanating from the phagosome, for the efficient transport of endosomes to the phagosome (Jahraus et al., 2001a). An excess of Factin around the phagosome,however,mightimpedethedeliveryofendosomesandretardbiogenesisofthe phagolysosomes.Whilemuchremainstobelearnedaboutthisprocessinvivo,itisbecoming clear that dynamic actin structures are prominent and functionally important features throughtheentireexistenceofaphagosome/phagolysosomes.

Tilldatesignificantamountofworkhasbeendonetounderstandroleofactin(inboth form:globularandfilamentous)butstillfunctionsofmanyactinbindingproteinsyettobe discovered.Forexample,localisationfiveannexins(includingknownactinbinderannexin

A1andannexinA2)wasdiscoveredalmostadecadeago(Diakonovaetal.,1997)butstillwe donotknowtheirfunctionalimportanceduringphagocytosis.

Introduction 16

2.3. Annexins

Annexinswerediscoveredapproximately25yearsago.Thefirsttobedescribedasan isolated,purifiedproteinwashumanannexinA7(knownassynexin)(Creutzetal.,1978).

Annexins are a family of cytosolic Ca2+binding proteins characterised by nonEF handor type II Ca2+bindingsites.Ca2+binding enables annexins to interact with membranes containingacidicphospholipidsandCa2+dependentphospholipidbindingisconsideredthe unifying biochemical property in the annexin family. As Ca2+ dependent phospholipid bindingproteinshaveemergedfrommultipleareasofinvestigationduringthe1980s,they havebeencalledbymanydifferentnames(Table1).In1990,CrumptonandDedman,with theagreementofmostofthegroupsworkinginthisfield,developedanewnomenclature

(CrumptonandDedman,1990).Theyarenowcalledannexins(Greekannex–tobind)since theirmainpropertyistobindtocellularmembranesinaCa2+dependentmanner.Tilldate

12 annexins common to vertebrates were recently classified in the annexin A family and named as annexins A1A13 (Moss, 1992; Raynal and Pollard, 1994). Annexins outside vertebratesareclassifiedintofamiliesB(ininvertebrates),C(infungiandsomegroupsof unicellulareukaryotes),D(inplants),andE(inprotists);atleast40additionalsubfamilies awaitformalclassificationintothesefamilies.

2.3.1. Annexinsstructure

All annexins display similar properties regarding Ca2+andphospholipidisduetoa commonprimarystructure.Eachannexinisconstitutedoftwodifferentregions,theunique

Nterminaldomain,alsocalledtailandtheCterminaldomainnamedcoredomain.Thecore domain made up of four similar repeats, each approximately 70 amino acids long. Each repeatismadeupoffivehelicesandusuallycontainsacharacteristic‘type2’motiffor binding calcium ions with the sequence ‘GxGT[38 residues]D/E’ (Figure 2A). Annexins bind to a wide variety of other proteins. Many annexins have posttranslational modifications,suchasphosphorylationandmyristoylation(Figure2B);suchmodifications and surface remodelling of individual members presumably account for much of the subfamilyspecificityinannexininteractions(GerkeandMoss,2002).Thecoredomainsof most vertebrate annexins have been analysed by Xray crystallography, revealing conservation of their secondary and tertiary structures despite only 4555% aminoacid identityamongindividualmembers.Eachannexinrepeatisfoldedintofivehelicesand Introduction 17

Table1: Nomenclatureoftheannexins(Moss,1992;RaynalandPollard,1994)

Annexin Synonym kDa

A1 lipocortinI(lipomodulin,macrocortin,renocortin) 38.6

p35(EGFreceptorsubstrate)

calpactinII

chromobindin9

A2 calpactin1heavychain 38.5

p36(pp60srcsubstrate)

proteinI

lipocortinII

chromobindin8

A3 lipocortinIII 36.2

placentalanticoagulantprotein(PAP)llI

35~calcimedin

calphobindinIII

inositol1,2cyclicphosphate2hydrolase

A4 endonexinI 35.7

chromobindin4

placentalanticoagulantprotein(PAP)II

placentalproteinPP4X

lipocortinIV

A5 placentalanticoagulantprotein(PAP)I 35.8

endonexinII

placentalproteinPP4

calphobindin1

lipocortinV

A6 p68 75.7

67Kcalelectrin

proteinIII

calphobindinII

Synhibin

lipocortinVI

A7 synexin 50.2

A8 vascularanticoagulant(VAC)/3 36.7

A9 Drosophilamelanogasterannexin 32.9

A10 Drosophilamelanogasterannexin 35.6

A11 calcyclinassociatedannexin(CAP)50 53.9

A12 Hydravulgarisannexin 35

A13 intestinespecificannexin(ISA) 35.3 Introduction 18 these in turn are wound into a right handed superhelix. The four repeats pack into a structure thatresembles a flattened disc, with a slightly convex surface. The more convex sidecontainsnoveltypesofCa2+bindingsites,thesocalledtypeIIandtypeIIIsites,and faces the membrane when an annexin is associated peripherally with phospholipids. The more concave side points away from the membrane and thus appears accessible for interactions with the NH2terminal domain and/or possibly cytoplasmic binding partners

(GerkeandMoss,2002;Moss,1992;MossandMorgan,2004;RaynalandPollard,1994)

In contrast to the core domain, the sequence of the Nterminal domain is extremely variable,althoughwithafewexceptions.ThelengthNterminalvariesfromafewamino acids,inannexinA4and5tomorethan160inannexinA7and11.Inthesestructures,the

NH2terminalsequencesextendalongtheconcavesideofthemoleculepartiallyengagedin hydrophobicinteractionswiththeproteincore.ThusitappearsthattheshortNH2terminal domainsofthesmallerannexins,affecttheCa2+dependentphospholipidbindingexecuted by the convex, or opposite, side possibly through stabilising or destabilising slightly differentconformationsofthemolecule.Thisunderlinestheregulatoryimportanceofeven thesmallNH2terminaldomains,whichpreviouslybeenpostulatedduetothepresenceof sites for posttranslational modifications (Gerke and Moss, 2002; Moss, 1992; Moss and

Morgan, 2004; Raynal and Pollard, 1994). Variable Nterminal sequences resulted in significantlyalteredpropertiescouldfunctionaldiversityamonghighlyconservedannexins.

The Nterminus of annexins A1 and A2 also display some similarities; except for an intervening11residuesequence(Figure2B).AnnexinA2bindsan11kDaproteinrelatedto theS100A10familyofCa2+bindingproteinthroughresidueslocatedinitstail.Theresulting

90kDacomplex(2subunitsofannexinA2and2ofp11/S100A10)ismuchmoresensitiveto

Ca2+thanmonomericannexinA2forinteractionwithphospholipids(GerkeandMoss,2002;

Moss,1992).InthecaseofannexinA1,covalentdimersdescribedinplacentaappearedtobe produced by transglutaminase that crosslinks residues localised within the proteinase sensitive Nterminal 29 amino acids of annexin A1. The functional implications of this modificationareyettobediscovered.PosttranslationmodificationonNterminalsequence hasagreatimpactonannexinsactivities(MossandMorgan,2004;RaynalandPollard,1994). Introduction 19

A

B

Figure2:Structureofannexins:(A)Annexinproteinsgenerallyconsistofauniqueaminoterminal region(of0191aminoacidsinvertebrates,forexample)andacarboxyterminal‘coreregion’offour homologous repeats, each 6869 amino acids long and containing five helices and a type2 Ca2+ bindingsitewiththesequenceGxGT[38residues]D/E.TheindicatedresiduesGlu89andArg265are considered key components of the putative calcium channel function. Adapted from (Moss and Morgan, 2004).(B) The N terminal domains of annexin A1 and annexin A2 are similar in size and phosphorylationsitesbutdifferinotherways.Adaptedfrom(Moss,1992)

2.3.2. Cellulardistributionofannexins

Annexins are generally cytosolic proteins. Most annexins are abundant intracellular with pools of both a soluble form and a form stably or reversibly associated with componentsofthecytoskeletonorproteinsthatmediateinteractionsbetweenthecelland theextracellularmatrixproteins.Incertaininstances,annexinsmaybeexpressedatthecell surface,despitetheabsenceofanysecretorysignalpeptide.Theexpressionlevelandtissue distributionofannexinsspanabroadrange,fromabundantandubiquitous(annexinsA1,

A2, A4, A5, A6, A7, A11) to selective (annexin A3 and annexin A8 in neutrophils and placenta, respectively) or restrictive (annexin A9 annexin A10 and annexin A13 in the tongue,stomachandsmallintestinerespectively)

2.4. AnnexinA1

Annexin A1, formally known as lipocortin 1, initially identified as the anti inflammatoryproteinandlateritsroleswasalsoimplementedincancer(Caoetal.,2008), infectionandapoptosis(Ganetal.,2008),vesicletransport(FutterandWhite,2007),actin Introduction 20 dynamics(Hayesetal.,2004)andwoundhealing(Martinetal.,2008).AnnexinA1,atypically secretedfromcells(DAcquistoetal.,2008).Intracellularly,annexinA1ispredominantlya cytosolicproteinbutitisalsofoundontheplasmamembraneandcellularorganelles,like endosomes, phagosomes and multivesicular bodies, where the protein participates in inwardvesiculation(FutterandWhite,2007;Gerkeetal.,2005;LimandPervaiz,2007).The presenceofannexinA1onthephagosomalmembraneseemstobefunctionallyimportantin macrophagesandneutrophils(Desjardinsetal.,1994a).

Like any other annexins, annexin A1 goes through posttranslation modifications.

AnnexinA1getsphosphorylatedonTyr21byrecombinantpp60csrc,recombinantpp50v ablandEpidermalGrowthFactorreceptor/kinase(EGFR)invitro(Varticovskietal.,1988).

ThetyrosinephosphorylationofannexinA1greatlyinfluencesitslipidbindingproperties.

Phosphorylation of annexin A1 by the EGFR reduced Ca2+ requirements of phospholipid vesiclebindingandproteolyticdegradation(Rothhut,1997).Studiesalsosuggestedthattyr

21 phosphorylation is also important for EGF stimulated internal vesicle formation. The primary site of phosphorylation by protein kinase C was also near theamino terminus at

Ser27whereadenosinecyclic3,5phosphatedependentproteinkinasewasphosphorylated annexinA1onthecarboxyterminalhalfofthemoleculeatThr216(Varticovskietal.,1988).

Phosphorylationonser27residueincreasescalciumrequirementofannexinA1topromote aggregation of chromaffin granules (Rothhut, 1997). In addition to promoting fusion of liposomes,annexinA1andatruncatedformofannexinA1lackingnineresiduesfromN terminus were found to promote fusion of liposomes with plasma membrane vesicles isolatedfromneutrophils(Mieleetal.,1988).

Annexin A1 has been found to interact with Filamentous actin (Factin) in vitro; immunogoldelectron microscopy indicates thatannexin A1 is associated with phagosome membrane.TheactinbindingobservedfortheannexinA1invitrocouldrelatetothefinding thatproteincolocalisedwithFactintoEGFinducedmembranerufflesandtophagosomal membranes(Kusumawatietal.,2000).AnnexinA1mayalsoinfluenceactinpolymerisation viaadirectinteractionwithprofiling.Althoughthishasonlybeendemonstratedinvitro,the interactionwasreportedtomodulateboththeabilityofannexinA1tobindphospholipids and theeffect of profiling on actin polymerisation (AlvarezMartinezet al.,1996; Alvarez

Martinezetal.,1997). Introduction 21

Atranslocationmanyannexins,includingannexinA1,tothephagosomemembraneof maturingphagosomeshasbeenobservedinanumberofphagocyticcellsandhasbeentaken asanindicationfortheinvolvementoftheproteinsinphagocytosis(Diakonovaetal.,1997;

Gerke and Moss, 1997). In differentiated human monocytes, phagocytic uptake of Brucella bacteria (opsonised or nonopsonised) is accompanied by recruitment of annexin A1 structurestothesiteofentry(Kusumawatietal.,2000).RapidtranslocationofannexinA1 wasobservedduringthephagocytosisofnonpathogenicorkilledbacteria(Harricaneetal.,

1996;Kaufmanetal.,1996).AnnexinA1knockoutalsoresultedinimpairedphagocytosisof nonopsonised zymosan (Yona et al., 2005). Knockout of annexin A1 also altered the cytokines production and phagocytic receptor expression in mouse macrophages (Yang et al.,2006;Yangetal.,2009;Yonaetal.,2004;Yonaetal.,2006).

AnnexinA1makesupfor24%ofthetotalcytosolicproteinandisfoundingelatinase granules in neutrophils. Annexin A1 is secreted on cellular adhesion to the endothelium whenthesegelatinasegranulesarereleased.Onrelease,annexinA1isthoughttobindtoits receptor, which brings about cell detachment and inhibits transmigration of leukocytes thereby blocking the inflammatory response (Lim et al., 1998). Formyl peptide receptor

(FPR)orFPRlikereceptor1(FPRL1)haverecentlybeenshowntobindtheNterminusof

ANXA1. Introduction 22

2.5. Aimofthestudy In last decade several proteomic studies have been set out to understand the protein composition of phagosomes (Desjardins et al., 1994a; Griffiths and Mayorga, 2007;

Martinez-Solano et al., 2006; Morrissette et al., 1999; Slomianny et al., 2006) Most of these studies focused on the composition of the proteins rather than their individual functions. Like many other ABPs, annexins are also present on the phagosomes but their role in the phagosome biogenesis is still poorly understood.

Therefore the specific aims of the current study were:

1. To indentify the protein(s) important for phagosome and F-actin binding during late

stages of phagocytosis using the conventional and advanced biochemical and

proteomic techniques.

2. To check the importance of the identified protein during different stages of

phagocytosis in vivo.

3. To evaluate the importance of the protein in different receptor mediated phagocytosis.

Materialsandmethods 23

3. Materials and Methods

Materialsandmethods 24

3.1. CellBiology

3.1.1. Cultivationofcells

3.1.1.1. Reagentsandinstruments

o J774A.1 mouse macrophagelike cell line (German Resource Centre of Biological Material,DSMZ,Germany)

o Raw264.7mousemacrophage(ATCC:TIB7,Manassas,VA,USA)

o PhosphateBufferedSaline(PBS):137mMNaCl+2.7mMKCl+10mMNa2HPO4 2H2O+1.76mMKH2PO4,pH7.4(SigmaAldrich,Germany)

o FetalBovineSerum(FBS),(BiochromKG,Germany)

o Complete cell culture medium: DMEM (4500 mg/l glucose) + 1% 10 000 U/10 000 g/mlPenicillin/Streptomycin + 1%200mMLGlutamine+1%nonessentialamino acids(allfromInvitrogen,Germany)

o TrypsinEDTA(Invitrogen,Germany)

o Dimethylsulfoxide(DMSO)(SigmaAldrich,Germany)

o Sterilecell culture material, like pipettes, dishes and flasks, cell scraper, centrifuge tubes(TPP,Switzerland)

o Cryotubes, LabTek cell culture chambers (Nalge, USA); sterile filters (Sarstedt,Germany);syringes,cannula(Braun,Germany)

o FlowHood(BDK,Germany);CentrifugeZK380(Hermle,Germany);IncubatorBB16 (Heraeus,Germany)adjustedto37°C,5%CO2

3.1.1.2. Procedure

J774.A1 and RAW 264.7 cells were maintained on 150 mm cell culture plates.

ConfluentcelllayersweresplitusingTrypsinEDTA.ForLBPisolationJ774.A1cellswere grown on 245 × 245 mm plates. For phagocytic experiments cells were grown on 24 or 6 wellsplates.Tomakeliquidnitrogenstocks,cellswereharvestedusingTrypsinEDTA.Cells pelletwasresuspendedFBScontaining10%DMSOandkeptat200Cfor2hoursfollowedby

800C overnight. Nextday cells were stored in liquid nitrogen. To avoid the influence of changes in the internalisation characteristics of this cell line, J774.A1 and RAW 264.7 macrophages were only used up to passage 25. New passages were obtained from that liquidnitrogenstocks. Materialsandmethods 25

3.1.2. IsolationofLatexBeadPhagosomes(LBP)andcytosol

3.1.2.1. Reagentsandinstruments

o Internalisation medium: DMEM (Invitrogen, Germany) +10 mMHEPESKOH, pH 7.5(SigmaAldrich,USA)

o Differentligandcoupledlatexbeads(refer3.2)

o Proteaseinhibitor(PI)CocktailSetIIIcontaining100mMAEBSF,0.08mMAprotinin, 5mMBestatin,1.5mME64proteaseinhibitor,2mMLeupeptinand1mMPepstatin A(Calbiochem,Merck,Germany)

o Homogenisationbuffer:250mM(=8.6%)sucrose,3mMimidazole,1mMDTT,1mM PMSF,pH7.4(allfromSigmaAldrich,USA),1:1000PI

o Solutionsfordiscontinuoussucrosegradientcentrifugation:Homogenisationbuffer containing62%,55%,37%and25%sucrose,respectively

o Saltstrippingbuffer:2.6MNaCl,48%sucrose,3mMimidazole,pH7.4,1mMDTT, 1mMPMSF(allfromSigmaAldrich,USA),1:1000PI

o Syringes,needles(Braun,Germany)

o CellculturecentrifugeZK380(Hermle,Germany)

o Ultracentrifuge, UltraClear centrifuge tubes of different sizes, SW60Ti rotor, TLA 120.1rotor(BeckmanCoulter,USA)

o Centrifugetubes,SorvallTH641rotor(ThermoFisherScientific,USA)

3.1.2.2. Procedure

Isolation of LBP was carried out as described previously (Al Haddad et al., 2001;

Desjardinsetal.,1994a)withslightmodifications.J774.A1macrophagesweregrownincell culturedishesuntiltheyreachedaround80%confluency.Latexbeadsuspensionsadjusted to 1% solids were vortexed, sonicated and washed three times in PBS to remove sodium azide.Stocksolutionoflatexbeadswasaddedtoprewarmedinternalisationmediumata ratioof1:50.CellswerewashedwithPBSandinternalisationmediumwasadded.Uptakeof latex beads (‘pulse’ time) was allowed for 1 hour at 370C under continuous wiping to increase internalisation efficiency. Noninternalised beads were removed by intensive washingofthecellswithPBSfollowedbyanotherhourofincubationincellculturemedium at 370C and 5% CO2 (‘chase’ time). Subsequently, the medium was removed, cells were washedwithPBSandharvestedbydetachingthemfromthedishwithacellscraperinice coldPBS.Cellswerecollectedin50mltubesandcentrifugedwith800rpmfor7minutesat

40C.PelletswereresuspendedinicecoldPBSandcentrifugedwith1500rpmfor5minutes Materialsandmethods 26 at 40C. Cell pellets were resuspended in icecold Homogenisation buffer and centrifuged with2500rpmfor5minutesat40C.Thefinalvolumeofthecellpelletwasmixedwiththe sameamountoficecoldHomogenisationbufferandlysedwitha1mlsyringefittedtoa22 gauge needle on ice using 1520 strokes. Homogenisation success and cell breakage was monitored by phase contrast microscopy after adding trypan blue. After centrifugation at

800×gfor15minutesat40Ctoremovenucleiandintactcells,thepostnuclearsupernatant containing phagosomes was collected and gently mixed with the same amount of

Homogenisation buffer containing 62% sucrose. Isolation of LBP was accomplished in a sucrosegradient,whichwaspreparedbyoverlaying34mlofthePNS/62%sucrosemix with5mlHomogenisationbuffercontaining25%sucroseand2mlHomogenisationbuffer containing8.6%sucroseontopinultracentrifugationtubes.Centrifugationwascarriedout inaBeckmanultracentrifugeandaSorvallTH641rotorat100.000×gfor60minutesat40C.

AfterwardsenrichedandpurifiedLBPformedavisiblebandbetweenthe8.6%andthe25% sucroseinterphase,whichwascollectedbypenetratingthetubewallwitha22gaugeneedle.

AfterdeterminationoftheconcentrationbymeasuringOD600nm,isolatedLBPwerealiquoted, frozeninliquidnitrogenandstoredat800C.

Formostpreparations,additionalsaltstrippingwasappliedtoisolatedLBPtoremove membraneboundproteins.IsolatedLBPweremixedwiththesameamountofsaltstripping bufferandincubatedonaverticaltuberotatorfor40minutesat40C.SaltstrippedLBPwere adjusted to 40% sucrose including 1.3 M NaCl and purified by discontinuous sucrose gradient centrifugation. 1 ml of the 40% sucrose suspension was overlaid with 1.5 ml

Homogenisation buffer containing 25% sucrose and 0.5 ml Homogenisation buffer containing8.6%sucrose.CentrifugationwascarriedoutinaBeckmanultracentrifugeand

SW60Tirotorat45.000×gfor60minutesat40C.Afterwards,concentrationofpurifiedLBP wasdeterminedandsuspensionwasaliquoted,snapfrozeninliquidnitrogenandstoredat

800C.

3.1.3. Isolationofmacrophagecytosol

3.1.3.1. Reagentandinstruments

o HBKSbuffer,:25mMHEPES,0.1mMEDTA,2mMEGTA,2mMMgCl2,50mMKCl, 10% sucrose, 2 mM DTT, 1 mM PMSF (all from SigmaAldrich, USA), 1:1000 PI adjustedtopH7.4

o OptimaTMTLultracentrifugeandTLA120.1rotor(BeckmanCoulter,USA) Materialsandmethods 27

3.1.3.2. Procedure

J774.A1macrophagesweregrownincellculturedishesuntiltheyreachedaround80% confluency.Culturemediumwasremoved;cellswerewashedwithPBSandharvestedby detachingthemfromthedishwithacellscraperinicecoldPBS.Cellswerecollectedin50 mltubesandcentrifugedwith800rpmfor7minutesat4°C.Pelletswereresuspendedin icecold PBS and centrifuged with 1500 rpm for 5 minutes at 4 °C. Cell pellets were resuspendedinicecoldHBKSandcentrifugedwith2500rpmfor5minutesat4°C.Thefinal volumeofthecellpelletwasmixedwithicecoldHBKSataratioof2.5:1andlysedonice with a 5 ml syringe fitted to a 24gauge needle using 15 strokes followed by a 25gauge needleusingaround10strokes.Homogenisationsuccessandcellbreakagewasmonitored byphasecontrastmicroscopyafteraddingtrypanblue.Afteracentrifugationstepat9100×g for 15 minutes at 40C using a Beckman TLA 120.1 rotor, supernatant was collected, transferred to a new tube and centrifuged at 145000×g for 60 minutes at 40C. Protein concentration was determined according to (Bradford, 1976). Cytosol aliquots were snap frozen in liquid nitrogen and stored at 80 °C. Macrophage cytosol also prepared with trypsinisationmethod

3.1.4. Radiolabellingoftotalcellprotein

3.1.4.1. Reagentsandinstruments

o CysteineandmethioninefreeDMEM

o 35S(GEbioscienceformallyAmersham,Germany)

o Cysteineandmethionine(bothfromsigma)

3.1.4.2. Procedure

J774.A1 cells were grown on 250mm culture plates overnight as mentioned before

(refer3.1.1). On next day cells were washed with prewarmed PBS and incubated with cysteine and methionine free DMEM for 12 hours to deplete any intracellular pool of cysteineandmethionine.Thereaftercellswereincubatedwith 35S, 100 g/ml cysteine and methionine, in cysteine and methionine free medium, containing 1% FCS,

Penicillin/Streptomycin+nonessentialaminoacidsfor12hours.Afterincubationcellswere washedwithicecoldPBStoremovefree 35S.Cellswereharvestedandcytosolisolatedas mentionedbefore(refer3.1.3). Materialsandmethods 28

3.1.5. Fixationandlabellingofcells

3.1.5.1. Reagentsandinstruments

o 4%paraformaldehyde,4%sucroseinPBS,pH7.4(SigmaAldrich,Germany)

o 50mMNH4Cl(Merck,Germany)inPBS

o 0.2%TritonX100(Roth,Germany)inPBS

o 0.1%Saponin(Cat.#47036,Fluka,Germany)inPBS

o 1%Gelatin‘gold’(SigmaAldrich,USA)inPBS

o 0.2%Gelatin‘gold’inPBS

o ProLonggoldmountingmedium(Invitrogen,Germany)

o Glassslidesandcoverslips(MenzelGmbH,Germany)

o RhodaminephalloidinandFITCphalloidin(SigmaAldrich,Germany)

3.1.5.2. Procedure

Cells were fixed in PBS containing 4% paraformaldehyde and 4% sucrose for 20 minutesatRTfollowedbyquenchinginPBScontaining50mMNH4Clfor10minutesatRT.

Permeabilisation,whenrequired,wasachievedbytreatmentwith0.2%TritonX100inPBS for 5 minutes at RT. For annexin A1 and annexin A2 staining cell permeabilisation was achieved with 0.1% saponin in PBS. After blocking of unspecific binding sites with PBS containing 1% white gelatin ‘gold’ for 60 minutes, samples were incubated with primary antibody (Table 2) diluted in blocking solution for 60 minutes at RT, followed by three washeswithPBScontaining0.2%gelatin.Secondaryantibodies(Table2)wereappliedfor45 minutesatRT,againfollowedbythreewasheswithPBS.Cellswerestainedwithmarkers forFactinwithrhodaminephalloidinorFITCphalloidinfor20minutesatRT.Coverslips werewashedinPBScontaining0.2%gelatin,PBSalone,inaquadestandweremountedon glassslidesusingProLonggoldmountingmedium(Invitrogen,Germany).

3.1.6. Macrophagetransfection

3.1.6.1. Reagentsandinstruments

o Electroporation buffer: 140 mM Na2PO4, 5 mM KCl, 10 mM MgCl2, pH 7.4, filter sterilised

o 0.2cmelectroporationcuvettes(Lonza/Switzerland)

o GenePulserII(BioRad,Germany): Materialsandmethods 29

3.1.6.2. Procedure

Electroporation

After trypsinisation cells were washed with prewarmed PBS. 2 × 106cellswere resuspended in 100 l Electroporation buffer. For nucleofection, between 0.1 1 nmol of siRNA/24 g plasmid DNA were added and incubated for at least 5 minutes at RT.

Subsequently macrophages were transferred to 0.2 cm electroporation cuvettes with subjectedtotwoelectricshocksusingGenePulserII.Thefirstelectricshockwasgivenwith highvoltageandlowcapacitance(1000V,capacitance10F),followedbysecondelectric shock with low voltage and high capacitance (100 V, maximum capacitance). After electroporation500l of complete growth medium was addedquicklyand the cellswere directlyseededinto24wellplates.OnnextdayexpressionandsiRNAknockdownwas checkwithappropriatemethods.

Lipofection:

AnnexinA1siRNA(sc29682)wastransfectedtoRAW264.7macrophages(1015,000 cells) using siRNA transfection reagent (sc29528, Santa Cruz, USA) as per the manufacturer’sinstructions.After72hoursoftransfectioncellswerecheckedforthegene silencingandusedfortheexperiments.

Lentivirus:

Annexin A1 shRNA lentiviral particles (sc29682V) was transfected to RAW 264.7 macrophages (1015,000 cells) as per the manufacturer’s instructions. After 72 hours of transfectioncellsweresubjectedtoantibioticselection.After24hoursincubationinpresence ofantibiotic,cellsweresplitandgrownon24wellplatesforfurtherexperiment.Forstably transfectedcellsselection,cellsweremaintainedunderconstantantibioticpressureatleast for a week before freezing. During every experiment, annexin A1 knockdown was monitoredbywesternblottinganalysis.

3.2. Preparationofligandscoupledlatexbeads

ReagentsandInstruments

Latexbeads

o Bluefluorescent carboxylatemodified microspheres containing 2% solids of diameter1m(Cat.F8815;Invitrogen,Germany) Materialsandmethods 30

o Nonfluorescent Polybead® carboxylatemodified microspheres containing 2.68% solidsofdiameter3m(Cat.#09850;Polysciences,Inc.,USA)

Ligands

o Fishskingelatin(FSG;Cat.G7765;SigmaAldrich,USA)

o FcfragmentofmouseIgG(Cat.31205;PierceBiotechnology,USA)

o MannanfromSaccharomycescerevisiae(Man;Cat.M7504;SigmaAldrich,USA)

Reagents

o MES buffer (Cat. M8250; SigmaAldrich): 500 mM stock solution in Aqua dest.; diluted100mMand50mMsolutionswereadjustedtopH6.7

o Stopbuffer:1%TritonX100in10mMTrizmabase(SigmaAldrich,USA);adjustedto pH9.4

o ModifiedPhosphatebuffer:50mMNa3PO4.12H2O+0.9%NaCl(bothfromSigma Aldrich,USA);adjustedtopH7.4

o Activator of surface carboxyl groups: N(3Dimethylaminopropyl)N ethylcarbodiimide hydrochloride (EDAC; Cat. E1769; SigmaAldrich, USA); 10 mg/mlstocksolutioninAquadest.,preparedfreshly

o Crosslinker:ConcanavalinAfromCanavaliaensiformis(ConA;Cat.C2010;Sigma Aldrich,USA)

o Bovineserumalbumin(BSA)andsodiumazide(bothfromSigmaAldrich,USA)

o Sodiumazide(SigmaAldrich,Germany)

3.2.1. Couplingoflatexbeadstofishskingelatin(gelatinbeads)

Bluefluorescentlatexbeadswerevortexedandsonicatedinanultrasonicwaterbath for2minutes.5mlofbeadssuspensionwasmixedwith10mgFSGdilutedin50mMMES and filled to a final volume of 10 ml with 50 mM MES. The suspension was mixed on a verticaltuberotatorfor15minutesatroomtemperature(RT).Subsequently,0.4mlEDAC stocksolutionwasaddedtobeadsuspension,mixedbyvortexingandadjustedtopH6.5 usingabout1015l0.8NNaOH(checkedwithpHindicatorsticks).Thesuspensionwas mixedonaverticaltuberotatorfor2hoursatRT.Toquenchthereaction,glycinepowder was added to give a final concentration of 100 mM. The suspension was incubated for another30minutesontheverticaltuberotatoratRT.Coupledlatexbeadsweretransferred toconicalEppisandcentrifugedwith6.000×gfor5minutesat40Ctoseparateparticlesfrom unbound protein. Pellets were resuspended in PBS and wash was repeated twice. Pellets Materialsandmethods 31 were resuspended and combined in PBS and suspension was adjusted to 1% solids by measuringOD600nmusingaspectrophotometer.

3.2.2. CouplingoflatexbeadstoIgG(Fcfragment,Fcbeads)

Bluefluorescentlatexbeadswerevortexedandsonicatedinanultrasonicwaterbath for2minutes.4mlofbeadssuspensionwasmixedwith0.5mgFcfragmentofmouseIgG.

Suspensionwasfilledtoafinalvolumeof10mlwith100mMMESandmixedonavertical tuberotatorfor15minutesatRT.Subsequently,0.14mlEDACstocksolutionwasaddedto bead suspension and mixed on a vertical tube rotator for 1 hour at RT. Another 0.14 ml

EDACwasaddedandmixedfor1hour.Subsequently,2mlstopbufferwasaddedtothe suspension, which was centrifuged in conical Eppis with 6.000 × g for 5 minutes at RT.

Pelletswereresuspendedinstopbufferandcentrifugedagainfollowedbythreewashesin

PBS. Coupled latex beads were resuspended and combined in PBS containing 0.03% FSG andsuspensionwasadjustedto1%solidsbymeasuringOD600nmusingaspectrophotometer.

3.2.3. Couplingoflatexbeadstomannan(manbeads)

Bluefluorescentlatexbeadswerevortexedandsonicatedinanultrasonicwaterbath for2minutes5mlofbeadsuspensionweremixedwith0.5mgConAandfilledtoafinal volumeof10mlwith100mMMES.Suspensionwasmixedonaverticaltuberotatorfor15 minutesatRT.Subsequently,0.14mlEDACstocksolutionwasaddedtobeadsuspension andmixedonaverticaltuberotatorfor1houratRT.Another0.14mlEDACwereadded and mixed for 1 hour. Subsequently, suspension was centrifuged in conical Eppis with

6.000×g for 5 minutes at 40C, pellets were resuspended in PBS and centrifuged again followedbyanothertwowashesinPBS.Pelletswereresuspendedin7.5mlPBSand2mg mannanwasadded.Suspensionwasmixedonaverticaltuberotatorfor15minutesatRT.

Afterwards;2mlstopbufferwasaddedtothesuspension,whichwascentrifugedinconical

Eppis again. Pellets were resuspended in stop buffer and centrifuged again followed by another spin down in stop buffer. Coupled latex beads were washed three times in PBS, resuspended in PBS containing 0.03% FSG and suspension was adjusted to 1% solids by measuringOD600nmusingaspectrophotometer.Allcoupled1%latexbeadsuspensionswere storedat40Cafteradding3mMsodiumazide. Materialsandmethods 32

3.3. Microscopy

Actinbinding assays were analysed by conventional epifluorescence microscopy as described previously (AlHaddad et al. 2001). Fluorescence images were recorded by a chilled SenSys CCD camera system (Photometrics Inc., USA) and a Uniblitz D122 shutter

(VincentAssociates,USA).Forselectiveexcitationandspecificdetectionofemittedradiation of used fluorescent dyes, different filter sets were available (Nikon, Japan). Images were againtransferredtoaMacintoshcomputerandanalysedbyIPLabSpectrumsoftware.Live cell imaging at 37 °C and analysis of fusion assays as well as uptake rates of fixed macrophageswereperformedbyconfocalfluorescencemicroscopyusingaTCSSP2laser scanning microscope (Leica, Germany) equipped with a 405 nm diode laser, an argon kryptonlaserwithlinesat458,476,488,514nmandheliumneonlaserswith543,594and

633nmlines.Thesystemalsocontainedacoustoopticaltunablefilters(AOTF),anacousto optical beam splitter (AOBS) and four prism spectrophotometer detectors that permitted simultaneousexcitationanddetectionofmultiplefluorochromes.Threedimensionalscans of usually 0.2 or 0.3 um zstacks were recorded and analysed by the help of the cross sectioning option of Leica confocal software. Staining of cellular Factin was used to differentiatebetweenattachedandfullyinternalisedlatexbead.

3.4. ProteinChemistry

3.4.1. Gelfiltration

3.4.1.1. ReagentandInstruments

o HB:25mMHEPES,pH7.4,2mM,MgCl2,0.1mMEGTA,0.1mMEDTA,2mMDTT

o BiosilectSEC4005column(BioRad,Germany)

o BioRadBiologicworkstation

o Aminoblackreagent:0.1%AminoBlackin50%methanolpreparedinaquadest

o DistainingSolution:50%methanoland10%AceticAcidpreparedinaquadest.

o ProteinStandard:2mg/mlBSAsolution(ThermoScientific,Germany)

3.4.1.2. Procedure

The cytosol wasfractionated by size exclusion chromatography with the use of Bio

Silect SEC 4005 column on a BioRad Biologic workstation. Usually 710 mg (~250 l) cytosolic proteins (3.1.3) were loaded on column preequilibrated with HB and run at 0.5 ml/minuteflowrate.Columnwaswashedwith3columnvolumeofHBbufferand250l Materialsandmethods 33 fractions were collected. To check the protein content in each collected fractions, 2 l of fractionwasblottedonnitrocellulosemembraneandstainedwithaminoblackreagentfor2 minutes followed by the 23 times was with distaining solution. Stained nitrocellulose membranewasscannedandintensityofeachspotwascalculated.Spotintensityofeachspot was compared with spot intensity of standards (at least 5 serial dilutions were prepared).

Obtained fraction was flash frizzed in liquid nitrogen and stored at 800C for long term storage. Each protein containing fraction was checked for actin binding activity (3.5.1).

Fractions showing the highest actin binding activity were pooled together active fraction, andusedforthefurtherfractionation.Pooledfractionreferredasactivefraction.

3.4.2. Ammoniumprecipitation

3.4.2.1. ReagentandInstruments

o WatersaturatedAmmoniumSulphate(nearly4.5M)

o HB(refer3.4.1)

3.4.2.2. Procedure

Tofurtherfractionationofproteins,50lactivefraction(refer3.4.1)wastransferredin

1.5 microcentrifuge tubes. To achieve protein precipitation at 30% ammonium sulphate, saturatedammoniumsulphatesolutionwasaddeddropwisetoactivefraction.Mixturewas kept at 40C with constant stirring for 45 minutes. Precipitated proteins were collected by centrifugationat5000×gfor15minat40C.Supernatantwascarefullytransferredtoanother microcentrifuge tube. To achieve protein precipitation at 50% ammonium sulphate, saturated ammonium sulphate solution was added to the supernatant of 30% ammonium sulphate as mentioned before. Amount to be added was calculated as mentioned in supplementary table 1. Similarly, protein was precipitated at 80% ammonium sulphate concentration. All pellets were resuspended in 50 l in HB and were checked for actin bindingactivity(3.5.1).

3.4.3. Cationchromatography

3.4.3.1. Reagentsandinstruments

o Phosphocelluloseresin(P11,MilliporeGermany)

o 4MNaCl

o HB(refer3.4.1) Materialsandmethods 34

3.4.3.2. Procedure

Forproteinfractionation,50100lofactivefraction(refer3.4.1)wasincubatedwith10 l P11, pre-equilibrated with HB for 20 minutes at 40C. After two washes with HB to remove unbound proteins, bound proteins were eluted with 50-100 l of 1M NaCl in HB. Eluted fractions were dialysed against HB before using in actin binding assay

3.4.4. IsolationofGactinfromrabbitmuscle

3.4.4.1. Reagentsandinstruments

o Rabbitmuscleacetonepowder(M0637;SigmaAldrich,USA)

o Cheesecloth; Tefloncoated homogeniser; semipermeable dialysis tubing, poresize diameter:5nm,MWcutoff:14kDa(allfromRoth,Germany)

o Gbuffer, 5 mM Trizma base, 0.2 mM CaCl2, 0.2 mM NaATP and 0.1% 2 mercaptoethanolpH8.0(allfromSigmaAldrich,USA)

o Ultracentrifuge,Ti50rotor(BeckmanCoulter,USA)

o SorvallT647.5rotor(ThermoFisherScientific,USA)

3.4.4.2. Procedure

Gactin was isolated by the method of Spudich & Watt (1971) with slight modifications. 5 g ofrabbit muscle acetone powder was washed in aqua dest. twicefor 5 minutesat40C.Solutionswerepassedthroughseverallayersofsterilecheesecloth.Washed powderwasincubatedin100mlicecoldGbufferundercontinuousstirring(500rpm)for40 minutes at 40C. Solution was again passed through several layers of sterile cheesecloth.

Filtrate was centrifuged in a T 647.5 rotor with 30.000 rpm for 15 minutes at 40C and supernatantwastransferredtoabeaker.Whilestirringslowlyat40C,solutionwasbrought to50mMKCl,2mMMgCl2and1mMNaATP.Thebeakerwassealedwithparafilmand incubated without stirring for 2 hours at 40C. The viscosity of the solution increased significantlyduringincubation.Whilegentlestirring,KClconcentrationwasincreasedto0.6

MbyaddingcrystallineKCltoremovetropomyosincomplexes.Solutionwasgentlystirred for60minutesat40CfollowedbycentrifugationusingtheT647.5rotorwith40.000rpmfor2 hoursat40C.Thesupernatantwasdiscardedandpelletwasresuspendedin7.5mlGbuffer.

The solution was homogenised using a Tefloncoated rod homogeniser and transferred to dialysistubing.Whilegentlestirring,theactinsolutionwasdialysedagainst1lGbufferfor

36hoursat40C.Duringdialysis,Gbufferwasreplacedcompletelyafterevery8hours.After firstdialysiscycle,solutionwascentrifugedagainusingtheTi50rotorwith40.000rpmfor2 Materialsandmethods 35 hoursat40C.SupernatantcontainingGactinwaspartlyaliquotedandfrozeninliquidN2 while pellet was discarded. 6 ml of supernatant were transferred to a new tube and salt concentrationswereincreasedagain(50mMKCl,2mMMgCl2,1mMNaATP).Thetube wassealedandincubatedwithoutstirringfor48hoursat40C.Thesolutionwascentrifuged againusingtheTi50rotorwith40.000rpmfor2hoursat40C.Thesupernatantwasdiscarded and pellet was resuspended in 4 ml Gbuffer. The solution was homogenised again and transferredtodialysistubing.Whilegentlestirring,theactinsolutionwasdialysedagainst1 lGbufferfor36hoursat40C.Duringdialysis,Gbufferwasreplacedcompletelyafterevery

8hours.Afterseconddialysiscycle,solutionwascentrifugedagainusingtheTi50rotorwith

40.000 rpm for 2 hours at 40C. Pellet and supernatant containing purified Gactin were aliquoted,frozeninliquidnitrogenandstoredat800C.

3.4.5. AnnexinA1purification

3.4.5.1. Reagentsandinstruments

o BufferA: 50mMImidazoleHCl,pH7.4,300mMNaCl,2mMMgCl2,2mMEGTA

o BufferB: 10mM ImidazoleHCl, pH 7.4, 10mM NaCl, 1mM EGTA, and 1mM

NaN3

o BufferC: 25mMTrisHCl,pH7.5,150mMNaCl

o BufferD: 10mMTrisHCl,pH7.5,1mMDTT,0.5mMEGTA,and0.25mMPMSF (optional)

o E.coliBL21(DE3)expressionhost

o 1MIPTG

o 50mg/mlAmpicillin

o DE52column

o Chloroformmethanolextractofbovinebrain(brainextract,typeVII;SigmaB3635)

3.4.5.2. Procedure

Heat competent E.coli BL21 (DE3) was transformed with pKK AnxI (Seemann et al.,

1996). Transformed bacteria were grown at 370C in LB medium containing 150 g/ml ampicillin.Bacterialcellswereinducedwith0.4mMIPTGatlatelogphase(0.81.0OD600).

Cellsweregrownforanother4hoursandharvestthecellsbycentrifugationat6000×gfor

20minutes.Cellpelletfrom200mlwasresuspendedin10mlBufferAplus1mMDTT,1mM

PMSF, 0.5mM Benzamidine and 1:500 protease inhibitors cocktail. Cells were lysed by Materialsandmethods 36 repeated freeze and thaw cycles followed by short sonication to shear DNA. Lysed cells were centrifuged at 100,000 × g for 30 min at 40C. Supernatant dialysed against Buffer B contain 1mM PMSF. Dialysed extract applied to a DE52 column. The flow through was collected and 1:500 protease inhibitor cocktail, 1mM PMSF, 5mM CaCl2 and 1mg/ml chloroformmethanol extract of bovine brain were added in flow through. Mixture was

Incubatefor20minutesatRTfollowedbycentrifugationat100,000×gfor30minutes.Pellet containingliposomeswashedwithbufferCcontaining1mMDTT,and0.25mMPMSF,1:500 proteaseinhibitorcocktailand2mMCaCl2.AnnexinA1waselutedbyincubatingliposomes with buffer C containing 10mM EGTA, 1mM DTT, and 0.25mM PMSF. Finally eluted annexinA1wasdialysedagainsttheHBSandflashfreezeinsmallaliquotsandstoredat

800C.

3.4.6. SDSPAGE

o SDSPAGEreagentswerepreparedasmentionedin(SambrookandRussell,2006)all reagentswerebroughtfromSigmaAldrich,USA

o Molecularweightmarker(BioRad,USA)

o Thermostat 5320 (Eppendorf, Germany), Mighty Small II electrophoresis device (Hoefer,Inc.,USA),PowerPac200(BioRad,USA)

o MiniProteantankblottingdevice(BioRad,USA)

3.4.6.1. Procedure

CellswerewashedwithPBStwiceand1xSDSsamplebufferwasaddedtolysedcells.

Isolatedphagosomes,cytosolandactinfractionswereincubatedwith1xSDSsamplebuffer directly. Subsequently, all SDS samples were boiled at 900C for 5 minutes to denature proteins. If necessary, DNA was destroyed by a short ultrasonic treatment on ice. The proteins were separated by vertical gel electrophoresis using 10% or 12% polyacrylamide gels.Thesamplesweremigratedin1xrunningbufferinanelectrophoresisdevicepergelset toconstant10mAforaround15minutesfollowedbyarunatconstant2030mAfor70100 minutesAfterseparation,proteinswerestainedusingCoomassieorsilverstainingorwere transferred onto nitrocellulose membranes for further immunoblotting (3.4.7). For

Coomassie staining, gels were incubated with Coomassie R250 staining solution for 45 minutes under vigorous shaking. Afterwards the stained gelswere washed and distained with distaining solution for 45 minutes. Silver staining was carried out following the Materialsandmethods 37 manufacturer’sinstructions.Imagesofstainedgelsweretakenwithaconventionalflatbed scanner.

3.4.7. Immunoblotting

3.4.7.1. Reagentsandinstruments

o Blotbuffer:25mMTrizmabase,200mMglycine,20%methanol

o 10XTBS:10mMTrizmabase,149mMNaClpH7.4(Merck,Germany)

o 1XTTBS:TBScontaining0.1%Tween20(Merck,Germany)

o Blockingbuffer:TTBScontaining5%nonfatdrymilk(NestléFoodCo.,USA)

o PonceauSstainingsolution:0.2%PonceauS,3%TCA(Serva,Germany)

o Strippingbuffer:1XTBS,

o Hybond nitrocellulose membranes, Hyperfilm and ECL western blot detection reagent(Amersham,GEHealthcare,UK)

3.4.7.2. Procedure

Following separation in acrylamide gels, protein mixtures were transferred to nitrocellulose (NC) membranes to analyse them for the presence of specific proteins applying antibodies, a method known as immuno or western blotting. NC membranes, filter papers, sandwich pads and migrated acrylamide gels containing proteins were equilibrated in blot buffer for 20 minutes and assembled in cassettes following the manufacturer’sinstructions.Thesamplesweretransferredontonitrocellulosemembranes usingatankblottingdeviceinblotbufferatconstant30Vovernightor75Vfor90minutes.

SuccessoftransferwascheckedbyproteinstainingusingPonceauSsolutionfor3minutes

Afterwards the membranes were rinsed with aqua dest. and images were taken using a conventionalflatbedscanner.PonceauSstainingwasremovedbywashingwith1XTTBS before proceeding further. Before labelling, the membranes were incubated in blocking buffercontaining5%drymilkor,5%BSAtoblockunspecificbindingsites.ForannexinA1, blockingwasdoneusing5%drymilk+1%FCS.Thereafterdilutionsofprimaryantibodies werepreparedinblockingbufferandwereappliedfor1houratRTorovernightat40C.

Membranes were washed three times with TTBS for 10 minutes followed by incubation with horseradish peroxidase (HRP)conjugated secondary antibodies for 4560 minutes.AfteranotherthreewashesinTTBSfor10minutesandafinalrinseinTBS,theNC membraneswereexposedtoECLsolutionfor5minutesatroomtemperature.Subsequently, Materialsandmethods 38 chemiluminescent signals were visualised onto films and scanned for quantification. If necessary,membranewasstrippedusingstrippingbufferandusedforimmunoblottingof secondantibody.

Protein signals were quantified using ImageJ (NCBI freeware, USA) to determine quantitydifferencesbetweenthesamples.ForsiRNA/shRNAknockdown,annexinA1and tubulinratiowasusedforanalysis.

3.4.8. LiquidChromatographyandtandemMassSpectroscopy(LCMS/MS)

Proteinelutedaftercationchromatographywasprecipitatedat80%finalammonium sulphateconcentration.The solutionswere centrifuged with14.000rpm for 60 minutes at

40C.Thepelletwasdissolved,reducedwithDTTandalkylatedwithiodoacetamidebefore beingdigestedwith1gofPromegamodifiedtrypsinfor24hoursatroomtemperature.A second1goftrypsinwasaddedanddigestionwasallowedtoproceedfor24morehours.

The sample was acidified to 5% acetic acid and then desalted on a C18 column.

Approximately 25% of the digest was introduced into the mass spectrometer for analysis using two run conditions. The complete procedure for LCMS/MS was performed by the

Biomolecular Research Facility at the Virginia University in Charlottesville, USA by the groupof Dr. Nicholas Sherman. The LCMS systemconsisted ofa Finnigan LCQ ion trap mass spectrometer system (Thermo Fisher Scientific, Inc., USA) with a Protana nanospray ion source interfaced to a selfpacked 8 cm × 75 m id Phenomenex Jupiter 10 m C18 reversedphase capillary column. The extracts (0.510 l volumes) were injected and the peptideswereelutedfromthecolumnbyanacetonitrile/0.1Maceticacidgradientataflow rateof0.25l/minutes.Thenanosprayionsourcewasoperatedat2.8kV.Thedigestwas analysedusingthedoubleplaycapabilityoftheinstrumentacquiringfullscanmassspectra to determine peptide molecular weights and product ion spectra to determine amino acid sequence in sequential scans. This mode of analysis produces approximately 3000 CAD spectraofionsranginginabundanceoverseveralordersofmagnitude.Thedatawere analysed by database searching using the Sequest algorithm (developed by J. Eng and J.

Yates, The Scripps Research Institute, La Jolla, USA) against mouse IPI accessions.This programconvertedthecharacterbasedrepresentationofaminoacidsequencesinaprotein database to fragmentation patterns, which were compared against the MS/MS spectrum generatedonthetargetpeptide.Thealgorithminitiallyidentifiedaminoacidsequencesin Materialsandmethods 39 thedatabasethatmatchthemeasuredmassofthepeptide,comparedfragmentionsagainst theMS/MSspectrumandgeneratedapreliminaryscoreforeachaminoacidsequence.Then, acrosscorrelationanalysiswasperformedbycorrelatingtheoretical,reconstructedspectra against the experimental spectrum. Identified proteins were analysed using Scaffold software(ProteomeSoftware,Inc.,USA)applyingdifferentproteinidentificationprobability filtersettings.Weusedstringentfiltrationcriteriaforproteinselectionwhichdescribedin detailinresults.

3.5. Invitroassays

3.5.1. ActinbindingAssay(ABA)

3.5.1.1. ReagentandInstrument

o PurifiedGactin(refer3.4.1)

o Rhodaminconjugatedphalloidin(SigmaAldrich,USA)

o microscopyslidesand11mmglasscoverslips(MenzelGmbH,Germany)

o doublesidedtape(3MScotch,USA)

o polyLlysine(PLL;P1274;SigmaAldrich,Germany)

o Gbuffer:5mMTrizmabase,pH8.0,0.2mMCaCl2

o 3mg/mlcasein(SigmaAldrich;USA)

o HB:25mMHEPES,pH7.4,2mM,MgCl2,0.1mMEGTA,0.1mMEDTA,2mMDTT

o HBS:HBcontaining10%sucroseand0.3mg/mlcasein

o VaLaP(Vaseline:Lanolin:Paraffinat1:1:1)

o NikonDiaphot300microscope(NikonGmbH,Germany)

3.5.1.2. Procedure

IsolatedGactinfromrabbitmuscle(0.05mM)waspolymerisedoniceinthepresence of2mMMgCl2overnight.SubsequentlyFactinwasstabilisedandlabelledonicewiththe same concentration (ratio: 1:1) of rhodamineconjugated phalloidin for 2 hours. Prepared andstabilisedFactinfractionswerekeptoniceandwereusedforexperimentswithintwo weeks.

Coverslips were coated with 0.1 mg/ml polyLlysine diluted in aqua dest. for 15 minutes at RT to maintain homogenous Factin network formation on the glass surface.

UnboundPLLwasremovedbyintensiverinsingwithaquadest.coversilpswereairdried Materialsandmethods 40 andwereusedtobuildreactionchamber.Reactionchambers(~3lvolume)werebuiltfrom glassmicroscopyslidesandcoatedcoverslipsusingtwopiecesofdoublesidedtape(Figure

3).

Figure3:Schematicdiagramofactinbindingassayreactionchamber. AllexperimentincubationswerecarriedoutinamoistchamberatRT.Stabilisedand labelledFactinwasdilutedinGbuffercontaining2mMMgCl20.2mMNaATPand2mM

DTT(alwaysmadefresh)ataratioof1:130.DilutedFactinwasperfusedintothechamber and incubated for 3 minutes followed by a wash with 10 l Gbuffer with additives.

Nonspecificbindingwasblockedbyperfusionofthechamberwith10lcaseindilutedin

HBfor5minutes.Subsequently,excessFactinandcaseinwerewashedoutby10lHBS.

Binding reaction mixtures were prepared in HBS on ice with a final volume of 810 l.

Reactionmixtureswerefreshlypreparedinthefollowingorder:1.)HBS,2.)cytosol/protein fraction 3.) additional factors (e.g. lipids, nucleotides, etc) and 4.) LBP. Isolated LBP were usually diluted to a working concentration of 0.006% [wt/vol]. Reaction mixtures were perfused into the chamber and incubated for 20 minutes. Thereafter, unbound LBP were washed out by perfusion of 10 lHBS. Chamberswere sealedusingVaLaP.LBPbinding wasanalysedbyfluorescencemicroscopywiththeuseofaNikonmicroscope.Thebound phagosomesperfieldwerecounted(~fieldsurfaceareaof22,000m2)andvaluesfromat least 20 fields were averaged. The error bars reported are standard deviations of at least threeindependentexperiments. Materialsandmethods 41

3.5.2. Actinnucleationassay

3.5.2.1. ReagentandInstrument

o 10xRBbuffer:100mMHEPESNaOH,20mMMgCl2,1000mMKCl,5mMEGTA, pH8.0(allfromSigmaAldrich,Germany)

o 10xGbuffer:20mMTrisHCl,2mMCaCl2,pH8.0(allfrom)

o 100mMATPMg2+(Roche,Germany)

o 1MDTTstock(SigmaAldrich,Germany)

o 0.2mMThymosin4stock(SigmaAldrich,Germany)

o 0.058mMAlexa594labelledGactin(correspondsto2.5mg/ml,refer3.4.4)

o 0.25%fishskingelatin

o Acetone

o Glassslideandcoverslips

3.5.2.2. Procedure

Firstlyglassslideswerecleanedwithacetoneandwerewashed23timeswithaqua dest. followed by incubation for 5 minutes in 0.25% fish skin gelatin. Subsequently slides weredriedandkeptat40Ctillfurtheruse.Gelatincoatedslidescankeptat40Cfor2weeks.

Prepare1XGBuffercontaining0.1mMATPand0.1mMDTT.Mix10l58MG actinwith19lGbuffertobringitdowntoafinalconcentrationof20M.After30minutes onice,mixturewascentrifugefor30minutesat10000×gat4°C.

Actin/thymosin4 (1:2.5 ratio) complexes wereprepared by adding 10 l 20 M G actinand2.5l200Mthymosin4in7.5laquadest(20lfinalvolume).

Foractinnucleationreactionmixturewaspreparedbyadding1XRBbuffer,1X G buffer, 200 M ATP, 2 l Gactin/thymosin4 complexes, 15 l of LBP (depending concentration),additivetobetestedandxvolumeofaquadesttobringfinalvolumeto10

l.Reactionmixturewasincubatedonicefor5minutesindark.2lreactionmixturewas applied on gelatin coated glass slide and covered with 22×22 mm coverslip. Coverslip pressed carefully for even distribution of reaction mixture. Incubate the slide for 1015 minutesindarkatRT.PercentageofactinnucleatingLBPcalculatedfrom50100analysed

LBP. Materialsandmethods 42

3.6. Othermethods

3.6.1. Fluorography

3.6.1.1. ReagentandInstrument

o 100%dimethylsufoxideDMSO

o 20%(w/w)solutionof2,5diphenyloxazole(PPO)inDMSO

o VacuumGelDryer

3.6.1.2. Procedure

The radiolabelled proteins were separated by electrophoresis using an aqueous polyacrylamidegel.Separationwasfollowedbysoakingthegelinabout20timesitsvolume ofdimethylsufoxide(DMSO)for30minutes,andthenimmersedsecondtimefor30minutes in fresh DMSO to displace all the water from the gel. The gel was then soaked in a 20%

(w/w) solution of PPO in DMSO to impregnate the gel with the scintillator PPO.

SubsequentlyPPOwasprecipitatedbyimmersingthegelinwaterandthegelwasdriedat highheatonvacuumdrier.DriedgelwasexposedtoXrayfilmdirectlyincontactwitheach otherat700C.Nextday,theXRayfilmwastakeoutanddeveloped.

Table2Listofantibodiesusedinthestudy

Workingconcentration Antibody Obtainedfrom Antigen Producedin Western against IF (reference) Blotting

AnnexinA1 Human Rabbit 1:1500 1:150 DrV.Gerke annexinA1 (Seemannetal.,1996)

AnnexinA2 Human Mouse 1:1500 1:150 DrV.Gerke annexinA2 (Thieletal.,1991)

Moesin Synthetic Rabbit 1:100(actin CellSignalling, peptide bindingassay) Germany

tubulin Synthetic Mouse 1:5000 SigmaAldrich, peptide Germany

FilaminA Synthetic Rabbit 1:1000 Cellsignalling, peptide Germany

Antirabbit RabbitIgG Goat 1:300 Invitrogen,Germany Alexa488

Antimouse MouseIgG Goat 1:300 Invitrogen,Germany Alexa594

AntirabbitHRP RabbitIgG Goat 1:5000 SigmaAldrich, conjugate Germany

AntimouseHRP MouseIgG Sheep 1:5000 SigmaAldrich, conjugate Germany Materialsandmethods 43

Table3:ListofusedlipidsandNucleotideusedinbindingassaystudies:

Component Assay Solvent Supplier concentration

ArachidonicAcid 125M EtOH SigmaAldrich,USA

PtdIns(4,5)bisphosphate(PIP2) 50M EtOH SigmaAldrich,USA

ATP 1mM Aquadest SigmaAldrich,USA

ADP 1mM Aquadest SigmaAldrich,USA

AMPPNP 1mM Aquadest SigmaAldrich,USA

GTP 0.1mM Aquadest SigmaAldrich,USA

GDP 0.1mM Aquadest SigmaAldrich,USA

GMPPNP 0.1mM Aquadest SigmaAldrich,USA Results 44

4. Results

Results 45

4.1. IdentificationofnovelABPfacilitateFactinLBPinteractioninvitro

Phagosomesaremembraneboundorganelles,whichassociatewithmanycytoskeleton components. Actin filaments and ABPs play an important role during particle internalisation.Studiesalsosuggestthatphagosomesrapidlylosetheirabundantactincoats soonaftertheinternalisationwhichisanimportantphenomenonofphagosomematuration.

The participation of actin and ABPs in later events of phagocytosis like acidification by fission and fusion events with different cell organelles is less clear. There are several insinuation like the capability of maturing phagosomes to nucleate actin (Defacque et al.,

2000; Jahraus et al., 2001b) to interact with and recruit actinassociated proteins and the presence of actin and ABPs in mature phagosomes determined by proteomic analysis

(Desjardinsetal.,1994a)whichsupportsaninvolvementofactinintheseprocesses.Given theabundanceofactinbindingproteinsitseemsinevitablethattheymustbindFactinin cells,itspreciseroleinphagosomebiogenesisyettobediscovered.

ToinvestigatetheroleofdifferentproteinsinFactinLBPinteractionaninvitroactin bindingassay(ABA)wasdevelopedinourlab,whichallowsanalysisoftheseeventsstepby step.TheABAreliesonthestepwiseperfusionofcomponentsinsmallreactionchambers onaglassslide.Aftertheformationofstabilisedactinnetworksoncoverslipscoatedwith

PLL and blocked for unspecific binding sites, phagosomes and additional factors were perfused into the chamber to allow binding to these preformed actin networks. After incubationunboundcomponentsarewashedoutandsamplesareanalysedbyconventional fluorescencemicroscopybydeterminingnumbersofboundphagosomestoactinfilaments per microscopic field. This assay is not only highly reproducible, but gives highly quantitativeresults.Usingthisassay,onecantestdifferentreagentsandproteinswhichcan facilitate Factin and gelatinLBP interaction in vitro. With help of this assay, we already foundmyosinVa,amolecularmotorprotein,asastimulatoryfactorwhichfacilitateFactin

ABPinteractionastheATPdependentmanner(AlHaddadetal.,2001).

4.1.1. J774.A1macrophagecytosolstimulatesFactinLBPinteractioninvitro

Phagosomescontainingnondegradablelatexbeadsprovideanelegantmodelsystem to study different aspects of phagocytosis and can be isolated with high purities. The analysisofthesephagosomesandtheirbindingtoFactininvitro isimportanttounderstand the underlying molecular mechanisms. It was therefore important to investigate these Results 46 organellesinmoredetail.Studyby(AlHaddadetal.,2001)werecarriedoutusinggelatin

LBPcontaining1mlatexbeadscoatedwithfishskingelatin(gelatinbeads),whichwere isolated from J774.A1 macrophages by discontinuous sucrose gradient centrifugation after one hour pulse followed one hour chase. We selected gelatinbeads over other ligands becauseoflowcost,easytocoupletocarboxylatedlatexbeadsandmostimportantlynon specificity.Tostudythegeneralmechanismofanyproteingelatincoatedlatexprovideideal platform because of its unbiased binding to the phagocytic receptors. Moreover, slow internalisationofgelatinbeadsallowedmetocharacterisedifferentstagesofphagocytosis duringinvivostudies.

Firstly, the basic prosperities of gelatinLBP were checked. Isolated LBP containing gelatincoupledlatexbeads(gelatinLBP)wereanalysedwithoutsaltstripping(Figure4A).

Interestingly, these gelatinLBP were able to bind to Factin in vitro ((Figure 4A). This demonstrates that gelatinLBP carry the factor(s), which are involved in FactinLBP interaction.Asexpected,asaltstrippingofthesegelatinLBPstronglyreduceditsabilityto

FactinintheABAbyremovingmembraneboundproteins,whereastheadditionofJ774.A1 cytosolagainrestoredthebindingofsaltstrippedgelatinLBP(Figure4B).

A16 B 700

600

12 500

400

8 300 (% of control)

Bound LBP/field 200 4 Relative actin Relative binding activity 100

0 0 Non-stripped Salt-stripped 0.13 0.50 2.00 4.00 8.00 Protein concentration (mg/ml)

Figure4:ActinbidingactivityofisolatedgelatinLBP.(A)Equalamountofnonstrippedandsalt stripped was incubated on preformed actin network and average numbers of bound LBP per field werepresented.(B)DifferentconcentrationofJ774.A1cytosolwasincubatedwithgelatinLBPfor20 minutes.Boundphagosomewerecountedandcomparedwiththecontrol(LBPincubatedwithHBS). Requiredconcentrationandstimulationabilityofthecytosolwasgreatlydependedon individualcytosol.Ingeneral,lowerconcentrationsofcytosolshowedbetterstimulationof

FactinLBPinteraction.IncurrentstudyIused12differentcytosolswhichhaveshowtheir Results 47 higheststimulatoryactivitybetween0.05and2mg/mlproteinconcentrations(seeexample in Figure 4B). Higher protein concentrations always caused reduction in FactinLBP interaction.Datasuggestedthatthecytosolmightcontainbothstimulatoryandinhibitory activities which compete with each other for the binding site on LBP surface. Due to complexityofthecytosolforIdecidedtofractionatethecytosol.

4.1.2. SizeexclusionchromatographyofJ774.A1cytosol

To separate stimulatory factor(s) from the inhibitory factor(s), I firstly decided to use conventionalproteinseparationtechniqueslikesizeexclusionchromatography,ammonium sulphateprecipitation,ionexchangechromatography.AsthefirststepIusedsizeexclusion chromatographyorgelfiltrationforwhichIusedsmallvolumeofhighlyconcentrated(~35

40 mg/ml) J774.A1 cytosol. Cytosol was run on gel filtration column as mentioned in materialsandmethods.Eachcollectedfractionwasblottedonthenitrocellulosemembrane and stained with aminoblack. Intensity of each blot was compared with standards to determineproteinconcentrationofeachfraction.Theensuingfractionscontainingproteins werecheckedfortheirabilitytostimulateFactinLBPbinding.Themajorpartoftheactivity was found in initial fractions containing higher molecular weight proteins or protein complexes (Figure 5A). SDSPAGE analysis showed that in these active fractions not only highmolecularweightproteins,butalsomanylowmolecularproteinswerepresent(Figure

5B).Fractionsshowingthehighestactivitywerepooledtogether(here2931)andreferredas active fraction. Active fraction gave nearly 1.7 times higher specific activity compared to cytosol(Table4).Activityrecoveredaftergelfiltrationwashigherthantheactivityofthe cytosolloadedonthecolumnwhichindicatedthepresenceoftwoproteinsonestimulatory proteinandanotherinhibitoryprotein.Duringthegelfiltrationbothproteinseparatedfrom eachotherwhichmightbethereasonforoverallhigheractivityinthegelfiltrationfractions.

Presence of Filamin A, annexin A1 and annexin A2 were checked with immunoblotting

(Figure5C).Although,allthreeproteinswerefoundtobepresentininitialfractions(Figure

5D),annexinA2andfilaminAwerenotfoundinfirstproteincontainingfiltrationfraction.

SinceactinbindingprofiledidnotmatchwiththefilaminAprofileingelfiltrationfraction

(Figure 5A and Figure 5D), I concluded that filamin A might not be the protein of our interest. Results 48

650 158 44 17 1.4KDa A 1200 1.4 No of Phagosome Proteion concentration

1.2 1000

1.0 800

0.8

600

0.6 Proteion conc (mg/ml)

400 0.4

Relative actinRelative binding activity (% of control) 200 0.2

0 0.0 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 Fraction Number B

C D 10 FilaminA 8 Filamin A 6

29303132333435363738 4

2 AnnexinA1 Arbitrary Unit Arbitrary (AU) 0 AnnexinA2 29 30 31 32 33 34 35 36 37 38 Fraction Number Figure 5: Fractionation of cytosol from J774A.1 macrophages by gelfiltration. Protein concentrations of gel filtration fractions were determined by amino black staining. Actin binding activityofproteincontainingfractionswaschecked.Molecularmarkersareshownonthetop.Typical amino black staining is shown as insert in graph (A). To check the protein content initial protein containing fractions and active fraction (AF) were loaded on 12% SDSPAGE and silver staining fractions were. Molecular markers sizes are shown on the left, Marker (M) (B). Immunoblotting of initial gel filtration fractions for filamin A, annexin A1 and annexin A2. +ve is total cell lysate (C), relativeintensityofeachproteinswascalculatedbyImageJandpresentedasarbitraryunit(D). Results 49

4.1.3. Proteinfractionationusingammoniumsulphateprecipitationmethod

For further purification, the active fraction was fractionated based on saltout technique for protein precipitation. Here I preferred to use ammonium sulphate since in most cases protein precipitated by the ammonium sulphate can be renatured properly by dissolvinginappropriatebufferand/ordialysisagainstlowsaltbuffer.Fortheprecipitation water saturated ammonium sulphate solution was added drop wise to 100 l (~5060 g protein)activefractionandprecipitatedproteinswerecollectedasmentionedinmaterials and methods. Most actin binding properties was found to be present in 30% ammonium sulphatecutfractionwhere50%showedinhibitioninactinbindingactivity(Figure4A). (A) (B) 1200 1000

900 1000 800

700 800

600

500 600

400 (%of Control) 400

300 (% of control)

200

Relative actin Relative binding Activity 200

100 actin Relative binding activity

0 0 Active Fraction 30% 50% 80% Active Fraction Elute Flow Through (C)AnnexinA1 (D) AnnexinA2 AFFTElute AFFTElute

Figure6:PurificationofstimulatoryfactorfromActivefraction.Toisolatestimulatoryproteinfrom theactivefraction,50lactivefractionwasfurtherfractionatedbyAmmoniumSulphatemethod(A) andcationchromatography(B).Activefractionwasstepbystepprecipitatedat30,50and80%final ammoniumsulphateconcentrationusingwatersaturatedammoniumsulphatesolutionasmentioned in material and method. Most of the stimulatory protein(s) found in protein precipitated at 30% ammonium sulphate concentration (A). Cation exchange chromatography was performed using phosphocellulose resins. Proteins bound to resin and eluted with highsalts (Elute) contained all activity while proteins not bound to the resin (Flow Through) showed inhibition in FactinLBP bindingactivity.PresenceofannexinA1(C)andannexinA2(D)inactivefraction(AF)andphospho celluloseunbound(FT)andelutedproteins(Elute)wasanalysedbyimmunoblotting. Althoughammoniumsulphategaveusgoodseparation,reproducibilityofthemethod wasamajordrawback.Total8activefractionswereprecipitatedwithammoniumsulphate methodinwhichonly75%activefractionsgaveclearseparationoftheactivity.Togetbetter Results 50 reproducibility,Idecidedtousemoredefinemethodslikeionexchangechromatographyfor proteinfractionation.

4.1.4. Proteinfractionationusingcationchromatography

For precise protein fractionation, I decided to use cation chromatography using phosphocelluloseresign(P11).Similartoammoniumsulphatemethod100lactivefraction was subjected to cation chromatography. Proteins unbound to the resin were referred as flow through where proteins bound and proteins eluted with 1 M NaCl were referred as elute.Eluteproteinscontainedmostactinbindingactivitywhereasunboundproteinshowed inhibitory activity (Figure 6B). Presence of inhibitory activity was more evident during cationchromatographyasfractiongavenearlyfivetimeshigherspecificactivitycompared to active fraction and nearly 8 times higher activity compared to cytosol. Moreover the unboundproteinsshowedmarkedreductioninactinbindingactivity.Ihavealsochecked thepresenceofannexinA1andannexinA2duringcationchromatography.Resultsshowed thatannexinA1boundandelutedduringcationchromatographybutannexinA2failedto bindtophosphocellulose(Figure6CandD)resinwhichindicatedthatannexinA1mightbe theproteinofourinterest.AsannexinA1andannexinA2showhighstructuralsimilarityin their core and actin binding domain, before excluding annexin A2 we need further investigation.

Table4:PurificationofcytosolicfractionwithenrichedFactinLBPbindingactivity

Protein Specificactivity(LBP/field/mg Purificationstep concentration LBP/field Enrichment(%) ofprotein) (mg/ml)

Control(buffer) 3.0 Cytosol 0.50 17.1 34 100 Activefraction 0.49 27.4 56 165 Cationchromatography 0.10 26.4 264 773

4.1.5. Proteomicanalysisofphosphocelluloseelutedproteins

For further identification of proteins responsible for the FactinLBP interaction, the phosphocellulose eluted fraction was analysed by mass spectrometry (LCMS/MS). Mass spectrometryanalysisidentified179proteins.Consideringthehighsensitivityofthemethod andamountoftheproteinusedforidentification,Idecidedtouseverystringentcriteriafor filteringtheproteins.Soasafirstfilter,proteinshavinglessthan95%proteinidentification Results 51 probability and 2 unique peptides were removed, this resulted in 75 proteins of interest.

Sincetheprotein(s)ofinterestshouldalsobeaphagosomebindingprotein,Icomparedour

LCMS/MSdatawiththosepreviouslyobtainedusingmassspectrometryanalysisofisolated

LBP by Desjardinset al., 1994a and Hoffmannet al, 2010. This comparison resulted in 22 proteinswhichareknowntobepresentonphagosomes(Table5).Inaddition,theprotein(s) ofourinteresthastobeanABP,whichcanlinkLBPandFactin.Accordingtoaliterature survey,only11ofthe22proteinshaveknownactinbindingproperty(Table6).Outof11 proteins only three, annexin A1, annexin A2 and moesin, have known lipid binding propertiesandthuswereconsideredthemforfurtherinvestigation.Sincemoesin,amember of the ERM protein family, is known as nucleator of actin filament assembly on the phagosomesmembraneandcannotbindtothelateralsurfaceofpreformedFactinnetworks

(Bretscheretal.,2000;Defacqueetal.,2000),itcouldnotbetheproteinofinterest.Finally,I reducedthelisttothetwomostprobablecandidates:annexinA1andannexinA2.

Table5:Phagosomeassociatingproteinspresentinphosphocelluloseelutedfraction.

Protein molecular Number Accession weight ofUnique No Proteinname numbers (KDa) Probability Peptides 1 AhnakAHNAKnucleoproteinisoform1 IPI00553798 604.2 100% 92 2 Myh9Myosin9 IPI00123181 226.3 100% 66 3 Eef2Elongationfactor2 IPI00466069 95.3 100% 10 4 MsnMoesin IPI00110588 67.8 100% 8 5 TktTransketolase IPI00137409 67.6 100% 7 6 Stip1Stressinducedphosphoprotein1 IPI00121514 62.6 100% 5 7 Cct8Tcomplexprotein1subunittheta IPI00469268 59.5 100% 2 8 Pkm2PyruvatekinaseisozymeM2 IPI00407130 58.0 100% 20 9 Pdia3proteindisulfideisomeraseassociated3 IPI00230108 56.7 100% 7 10 Eef1a1Elongationfactor1alpha1 IPI00307837 50.7 100% 4 11 Eef1a2Elongationfactor1alpha2 IPI00119667 50.4 100% 5 12 Eef1gElongationfactor1gamma IPI00318841 50.0 100% 2 13 Pgk1;EG433594;EG668435phosphoglycerate IPI00230002 44.5 100% 13 kinase1 14 AldoaFructosebisphosphatealdolaseA IPI00221402 39.3 100% 6 15 Anxa1AnnexinA1 IPI00230395 38.7 100% 3 16 Anxa2AnnexinA2 IPI00468203 38.7 100% 15 17 Mdh2Malatedehydrogenase,mitochondrial IPI00323592 35.6 100% 3 precursor 18 Snx22;PpibpeptidylprolylisomeraseB IPI00135686 23.7 100% 3 19 Prdx1Peroxiredoxin1 IPI00121788 22.2 100% 6 20 Hist1h1cHistoneH1.2 IPI00223713 21.2 100% 3 21 2900073G15Rikmyosinlightchain,regulatory IPI00109044 19.9 100% 6 Blike 22 Arpc4;Ttll3Actinrelatedprotein2/3complex IPI00138691 19.6 100% 3 subunit4 Results 52

4.1.6. Recombinant annexin A1 stimulates FactinLBP interaction in a Ca2+

dependentmannerinvitro

OurinitialresultsobtainedduringcationchromatographysuggestedthatannexinA1 but not annexin A2 is responsible for the FactinLBP binding activity. To support our hypothesisthatannexinA1,butnotannexinA2,whichisaclosehomologueintheannexin family,isresponsiblefortheFactinLBPinteractionsIperformedaninvitroactinbinding assayinpresenceofbacteriallyexpressedrecombinantfulllengthannexinA1andannexin

A2. As expected, both the annexin A1 and annexin A2 failed to stimulate the FactinLBP interactionintheabsenceofCa2+(Figure7).However,inthepresenceofCa2+ annexin A1 strongly stimulate the gelatinLBPFactin interaction, while annexin A2 failed to show a significanteffect(Figure 7). Since the S100A10, light chain of annexinA2 is important for severalofitsbiologicalactivities(Miwaetal.,2008),anannexinA2effectontheFactinLBP binding activity was also analysed using annexin A2/S100A10 heterotetramer complex purifiedfrompigintestine(GerkeandWeber,1984).Similartobacteriallyexpressedannexin

A2,itsheterotetramercomplexwasalsofailedtostimulateFactinLBPinteractionbothin presenceandabsenceofCa2+(Figure7).ThissupportedourhypothesisthatannexinA1,but not annexinA2, isa proteinresponsible for mediating theFactinLBPinteractioninvitro.

Results clearly indicate that annexin A1 is the protein which responsible for FactinLBP interaction,invitro.

Table6:Actinbingingproteinspresentinphosphocelluloseelutedproteins.

Protein Accession molecular No Proteinname Reference numbers weight (KDa)

1 AnnexinA1(Anxa1) IPI00230395 38.7 (BlackwoodandErnst,1990)

2 AnnexinA2(Anxa2) IPI00468203 38.6 (BlackwoodandErnst,1990)

3 Moesin(Msn) IPI00110588 67.7 (Nakamuraetal.,1999)

4 Elongationfactor2(Eef2) IPI00466069 95.3 (Bektasetal.,1994)

5 Elongationfactor1alpha1(Eef1a1) IPI00307837 50.7 (Ejiri,2002)

6 Elongationfactor1alpha2(Eef1a2) IPI00119667 50.4 (Ejiri,2002)

7 Myosin9(Myh9) IPI00123181 226.3 (Knetschetal.,1999)

Ttll3 Actinrelated protein 2/3 complex 8 IPI00138691 19.6 subunit4(Arpc4)

2900073G15Rik myosin light chain, 9 IPI00109044 19.9 (Fujitaetal.,1999) regulatoryBlike

10 AHNAKnucleoproteinisoform1(Ahnak) IPI00553798 604.2 (Benaudetal.,2004)

11 PyruvatekinaseisozymeM2(Pkm2) IPI00407130 58.0 (Arnoldetal.,1971) Results 53

To confirm that inhibitory factor(s) can play also an important role in regulation of annexin FactinLBP binding activity. Bacterial purified annexin A1 was incubated either alone or with phosphocellulose flows through fraction. Strong reduction in FactinLBP binding activity of annexin A1 was observed in presence of phosphocellulose unbound proteins (Figure 7). Data clearly suggest the presence of inhibitory factors in phospho celluloseflowthroughfraction.

700

600 Without Ca With Ca

500

400

300 (% of control)

200 Relative actin Relative binding activity

100

0 AnxA1 AnxA1 + FT AnxA2 AnxA2-ht

Figure 7: In vitro actin binding assay with purified exogenous annexin A1 and annexin A2. BacterialexpressedandpurifiedannexinA1(AnxA1)aloneorwithphosphocelluloseflowthrough (AnxA1+FT),annexinA2(AnxA2)andpigintestineannexinA2/S100A10heterotetramercomplex (AnxA2ht) were incubated with the gelatinLBP in presence of Ca2+(WithCa)orabsencesofCa2+ (Without Ca). Annexin A1 strongly stimulate FactinLBP binding in presence of Ca2+whereboth annexinA2andannexinA2/S100A10heterotetramercomplexfailedtostimulatethebinding.

4.1.7. AnnexinA1ispresentonisolatedgelatinLBPandbindstogelatinLBPin

Ca2+dependentmanner

The results mentioned above showed that exogenous, bacterially expressed annexin

A1canfacilitateFactinLBPinteraction.Inordertoconfirmtheroleofexogenousannexin

A1,itspresenceonisolatedgelatinLBPwasanalysed.UsingimmunofluorescencestainingI proved that annexin A1 was found on isolated gelatinLBP (Figure 8 A, B, Nonstripped) thatwerenottreatedwithhighsaltconcentration(nonstripped).IsolatednonstrippedLBP had many membrane associated proteins (Desjardins et al., 1994a; Hoffmann et al, 2010).

When nonstripped gelatinLBP were treated with 2M NaCl, they lost nearly all Factin binding activity and a number of membrane associated proteins (Al Haddad et al., 2001;

Defacque et al., 2000). In line with these data saltstripping of gelatinLBP also efficiently Results 54 removedpreboundannexinA1fromgelatinLBPmembranes(Figure8A,B,saltstripped).

Interestingly, the addition of bacterially expressed full length annexin A1 or phospho cellulose eluted proteins to saltstripped gelatinLBP restored both, the appearance of annexin A1 on gelatinLBP and their Factin binding activity (Figure 8 A, B and C).

Furthermore, this effect was strongly Ca2+dependent (Figure 8 A and B). Fluorescence intensityongelatinLBPincubatedwithexogenousannexinA1inthepresenceofCa2+wasat leastfivetimeshigherthangelatinLBPincubatedwithoutCa2+(Figure8D).

NonstrippedLBP SaltstrippedLBP AnxA1Ca2+ AnxA1+Ca2+ SaltstrippedLBP+P11 A

B

C20 D 90

80 16 70

60 12 50

40 8 (AU) 30 Bound LBP/field 4 20 10 Relative Fluorescence intensity intensity Fluorescence Relative 0 0 NS SS SS + AnxA1 SS + P11 Without Ca With Ca

Figure 8: Presence of annexin A1 on gelatinLBP. GelatinLBP(blue)weresubjectedtoindirect immunofluorescence microscopy using antibody against annexin A1 (green). Inserts: LBP marked witharrowat3xmagnification.Bars=5m.MergedimageofdifferentlytreatedgelatinLBP(A)and annexin A1 staining for differently treated gelatinLBP (B). Actin binding activity of nonstripped (NS),saltstripped(SS),saltstrippedgelatinLBPincubatedwithannexinA1inpresenceofCa2+(SS+ AnxA1) and saltstripped gelatinLBP incubated with phosphocellulose eluted proteins (SS + P11) (C).QuantificationofannexinA1fluorescenceintensityongelatinLBPincubatedwithannexinA1in presenceorabsenceofCa2+(D).ImmunofluorescencestainingrevealedthatannexinA1waspresent onnonstrippedgelatinLBPandremovedbythesaltstripping.AnnexinA1reappearedongelatin LBPonlyafterincubation withphosphocelluloseelutedproteinorwithannexinA1inpresenceof Ca2+. Results 55

4.1.8. AntiannexinA1antibodiesinhibitFactinLBPinteraction

Apartfrombeingpresentonphagosomalmembranes,annexinA1wasalsofoundin cytosolicfractionsthatwereenrichedinFactinLBPbindingactivity(Figure5C).ThereforeI nextanalyseditsinvolvementintheactivityofthisfractionbypreincubatingtheannexin

A1 containing, phosphocellulose eluted fraction with rabbit polyclonal antiannexin A1 antibodies. As a control, rabbit polyclonal antimoesin antibodies were used. Blocking of annexinA1withtheantiannexinA1antibodiesstronglyreducedtheFactinLBPinteraction thatwas triggered by the phosphocelluloseeluted proteinfraction(Figure 9). In contrast, theantimoesinantibodiesdidnothaveanysignificanteffectontheFactinLBPinteraction

(Figure9).ThesedataclearlyarguethatannexinA1isthecytosolicproteinofthephospho celluloseelutedfractionthatstimulatesthegelatinLBPFactininteractioninvitro.

900 800

700

600 500

400

(% of control) 300 200 Relative actin Relative binding activity 100 0 P11+_+_+

AntiAnnexinA1 _ + + _ _

AntiMoesin _ _ _ + + Figure9:Inhibitionofactinbindingactivityusingspecificantibodies.RelativeFactinLBPbinding activity of phosphocellulose eluted proteins (P11) alone or with phosphocellulose eluted proteins preincubated with antiannexin A1 (Antiannexin A1) or anti moesin antibodies (Antimoesin). IncubationofphosphocelluloseelutedproteinwithantiannexinA1stronglyreduceditsFactinLBP bindingactivity,whileantimoesinantibodydidnothaveanyeffect.

4.1.9. Effect of nucleotides and phospholipids on Annexin A1 FactinLBP

bindingactivity

Previousstudyby(AlHaddadetal.,2001)suggestedthatFactinLBPbindingcanbe affected by the nucleotide. Therefore, I analysed the effect of different nucleotides and phospholipids on annexin A1 FactinLBP stimulatory activity. Annexin A1, Ca2+, and gelatinLBPwasincubatedfor20minutesbeforeperfusinginthereactionchamber.Previous study by (Blackwood and Ernst, 1990) suggested that annexin A1 does not bind to Results 56 phosphatidylcholine(PC),soIuseditasanegativecontrolincurrentstudy.TheFactinLBP bindingactivity of annexinA1 in presence of Ca2+ wasconsidered as 100%. Incubationof annexinA1withATPandADPshowedmorethan50%reductioninitsFactinLBPbinding activity(Figure10).Ontheotherhand,presenceofGTPhadnoeffectonannexinA1Factin

LBPstimulatoryactivity.SurprisinglyAMPPNPdramaticallyincreasedannexinA1Factin

LBP binding activity. Incubation of annexin A1 with PIP2 strongly reduces it stimulatory effect(Figure10).SimilartoPC,cholesteroldidnotshowanyeffectonFactinLBPbinding activityofannexinA1whilePSandAAstimulatedannexinA1FactinLBPbindingactivity

(Figure10).

250

200

150

100 (% of control)

50 Relative actin Relative binding activity

0 ATP ADP AMP-PNP GTP AA cholesterol PC PS PIP2

Figure10:EffectofdifferentnucleotidesandphospholipidsonannexinA1’sFactinLBPbinding activity. Annexin A1 was preincubated with ATP, ADP, AMPPNP, GTP, arachidonic acid (AA), Cholesterol, phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidylinositol (4, 5) bis phosphate (PIP2) in presence of Ca2+. Actin binding activity of annexin A1 inpresence of Ca2+was consideredas100%.

4.1.10.AnnexinA1knockdowncellsshowimpairedphagocytosisofgelatinbeads

Previousstudieshaveshownthatphagocytosiswasimpairedinmacrophagesisolated fromannexinA1knockoutmice(Hannonetal.,2003).Inordertoanalyseinmoredetailthe role of annexin A1 in phagocytosis, annexin A1 was downregulated using siRNA in culturedRAW264.7macrophages.Thecontrolandmocktransfectedcellsdidnotshowany reduction in annexin A1 expression while siRNAtransfected cells showed a nearly 50% reductionintotalannexinA1levels(Figure11AandB).Phagocyticactivity(numberoflatex beadspercell)ofmocktransfectedcellswascomparablewithcontrolnontransfectedcells Results 57

(Figure11C).However,siRNAtransfectedcellsshowedanearly50%reductionintheir phagocyticactivity(Figure11C).

A B 1.2

1.0

ControlMocksiRNA 0.8

0.6

0.4

0.2 AnxA1/Tubulin Ratio (AU) 0.0 Control Mock siRNA C D 140 140 mock siRNA Gelatin-LBP 120 120 IgG-LBP

100 100

80 80

60 60

40 40 Relative Activity in Activity Relative %

Relative phagocytic activityRelative (in %) 20 20

0 0 Mock siRNA Latex Bead Phagocytic Early Actin Flashing Binding Cup formation Phagosome Figure11:AnnexinA1knockdowncellsshowedimpairedphagocytosis.Immunoblottingofthecell lysates prepared from control cells (Control), mock cells (Mock) and siRNA cells (siRNA)withanti annexinA1(AnnexinA1)andantitubulin(Tubulin)antibodies(A).QuantificationofannexinA1 expression data obtained by immunoblotting, 3 independent experiments (B). Relative phagocytic activity for gelatin or Fc coated latex beads (latex beads/cell) of transfected cells. Average of 3 independentexperiments(C).MocktransfectedandsiRNAtransfectedRAW264.7macrophageswere incubatedwith3mlatexbeadsfordifferenttimes(seematerialsandmethods)toanalyselatexbeads binding, phagocytic cup formation, early phagosome formation, and actin flashing. Annexin A1 knockdowndoesnotaffectlatexbeadsbindingbutsignificantlyreducedotherphagocyticactivities (D). Several studies indicated that annexinA1 knockout reduced theexpression of some phagocytic receptors in mouse macrophages (Hannon et al., 2003; Yona et al., 2004).

Therefore I checked whether the reduction of phagocytic activity in annexin A1 depleted cells was a primary consequence of the reduced annexin A1 levels or a secondary effect resulting from a potential decrease in cell surface receptors. First, I addressed this by choosing a well defined Fc receptor (FcR) mediated phagocytic pathway, because the expression of FcRs is not affected in annexin A1 knockout macrophages (Hannon et al., Results 58

2003;Yonaetal.,2004).Theexperimentswereperformedusing1mlatexbeadscoatedwith mouse IgG Fc fragments (Fcbeads), which, as shown previously, internalised specifically throughFcRs(Ahmadetal.,2010;Hoffmannetal.,2010).Althoughphagocyticefficiencyof

Fcbeads was nearly 2.5 times higher than that of gelatinbeads, siRNA transfected RAW

264.7macrophagesalsoshowedasignificantreduction(~40%)inphagocyticactivity(Figure

11C).TheseresultsindicatedthatannexinA1isinvolvedinthephagocyticuptakeofbeads andthatthereducedphagocytosisinannexinA1depletedcellsisnotduetoapossibleeffect onreceptorexpression.

Next, I investigated the role of annexin A1 in four major events of phagocytosis: ligandreceptor binding, phagocytic cup formation, early gelatinLBP formation and actin flashing of late gelatinLBP. SiRNA transfected RAW 264.7 macrophages were incubated with 3 m latex gelatinbeads for different times and the binding and uptake of gelatin beadswasanalysedasdescribedinmaterialandmethods.AnnexinA1knockdowndidnot affect beads binding to RAW 264.7 macrophages (Figure 11D), but resulted in impaired phagocytic cup formation (Figure 11D). The reduction in annexin A1 expression also resultedinnearly60%decreaseinearlyphagosomeformation(Figure11D).Furthermore, siRNA knockdown experiments revealed that the reduction in annexin A1 expression reducedthetransientFactinassemblyonlategelatinLBP,whichisalsoreferredas“actin flashing”phenomena(LieblandGriffiths,2009;YamandTheriot,2004).Following1hour pulseand2hourschaseregime,siRNAmediatedreductionofannexinA1expressioncaused anearly40%decreaseofactinflashingeventsatthegelatinLBP(Figure11D).

Since annexin A1 knockdown had a strong inhibitory effect in phagocytic events whereFactindynamicsplaysakeyrole,Istudiedspatialandtemporaldynamicsofannexin

A1associationwithgelatinLBPduringphagocyticeventsmentionedabove.

4.1.11.Spatial and temporal colocalisation of annexin A1 and Factin during

phagocytosis

Since actin polymerisation is a major and indispensible step of phagocytic cup formation (Castellano et al., 2001) and since annexin A1 is an Factin binding protein possibleinvolvedinlinkingactinfilamentstonascentphagosomes,Ianalysedapotentialco localisation of annexin A1 and Factin at phagocytic cups. Therefore, macrophages were Results 59 triple stained with rhodaminephalloidin for Factin, antiannexin A1 antibodies and the cytosolicmarkerCelltrackerTM. A B

C D

Figure12:ColocalisationofLBPandannexinA1duringearlystagesofphagocytosis.RAW264.7 cellswereincubatedwithlatexbeadsininternalisationmediumfor5minutesfollowedbyfixingand staining. Cells were stained for annexin A1 (green), Factin (Red) and a cytosolic marker (CelltrackerTM in grey). (A) Maximum intensity projection of confocal images. (B) 3D cross section imagesofphagocyticcupformation.AnnexinA1colocalisedwithFactinonextendedfilopodiaof phagocyticcups(arrows).(C)DICimageshowspositionoflatexbead.(D)Sectionofconfocalimages analysed for fluorescence profile. Histogram shows fluorescence intensities of Factin (red line), annexinA1(greenline)andCelltrackerTM(greyline).HigherannexinA1concentrationcanbeseenat phagocyticcups(arrows)comparedtothecytosol(arrowheads)andthecellmembrane(filledarrow heads).Bars=5m. Results 60

Asexpected,strongfluorescentstainingofFactinwasobservedatsitesoflatexbead uptake(Figure12AandC)andatthecellperiphery(Figure12A).Ontheotherhand,both annexinA1andCelltrackerTMappearedtobemoreorlessevenlydistributedinthecytosol

(Figure 12A). Therefore, a 3D crosssection analysis of confocal images was carried out

(Figure 12B). This analysis clearly showed that annexin A1 colocalised with Factin on phagocyticcup(Figure12B,arrows).Toobtainfurtherinsight,Ianalysedconfocalimages for fluorescence intensity of the individual dyes (Figure 12D). Along with Factin, the intensity of annexin A1stainingwas found to behigher on phagocyticcups (Figure 12D, arrows) compared to the staining intensity of the cytosol (Figure 12D, arrow heads) and plasma membrane marker (Figure 12D, filled arrow heads). These data indicated that annexinA1indeedaccumulatedatphagocyticcups.

Figure13:AnnexinA1colocalisedwithFactinatearlyandlatestagesofphagocytosis.RAW264.7 cellswereincubatedwithgelatinbeadsininternalisationmediumfor30minutes(A)ora60minutes pulseplus120minuteschase(B).AnnexinA1(green)colocalisedwithFactin(red)onearlygelatin LBP(blue)(arrowhead)andtransientlyactinflashinggelatinLBP.TheaccumulationofannexinA1 ongelatinLBPeventuallydecreasedasphagosomematures(B,arrows).Bars=5m. Naive LBP acquire a dense Factin network on the membrane, which gradually decrease as LBP become more mature (Castellano et al., 2001). Indeed, after uptake I observedanFactinaccumulationongelatinLBP(Figure13A,arrowhead)andthenFactin dissociationfromgelatinLBP(Figure13A,arrows).Notably,botheventswereaccompanied byanincreaseandthendecreaseofgelatinLBPassociatedannexinA1(Figure13A).Atlate stagesofphagocytosissomegelatinLBPshowedactinflashing.Thisalsocorrelatedwithan annexinA1accumulationnearactinflashinggelatinLBP(Figure13B). Results 61

4.1.12.AnnexinA1knockdowndoesnotaltergelatinLBPmaturation

Thecompletemolecularmechanismandphysiologicalimportanceofactinflashingis far from understood (Liebl and Griffiths, 2009). In our current study we observed that in controlonlylessthan10%ofLBPundergoactinflashing.However,wecheckedthepossible involvementofannexinA1inLBPmaturationprocess.Weincubatednontransfected,mock transfectedandannexinA1siRNAtransfectedcellswith3mgelatinbeadsfor30minutes, followed by fixing and immunefluorescence staining with the late phagosome marker

LAMP2. The number of LAMP2 positive LBP per internalised gelatinbeads was counted and presented in percentage. Obtained data arepresentedin the figurebelow. These data indicatethatthereisnomarkeddifferenceinphagosomematurationprocess.Thisfindingis mentioned in our revised manuscript in the discussion (page no 16) (if necessary we can includethesedataassupplementarymaterial).

100.0

80.0

60.0

40.0 LAMP2 positiveLBP (% of internalised beads) (% of internalised

20.0

0.0 Control Mock siRNA

Figure 14: Effect of Annexin A1 knockdown on phagosome maturation. Gelatinbeadswere incubated with RAW 264.7 macrophage for 30 minutes and cells were stained with the late phagosome marker LAMP2 as an indicator of phagosome maturation. Knockdown of annexin A1 doesnothaveanyeffectongelatinLBPmaturationprocess.

4.1.13.AnnexinA1couldnotsupportactinnucleationongelatinLBP

Recently annexin A2 showed to be involved in actin polymerisation on endosomes membrane (Morel et al., 2009). To investigate the possible involvement of annexin A1 in actin polymerisation, I performed actin nucleation assay using purified and alexa594 labelledGactin.SinceannexinA2wasreportedtonucleateactin,itwasusedasthepositive control.ObtaineddatasuggestedthatsaltstrippedgelatinLBPaloneorinthepresenceof Results 62

1mM Ca2+ failed to stimulate actin polymerisation (Figure 15). As expected annexin A2 strongly stimulate actin nucleation on gelatinLBP surface in presence of Ca2+. Data also suggest that annexin A1 alone can stimulate actin polymerisation on gelatinLBP surface whichfurtherincreasesbyadditionon1mMCa2+(Figure15).

Since in presence of 1 mM Ca2+ and ATP actin can polymerise (Tellam, 1985) and annexin A1 can bundle the polymerised actin filaments (Glenney, Jr. et al., 1987), it was important to confirm that observed actin nucleation was not a false positive results. To confirmtheobtaineddata,gelatinLBPwereincubatedwithannexinA1inthepresenceor absence of Ca2+, followed by LBP purification by discontinuous sucrose gradient. Purified

LBP were subjected to actin nucleation assay as mentioned before in presence or absence

Ca2+.NeitherannexinA1incubatedwithCa2+norwithoutCa2+wereabletonucleateactinon

LBPsurfacebothinpresenceorabsenceofCa2+.LocalFactinaccumulationwasobserved only on the LBPwhichwere incubatedwith annexinA1in presence of Ca2+ (Figure15C).

ObserveddatasuggestthatannexinA1isimportantfortheactinbindingtotheLBPbutit doesnotplayanyroleinactinpolymerisation.

A B

100 90

80

70 60

50

(in %) C 40 30

20

Actin nucleating efficiency 10

0 LBP LBP + LBP + LBP + LBP + LBP + Ca A1 A1 + Ca A2 A2+ Ca

Figure 15: In vitro actin nucleation assay. (A) gelatinLBP (LBP) were incubated at RT for 1015 minuteswithpurifiedAlexa594labelledGactin,ATP,thymosin,andDTTongelatincoatedslides. EffectofannexinA1(A1)andannexinA2(A2)onactinnucleationongelatinLBPwerecheckedinthe presenceandabsenceofCa2+(Ca).(B)TypicalactinnucleatinggelatinLBPinpresenceofannexinA1 and Ca2+. (C) Actin accumulation on LBP purified following incubation with bacterial expressed annexin A1 in presence of Ca2+. Inserts are 5 times magnification of actin accumulating and non accumulatingLBP. Taken together our results indicate that annexin A1 is spatially and temporally co localisedwithFactinonphagosomemembraneduringearlyandlatestagesofphagocytosis andactasfunctionallinkerbetweenFactinandLBP.Moreoverourdataalsosuggestthat Results 63 annexin A1 provides the structural support and might not have any direct role in polymerisation.

4.2. Ligandreceptor interaction decide the involvement of annexin A1

duringmacrophagephagocytosis

Previous study by (Hoffmann et al., 2010) suggested that different receptor mediated phagocytosisleaveuniquesignaturesondifferentLBPwhichincludesproteinscompositionof theLBP.IntheirstudytheyalsoshowedthatannexinA1ispresentonFcreceptormediatedLBP

(FcLBP)butnotonthemannosereceptormediatedLBP(manLBP).Studyinknockoutmiceby

(Yona et al., 2004) also suggested stimulus dependent defect in mouse macrophages. These studiesinspiredustolookmoreinsightintotheroleofannexinindifferentreceptormediated phagocytosis.Duetoseverallimitationsinclusionofallcharacterisedphagocyticreceptorswas notpossible.Tocovertwomajorgroupsofphagocyticreceptors,IusedFcfragmentofmouse

IgGandmannancoatedlatexbeadswhichinternalisedthroughnonopsonicmannosereceptor andopsonicFcRs,respectively(Ahmadetal.,2010;Hoffmannetal.,2010).

4.2.1. DifferentreceptorderivednonstrippedLBPshowdifferentFactinbinding

affinity.

A B FcLBP ManLBP 9

8

7

6

5

4

3 Bound LBP/field 2

1

0 Gel-LBP Man-LBP Fc-LBP Figure16:FactinbindingactivityofdifferentLBP.(A)DifferentlyreceptorsderivedLBPshowed different Factin binding activity. (B) FcLBP and ManLBP (blue) were subjected to indirect immunofluorescence microscopy using antibody against annexin A1 (green). Inserts shows LBP markedwitharrowat3xmagnification.Bars=5m.Upperpanelshowsmergedimageofdifferently LBPandlowerpanelshowsannexinA1stainingfordifferentlyLBP TostudytheeffectofannexinA1ondifferentLBP,firstIcharacteriseFactinbinding activity of purified nonstripped LBP. I performed actin binding activity using the same concentrationofpurifiedLBP.Obtaineddatashowedin(Figure16A),whichclearlysuggest Results 64 that different receptors derived LBP had different Factin binding affinity. Nonstripped manLBP showed highest FactinLBP binding activity followed by geltainLBP. FcLBP showedtheleastFactinLBPbindingactivitywhichwasnearly1012timeslowerthanthat ofgelatinLBPandmanLBP.

NextIcheckedthepresenceofannexinA1onpurifiednonstrippedLBP.Inagreement withpreviousstudyby(Hoffmannetal.,2010),annexinA1wasnotfoundonmanLBPbut waspresentonFcLBP(Figure16B).

4.2.2. RecombinantannexinA1stimulatesFactinLBPinteractionofnonstripped

andsaltstrippedLBP

SincenotallLBPharbourannexinA1ontheirmembrane,Icheckedtheeffectof bacterialexpressedrecombinantannexinA1ondifferentLBPinpresenceorabsenceofCa2+.

Moreover,IalsocheckedtheeffectononlyCa2+onpurifiedLBP.AsexpectedIcouldseethe increaseinFactinLBPbindingforthegelatinandFcLBP,wherenoeffectwasobservedon manLBP (Table 7). On other hand annexin A1 alone strongly reduces all LBP Factin binding activity. Interestingly, stimulatory effect of annexin A1 was different in different

LBP Factin binding activity but in all cases the maximum bound LBP per field was restrictednearlyto13LBPperfield.ThesedataclearlyargueatgivenannexinA1andLBP concentration, number of binding sites for annexin A1 on LBP membrane was a limiting factor. Although annexin a1 was not present on manLBP, incubation with recombinant annexinA1resultedinnearly3foldincreaseinFactinLBPbindingactivity.Resultsindicate thatinintracellularconditionannexinA1bindingwasregulatedbyanunknownfactorora competitionforsamebindingsiterestrictannexinA1bidingtomanLBP.

Table7:EffectofannexinA1ondifferentLBPFactinbindingactivity(boundLBP/field)

LBP LBP+Ca2+ LBP+AnxA1 LBP+AnxA1+Ca2+ GelatinLBP 4.8±0.5 7.9±0.5 1.1±0.6 10.9±2.0 FcLBP 1.1±0.7 4.3±0.5 0.4±0.1 10.2±3.8 ManLBP 4.4±0.1 4.0±0.3 0.4±0.1 12.8±0.6 NonstrippedLBPcontainmorethan1000proteinsontheirsurfaces(Hoffmannetal.,

2010)sotherecouldbeanobviouscompetitionforthebindingsitessotostudytheeffectof annexin A1 on different LBP, saltstripped LBP was incubated with bacterial purified recombinant annexin A1 in presence or absence of Ca2+. Similar to nonstripped LBP, presence of annexinA1resultedin increasein FactinLBPbinding activity (Figure 17 A). Results 65

Stimulation in FcLBP and manactivity was nearly 2 times higher than gelatinLBP. To confirm the presence of annexin A1 on Fc and manLBP were subjected to indirect immunofluorescence.ImmunofluorescenceconfirmstheCa2+dependentannexinA1binding tobothFcandmanLBP(Figure17B).Sincereceptorssignallingaffectproteincompositionof

LBP including the lipid metabolic enzymes (Hoffmann et al., 2010), I hypothesise that amount of various phospholipids might be altered on different receptor mediated LBP whichultimatelyleadstodifferentannexinA1dependentstimulatoryeffect.

AB Saltstripped AnnexinA1Ca2+ AnnexinA1+Ca2+

1400 Gel-LBP 1200 Fc-LBP

1000 Man-LBP

800

600 C

(% of Control) 400

200 Relative actin binding activity actin binding Relative 0 Ca AnxA1 AnxA1 + Ca

Figure17:AnnexinA1stimulatesFactinLBPbindingactivityofdifferentLBPinCa2+dependent manner.(A)BacterialexpressedrecombinantannexinA1wasincubatedwithdifferentsaltstripped LBPtogetherwithCa2+alone(Ca),annexinA1alone(AnxA1)orannexinA1andCa2+(AnxA1+Ca). (B)FcLBPand(C)ManLBP(blue)weresubjectedtoindirectimmunofluorescencemicroscopyusing antibodyagainstannexinA1(green).InsertsshowsLBPmarkedwitharrowat3xmagnification.Bars =5m.

4.2.3. AnnexinA1knockdownmacrophagesshowreducedFcbeadsphagocytosis

butdoesnotaffectmanbeadsphagocytosis

To confirm the role of annexin A1 in FcR mediated phagocytosis and annexin independent phagocytosis in mannose receptor mediated phagocytosis, annexin A1 expressionwasknockdownusinglentiviruscarryingshRNAagainstannexinA1.Lentivirus transfectionresultedinstablytransfectedRAW264.7celllinewhichshowedmorethan90% reduction in annexin A1 expression (Figure 18). Annexin A1 shRNA expression was also stableforatleast2freezeandthrowcycles.Stablytransfectedmacrophagesshowedmore than40%reductionintheirphagocyticactivitywhilenoeffecthadbeenobservedonman beads phagocytosis. Obtained data confirmed previous observation that annexin A1 is importantforFcbeadsphagocytosisbutnotinmanbeadsphagocytosis.

Results 66

A B 140 Fc-beads 120 Man-beads

100 Tubulin 80 (in %) 60

40

AnnexinA1 phagocytic activityRelative 20

0 Mock shRNA

Figure18:RelativephagocyticactivityforFcorManbeadsintransfectedRAW264.7macrophages. (A)AnnexinA1expressioninnontransfectedcells(Control),controlshRNA(Mock)andannexinA1 shRNA (shRNA) transfected cells. (B) Reduction in annexin A1 expression resulted in reduced phagocyticactivityfortheFcbeads,wherenoeffectwasobservedinmanbeadsphagocytosis.

4.2.4. Annexin A1 does not colocalise with Factin on naive manLBP but

stronglycolocaliseonFcLBP.

To analyse a potential colocalisation of annexin A1and Factin on Fc and Mannose

LBP, 3 m latex Fc or manbeads were incubated with RAW 264.7 macrophages for 10 minutesfollowedbyfixationandstainingasmentionedinmaterialsandmethods.Careful evaluationofnaiveactinpositiveLBPrevelledthatannexinA1colocalisedwithFactinon

FcLBP(Figure19A)butnotonmanLBP(Figure15B).Obtaineddatacollaborateprevious that annexin A1 is not involved in mannose receptor mediated phagocytosis but an importantcomponentofFcreceptormediatedphagocytosis.RAW264.7

A Factin AnnexinA1 Merged

B

Figure 19: Annexin A1 colocalise with Factin on FcLBP but not on manLBP. Fcbeads (A) and manbeads (B) were incubated with RAW 264.7 macrophages for 10 minutes followed by the immunofluorescencestainingforannexinA1andrhodaminephalloidinstainingforFactin. Results 67

Taken together, my observations suggest that annexin A1 recruitment on LBP is receptor specific. Annexin A1 found to be important in nonspecific and FcR mediated phagocytosiswhereitprovidestructuralsupportduringdifferentstagesofphagocytosis.It will be interesting to investigate that in absence of annexin A1 which protein provide structuralsupportduringmanbeadsinternalisation

4.3. ExogenousannexinA1altermacrophagephagocyticactivity.

ANXA1 is released from pituitary cells in response to a glucocorticoid challenge

(Chapman et al., 2003), so first I decided to check the secretion of annexin A1 during the different receptor mediated phagocytosis but I did not succeed to get enough amount of annexinA1whichcouldbedetectedbywesternblotting.AnnexinA1wasreportedinanti inflammatorycytokineexpression(Yangetal.,2006;Yangetal.,2009)whichbelievedtobe regulated by the annexin A1 binding to its extracellular receptor FPRL2 (Formyl Peptide

LikeReceptor2).

250 Total beads/cell

200 internalized beads/cell

150

100 (% of control)

50 Relative phagocytic activityRelative

0 EGTA Exo-Anx A1 EGTA Exo-Anx A1

Fc Man

Figure 20: Exogenous annexin A1 altered macrophage phagocytosis. J774.A1 macrophages were incubatedwithextracellularannexinA1for30minutesbeforeaddingFcormancoatedlatexbeads. Extracellular annexin A1 strongly stimulated manbeads phagocytosis but reduced Fcbeads phagocytosis. To study the possible role of annexin A1 in regulation of RAW 264.7 macrophage phagocytosis,IincubatedbacterialexpressedrecombinantannexinA1for30beforeadding

Fc or manbeads. Cells were also incubated with 2mM EGTA to study the extracellular membrane bound annexin A1. The removal ofextracellular membrane bound annexin A1 did not affect the macrophage phagocytosis and was similar to the control Figure 20.

Extracellular annexin A1 strongly reduced the Fcbeads phagocytosis while extracellular Results 68 annexin A1 strongly stimulate the annexin A1 phagocytosis (Figure 16). The extracellular annexinA1notonlyaffectlatexbeadbindingtomacrophagesbutalsodecreaseandincrease

FcandManbeadsinternalisation,respectively(Figure20).

Obtained data seek further investigation evaluation. Further investigation did not pursueincurrentstudybutdataprovidefurtherinsightintothedifferentroleofannexinA1 indifferentreceptormediatedphagocytosis.

4.4. StimulusdependentinvolvementofannexinA2asafunctionallinker

betweenFactinandLBP

Since different receptor mediated phagocytosis had different protein composition.

Since the annexinA1had differenteffect on differentreceptor mediated phagocytosis,we checkedthatwhateffectofannexinA2hadondifferentLBPFactinLBPbindingactivity.

4.4.1. Annexin A2 can stimulate FcLBP and manLBP binding to Factin but

failedtostimulategelatinLBP

To analyse the possible role of annexin A2 in FactinLBP binding activity, different saltstripped LBP were incubated with bacterial purified recombinant annexin A2 in presenceorabsenceofCa2+.AsmentionedbeforeannexinA2failedtostimulategelatinLBP bindingtoFactinbutitstronglystimulateFcLBPandmanLBP.Moreover,stimulationin manLBPwasnearly2timeshigherthanFcLBP.ObtaineddatasuggestnotonlyannexinA1 butannexinA2alsohavedifferenteffectondifferentLBP.

2500 250 1200 Man-LBP Gelatin-LBP Fc-LBP

1000 200 2000

800 150 1500

600

100 1000

(% of control) 400

50 500 200 Relative actin Relative binding activity

0 0 0 Ca AnxA2 AnxA2 + Ca AnxA2 AnxA2 + Ca AnxA2 AnxA2 + Ca Ca Ca

Figure 21: Effect of annexin A2 on different saltstripped LBP. Different saltstripped LBP were incubatedwithCa2+alone(Ca),bacterialexpressedrecombinantannexinA2inabsence(AnxA2)orin presenceofCa2+(AnxA2+Ca). Results 69

4.4.2. Annexin A1 and annexin A2 competes for the same binding site on

differentLBP.

Since lipid properties are very common for annexin A1 and annexin A2, I asked whether annexin A1 and annexin A2 compete for the same binding site or they have co operativeeffectonFactinLBPbinding.Tostudytheeffect,LBPwereincubatedwithequal amount of annexin A1 and annexin A2 in presence of Ca2+. Coincubation did not further increase LBP binding to Factin, which suggested that in the case of Fc and ManLBP, annexinA1 and annexin A2 compete to bind,probably for the same binding site, on LBP surface.Surprisingly,coincubationofannexinA1andannexinA2reducethegelatinLBP bindingtoFactin.

4.4.3.

400 3000 2500 Gelatin-LBP Man-LBP Fc-LBP 350 2500 2000 300 2000 250 1500

200 1500 1000 150 1000 (% of control) 100 500 500 50 Relative actin Relative binding activity 0 0 0 AnxA1 AnxA2 AnxA1 + AnxA1 AnxA2 AnxA1 + AnxA1 AnxA2 AnxA1 + AnxA2 AnxA2 AnxA2

Figure22:AnnexinA1andannexinA2competeforthesamebindingsiteonLBP.AnnexinA1and annexinA2werecoincubatedindividuallyortogetherwithdifferentLBPinpresenceofCa2+before applyingtoFactinnetwork. Takentogether,myresultsalsosuggestthatannexinA2recruitmentonLBPsurfaceis drivenbythereceptorsignalling.Althoughobtaineddataneedtobeconfirmedbyinvivo studies. Discussion 70

5. Discussion

Discussion 71

5.1. AnnexinA1stimulatesFactinandgelatinLBPinteraction,invitro.

Once recognised by the cell surface receptors, internalisation and subsequent intracellular transport of phagocytic particles require a highly regulated and dynamic interaction of the phagosome membrane with cytoskeletal elements. Particle engulfment requires extensive remodelling of membrane and actin cytoskeleton (May and Machesky,

2001). The newly formed phagosome possesses a dense coat of actin and ABPs that subsequentlydecreasewithtimeandareeventuallylost(Castellanoetal.,2001;Greenberget al., 1990; May and Machesky, 2001). Although signalling pathways for Factin polymerisation during phagocytosis have been extensively studied (Allen and Aderem,

1996;Castellanoetal.,2001;Diakonovaetal.,2002),themechanicsofactindynamicsduring phagosome formation and particularly the roleof ABPsremain poorlyunderstood. Since severalyearsourgroupfocusesontheidentificationoftheABPsinvolvedinphagosomeF actin interaction. In a previous study, I had shown that the unconventional myosin Va is important for proper phagosome inward transport at post internalisation stages of phagocytosis(AlHaddadetal.,2001).InthecurrentstudyIidentifiedannexinA1asanew

ABPresponsibleformediatingphagosomeinteractionswiththeactincytoskeleton.

TosearchfornewplayersinphagosomebiogenesisIusedthelatexbeadssystemand developed an in vitro light microscopy assay to study phagosomeFactin interactions (Al

Haddad et al., 2001). LBP loaded with nondegradable fluorescence latex beads provide severaluniqueadvantagestostudymolecularinteractionsbetweenadefinedmembranous organelleandthecytoskeleton(AlHaddadetal.,2001;DesjardinsandGriffiths,2003).Latex beadsystemallowedtoisolatedorganellewhichisfunctionallyactiveforawidespectrum offunctions(DesjardinsandGriffiths,2003).Moreoverthepossibilitytocouplelatexbeads to single ligands and study their selective receptormediated uptake allows us to follow maturationprocessesinmoredetail.Inaddition,oneofthemostimportantadvantageisthat

LBP can be isolated (>95% of purity) in single step procedure by flotation using a discontinuoussucrosegradient(Desjardinsetal.,1994b;Desjardinsetal.,1994a;Desjardins and Griffiths, 2003; Stuart et al., 2007). Our FactinLBP binding assay has also several importantadvantages.Itissimple,easytomanipulate,robustandrequiresminimumactin,

LBPandtestedprobes(AlHaddadetal.,2001).

Inthisassay,themacrophagecytosolstimulatedtheFactinLBPinteractioninvitroat low protein concentrations (~0.5 mg/ml). However, an isolation of biochemically pure Discussion 72 individual factors was not possible due to limitation of macrophages cytosol as a starting material.Therefore,asafirststepIdecidedtofractionatemacrophagecytosolandisolatea fractionenrichedinFactinLBPbindingactivityandthenidentifiedpotentialcandidatesby

LCMS/MS.Aftercytosolfractionationwithgelfiltrationandsubsequentphosphocellulose chromatography, I obtained a fraction that had about 8 times higher FactinLBP binding activity than the starting cytosol (Table 4). Proteomic analysis of this active fraction and systematic filtration of obtained data resulted in 12 ABPs; among these annexin A1 was foundasthemostpromisingprotein,whichcanbeinvolvedinFactinLBPinteraction.

Several previous studies already reported the presence of annexins on phagosome membrane (Desjardins et al., 1994a; Diakonova et al., 1997). The annexin super family consistsof13calciumbindingproteinswithasignificantdegreeofbiologicalandstructural homology.AnnexinA1isoneofthefirstcharacterisedmembersofthisfamily,whichbind to phospholipids and actinin presence of calcium (Glenney, Jr.et al.,1987). Furthermore,

Diakonova et al.1997 found the presence of five different annexins (1 to 5) on LBP. I confirmedthepresenceofannexinA1 ongelatinLBPbyimmunofluorescencemicroscopy

(Figure 8) and showed that annexin A1 can produce the interaction between Factin and gelatinLBPinvitro(Figure7).

Annexin1bindsandbundlesFactininaCa2+dependentmanner,althoughhighCa2+ concentrations are essential to establish this interaction in vitro (Glenney, Jr. et al., 1987;

SchlaepferandHaigler,1987).BacteriallyexpressedrecombinantannexinA1requires1mM

Ca2+foractinbindinginaninvitroassay(Figure7),whichisconsistentwithpreviousfinding

(Glenney,Jr.etal.,1987).However,theregulatoryroleofCa2+inmediatinganannexinA1 andFactininteractioninsidethecellisnotclear.Sinceitwasalreadyreportedthatpresence ofphospholipidsoraccessorymoleculesstrikinglyreducedtheaffinityofannexinstowards

Ca2+ (Powell and Glenney, 1987; Schlaepfer and Haigler, 1987), I suggest the presence of differentmechanismsforFactinandannexinA1interactioninvivo.AstimulationofFactin

LBP interaction in absence of Ca2+ by gelfiltration fractions and phosphocellulose eluted proteinssupportsmyhypothesis(Figure6).However,anadditionofCa2+tothesefractions furtherincreasedtheirFactinLBPbindingactivity.Therefore,theroleofCa2+inregulating theinteractionbetweenFactin,annexinA1andLBPduringphagocytosisrequiresfurther investigations. Discussion 73

Interestingly, my fractionation studies revealed that the cytosol contains most probably not only factors stimulating FactinLBP linkage like annexinA1 and myosin Va

(AlHaddadetal.,2001),butalsounknowninhibitoryfactor(s).Duetothepresenceofthese inhibitory factors, annexin A1 present in the phosphocellulose unbound protein fraction

(Figure 6C) could not stimulate FactinLBP binding (Figure 6B). The presence of these inhibitory factor(s) was confirmed by FactinLBP binding experiments, carried out with recombinant annexin A1 in the absence or presence of aliquots of the phosphocellulose unboundproteinfraction.Theserevealedanearly2.5timesdecreaseintheannexinA1 stimulatory activity in the presence of the unbound protein fraction (Figure 7). The identification of this inhibitory factor(s), which could play an important role in the regulationoftheannexinA1LBPFactininteraction,willbeaspecificaimoffuturestudies.

5.2. Annexin A1 acts as a functional linker between Factin and gelatin

LBP,invivo.

Mostannexinsareabundantintracellularproteins(RaynalandPollard,1994)andin polymorphonuclear leukocytes (PMN) annexin A1 comprises nearly 2% of total cellular protein which is almost half of the amount of actin (Lim and Pervaiz, 2007; Perretti and

Flower,1996;RaynalandPollard,1994).InPMNsandmonocytesapproximately17%and

33%,respectively,oftotalannexinA1isassociatedwiththeplasmamembrane(Perrettiand

Flower,1996).InmyimmunofluorescenceanalysisIcouldalsoclearlyseethehighamount ofannexinA1bothinthecytoplasmandinrufflesoftheplasmamembrane(Figure12and

13).ThefactthatannexinA1colocalisedwithFactinatplasmamembranefilopodiaand ruffles indicated that annexin A1 could play a role during phagocytic cup formation and particleuptake.

MysiRNAdataandpreviousknockoutstudiesalsodemonstratedtheimportanceof annexin A1 for phagocytic activity (Hannon et al., 2003). siRNA transfected RAW 264.7 macrophagesshowedatleast50%reductioninannexinA1expressionandsimilarreduction in the phagocytic activity (Figure 11). Also peritoneal macrophages from annexin A1 knockoutmiceshowedimpairedphagocytosis(Yonaetal.,2004;Yonaetal.,2006)andlower zymosan internalisation correlating with a higher number of zymosan particles that remainedboundtothecellssurface(Yonaetal.,2004).Interestingly,neitherknockoutnor Discussion 74 knockdown of annexin A1 completely abolish the phagocytic activity of macrophages indicatingtheexistenceofalternativebutlesseffectivemechanismforphagocytosis.

The molecular mechanism by which membrane bound annexin A1 modulates actin cytoskeleton reorganisation is yet to be discovered. However some reports already establishedanassociationofannexinA1withFactin(Diakonovaetal.,1997;Glenney,Jr.et al., 1987; Kusumawati et al., 2001; Schlaepfer and Haigler, 1987). Based on these and my findings,Iproposeamechanism,inwhichphospholipidsplayakeyroleinspatialtemporal recruitment of annexin A1 to cell membranes from cytoplasm. Phosphatidylinositol 4, 5 bisphosphate (PIP2)iswell known for itsrolein actinremodelling and as an annexinA1 binding partner (Blackwood and Ernst, 1990). PIP2 influences Factin formation and extensionbybindingtoavarietyofactincappingandmonomerbindingproteins(Maoand

Yin, 2007; Takenawa and Itoh, 2001; Yeung and Grinstein, 2007). In addition during phagocytosis a transient accumulation of PIP2 at phagocytic site was observed due to phosphatidylinositol4phosphate5kinase(PI4P5K)activity(Coppolinoetal.,2002;Scottet al., 2005). Therefore, local PIP2 production at the phagocytic site can provide additional bindingsitesforcytosolicannexinA1.IsuggestthatthisincreaseinlocalPIP2concentration leads to annexin A1 recruitment and accumulation at phagocytic sites (Figure 12B).

Membranebound annexin A1 then links the growing Factin to the plasma membrane in ordertokeepthemnearthemembraneinproperdirectionalityandfinallygenerateenough supportandstrengthformembraneprotrusionsandphagocyticcupformation.

Followingparticleinternalisationcellsignallingeventsleadtoactindepolymerisation whichisbelievedtobeanimportantprocessforphagosomematuration(LieblandGriffiths,

2009; May and Machesky, 2001). Hydrolysis of PIP2 from phagocytic sites was observed shortlyaftertheinitialphaseofaccumulationandeliminationofPIP2atthetimeofsealing appearstoberequiredforsuccessfulcompletionofphagocytosis(Scottetal.,2005;Yeung and Grinstein, 2007). Before the cup closes the PIP2 is degraded by the phospholipase C

(PLC)butthisisthetimewherephosphatidicacid(PA)isproducedbyphospholipaseD from phosphatidylcholine (Yeung and Grinstein, 2007). Annexin A1 has higher affinity towardsPAcomparedtootherphospholipids(BlackwoodandErnst,1990).Availabilityof other binding sites, possibly those richinPA,helpsretention of annexin A1 at this point.

Soonafterthecupcloses,thePAconcentrationalsodecreasesonthephagosomemembrane

(YeungandGrinstein,2007),whichmightleadtolossofannexinA1fromthephagosome Discussion 75 surface(Figure 12B). HereI suggestthatdecreasing annexinA1concentrationsresult ina reductionofFactinonthephagosomeduetoabsenceofamembranelinkerprotein.Taking together I suggest that annexin A1 is not directly involved in the actin dynamics but provides structural support for a membraneFactin connection during the particle internalisation.

EvenatlatestagesofphagocytosisannexinA1foundtobeassociatedwithgelatinLBP in vitro (Figure 8A), which is consistent with previous findings (Diakonova et al., 1997). I observedthatannexinA1wasnotevenlydistributedongelatinLBPsurfaceratheritfound aspatchesonisolatedgelatinLBP(Figure8A).ThiskindofannexinA1patchdistribution canbeexplainbyitsdifferentaffinitytowardsphospholipids(BlackwoodandErnst,1990).

Moreover, Annexin A1 does not bind to the phosphatidylcholine and phosphatidylethanolamine(BlackwoodandErnst,1990)whichcoversnearly43%and15% oftotalphospholipidspresentin60minutespulseand60minuteschaseLBP,respectively

(Desjardinsetal.,1994a).Sincenearly60%oftotalsurfaceofLBPisnotavailableforannexin

A1 binding, it is not surprising that the annexin A1 present as isolated patches on LBP membrane.

Recently a transient actin flashing on phagosomes, which took place at late phagocytosis, was reported (Liebl and Griffiths, 2009). I found that annexin A1 was also presentontheactinflashingLBP(Figure13B).AnaccumulationofannexinA1onflashing

LBPstronglycorrelatedwiththatofFactin,andafunctionalinvolvementofannexinA1in actinflashingwasconfirmedbyannexinA1knockdown,whichdramaticallyreducedactin flashing on LBP. Reduction in actin flashing was proportional to reduction in annexin A1 expression with 50% reduction of annexin A1 resulting in nearly 40% reduction in actin flashingevents (Figure11D). The data once againindicatethat annexin A1 is afunctional linkerbetweenLBPandFactinduringthebothearlyandlatestagesofphagocytosis.

5.3. Nterminal domain might not be important for Factin and LBP

bindingactivity.

AnnexinsdifferintheirNterminaldomains,whichbelievedtodefinetheirfunction andbindingtospecificproteinligands(Moss,1992;RaynalandPollard,1994)AnnexinsA1 harbourphosphorylationsitesforEGFreceptorkinaseatTyr20andProteinKinaseCatSer

27.However,thefunctionalimportanceoftheannexinA1phosphorylationisnotveryclear. Discussion 76

AnnexinA1tyrosinephosphorylationatTyr20residuepromoteitsproteolyticdegradation

(Chuah and Pallen, 1989) and Nterminaltruncated protein requiring less Ca2+for phospholipidbinding(Andoetal.,1989).InteractionofannexinA1withmembrane(Wang and Creutz, 1994) and liposome (Porte et al., 1996) has been found to be regulated by phosphorylationofNterminaldomain.However,bindingtoliposomesandtheliposome aggregating ability of annexin A1 are differently regulated. Annexin A1 S27E mutation, which mimicked phosphorylated state of Nterminal domain does not modify binding to liposomeswhiletheabilityofannexinA1toaggregateliposomesisabolished(Porteetal.,

1996). I observed that the presence of serine/threonin and tyrosine kinases inhibitors in macrophagecytosoldonotalteritsstimulatoryeffectinFactinLBPinteraction.Moreover thecoredomainwhichcontainactinbindingsiteofdifferentannexinsshareshighhomology and the removal of N terminal domain does not alter annexin A1 association with phagosomesinJ774A.1cellline(Kusumawatietal.,2001),itistemptingtospeculatethatone of the annexin protein family members, probably annexin A2, takes over its role in phagocytosis. Although the data suggest that annexin A1 phosphorylation might not be importantforitsinteractionwithFactin,furtherinvivoinvestigationhastobecarriedout.

5.4. LigandreceptorinteractionregulatestheinvolvementofannexinA1

inphagocytosis

It is well accepted that different receptor mediated phagocytosis takes different maturationpathwaysandalsoharbourdifferentproteinandlipidcomposition.Asignificant number of the proteins that are synthesised in response to a phagocytic signal can be expectedtoplayageneralroleinphagosomematurationandfunctions.Themostobvious class of proteins that can influence these processes are those that are inserted into the membrane or delivered within the lumen of the phagosome. Given that each receptor inducedasignificantfractionofitsownspecificsetofgenes(Hoffmannetal.,2010)andso the protein composition, it was interesting to compare the actin binding properties of the different LBP. As expected different receptor mediated phagosome had different Factin bindingproperties(Figure16).Thoughmanbeadsinternalisedandmaturemuchfasterthan the Fcbeads, after 60 minutes pulse time both haveequal percentage of LAMP2 positive phagosomes(Hoffmannetal.,2010).ConsideringthisfactIsuggestthatobtaineddifferences in Factin binding of different notstripped is not due the different stage of phagosome Discussion 77 maturationratherduetothedifferentproteincompositionofLBP.Studyby(Hoffmannet al.,2010)provedthatannexinA1ispresentonFcLBPbutnotonmanLBP.Inagreement with his study we found that annexin A1 was not present on the manLBP (Figure 16B).

Here,IhypothesisthatreducedFcLBPbindingwasduethepresenceofunidentified inhibitoryfactorwhichblocktheannexinA1Factinbindingactivity.Inabsenceofannexin

A1, manLBP Factin binding activity might be supported by other FactinLBP linker proteinlikemyosinVa.AnnexinA1independentFactinbindingofmanLBPwasfurther supportedbythefactthatpresenceofCa2+increasedtheother(FcandGelatinLBP)Factin

LBPbindingactivitybutfailedtostimulatemanLBPFactinbindingactivity(Table4).Inin vitro condition purified annexin A1 was able to stimulate all studied nonstripped LBP indicatesthatunderinvivoconditionsproteinscompetesforthesamebindingsitesonLBP membrane. Similar to the gelatinLBP, saltstripping greatly reduce the Factin binding activity of different LBP. After the saltstripping, annexin A1 showed similar stimulatory effect on Fc and manLBP (Figure 17). This observation further supports my theory of competitive binding of different proteins on LBP surface under in vivo condition. In vitro datawasfurthercorroboratedbytheinvivostudywhereIshowedcolocalisationofannexin

A1withFactinonlyonearlyFcLBP(Figure19).

It is tempting to speculate that the association of annexin A1 with phagosomes is simplymediatedthroughtheirabilitytobindtomembranesinaCa2+dependentfashion,but that this is not so straight forward. Some intracellular pathogens have evolved structures andmechanisms,whichallowthemtoleavetheusualpathway,thusavoidinganencounter with much or all of the macrophage killing and degradation machinery, including the expositiontoreactiveoxygenmetabolites.Usageofhospitablereceptor,recruitmentfriendly proteinorpreventionofhostileproteinrecruitmentissomeofthemanysurvivalstrategies employedbyintracellularmicroorganismtoevadehostimmunesystem(Haas,2007).Cargo specific recruitment of Annexin A1 was first reported by (Harricane et al., 1996). In their studytheyfirsttimereportedthatannexinA1isrecruitedonlyonnonpathogenicE.colior dead Brucella suis phagosome where live pathogenic B. suis prevent the recruitment of annexinA1periphagosomalregion.IntracellularstimulidependentannexinA1recruitment on phagosome membrane subserve amore subtlerole, perhapsasregulators of the initial signallingprocessthatfollowstheinteractionoftheorganismwiththephagocyticcellitself. Discussion 78

Thestudyby(Yonaetal.,2004)proposedthestimulusspecificdefectinthephagocytic activityofperitonealmacrophagesobtainedfromannexinA1knockoutmouse(Yonaetal.,

2004). With help of flowcytometry analysis they suggested that peritoneal macrophages showed impaired phagocytosis of nonopsonised zymosan particles where no defect was observed when opsonised zymosan where used. Moreover they showed that annexin A1 knockout resulted in altered expression of several cell membrane receptors and altered macrophageactivation.Incontradictorytotheirfinding,IobservedthatreducedannexinA1 inRAW264.7macrophagesresultedinimpairedphagocytosisofFcbeadsbutnoeffectwas seenonmanbeadsphagocytosis(Figure18).Obtaineddataneedcarefulinterpretationsince celllinespecificdifferenceintheproteinactivityisfrequentlyobserved.Moreovercellsfrom knockoutanimalsknowntobehavedifferentlycomparedtotransientproteinknockdown.

5.5. ExtracellularannexinA1modulatesmacrophagephagocyticactivity.

Researchersinterestedinthemechanismsandcontrolofphagocytosishasfrequently speculated on the possible role of the annexin family. In these processes some groups focussing upon an external and others on an internal role for the protein. My previous studies provide insight in to the intracellular role of the annexin A1 in phagosome biogenesis.Next,IdecidetoevaluateroleextracellularannexinA1inphagocytosis.(Becker and Grasso, 1988) first timereported that dexamethasone inducedtherelease of a protein suppressed phagocytosis of yeast particles from elicited murine macrophages. Later this protein is identified as annexin A1. Later studies by (McKanna, 1995) proposed that that annexinA1hadmultiplerolesinregulatingtheapoptoticeventandtheensuingremovalof cellsbymacrophagesandsuggestedthatthepresenceofthisproteinmightberesponsible forthelackofinflammatorychangescharacteristicallyobservedduringthisresponse.

Extracellular annexin A1 signals through a sevenmembranespanning Gprotein coupledreceptor(GPCR)knownasformylpeptidereceptor2(FPR2;alsoknownasALXRin humans),whichisalsothereceptorfortheantiinflammatorymoleculelipoxinA4(Perretti,

2003). Human ALXR belongs to a small family of receptors consisting of three members

(FPR1,ALXRandFPR3)thatarecoupledtoGproteinsandareexpressedbyseveralcell types, including human neutrophils, monocytes, macrophages, endothelial cells and epithelialcells(PerrettiandDAcquisto,2009).AnnexinA1andpeptidesderivedfromitsN terminal region compete with lipoxin A4 and also with another ALXR ligand, serum Discussion 79 amyloid protein A, for binding to ALXR (Perretti, 2003; Perretti and DAcquisto, 2009).

Intriguingly,peptidesderivedfromtheannexinA1Nterminalregionhavebeenshownto activateallthreereceptorsoftheFPRfamilyinvitro(Dahlgrenetal.,2000).

In agreement with previous studies I suggest that the observed reduced Fcbeads internalisation was due to the antiinflammatory action of annexin A1 (Figure 20). FcR receptor mediated phagocytosis usually accompanied by the macrophage activation and inflammatoryresponse(GarciaGarciaandRosales,2002).ExtracellularannexinA1generate the antiinflammatory signalling and reduced the activation of macrophage which might resultinreducedFcbeadsinternalisation.Surprisingly,extracellularannexinA1stimulated mannose receptor mediated manbeads internalisation (Figure 20) which also believed to generatealsoproinflammatorysignals(EastandIsacke,2002;StahlandEzekowitz,1998).

StimulationinapoptoticneutrophilsinternalisationbyannexinA1andNterminalpeptide havebeenreportedpreviously(Scannelletal.,2007)butmolecularmechanismbehindthis effectisyettobediscovered.

Downstream signalling following annexin A1induced ALXR activation involves transient phosphorylation ofextracellularregulated kinase 1 and 2(Chatterjeeet al., 2005;

Hayhoeetal.,2006).BlockingofALXRwithamonoclonalantibodypreventedannexinA1 induced inhibition of human neutrophils transmigration and adhesion to endothelialcell monolayer under flow (Perretti and DAcquisto, 2009).Interestingly, when these cells are activated, cytokine release is exacerbated by the absence of this protein. The exact mechanismbywhichthelackofannexinA1resultsinthisenhancedcytokineproductionis not completely understood but a likely explanation emerging from recent studies is the absenceofanimportantnegativefeedbackloop,autocrinestimulationbyannexinA1ofthe

FPRreceptorfamilyinthesecells.Althoughtheintracellularsignallingpathwayshaveyetto be completely elucidated, recent experimental evidence now supports the involvement of thisreceptorfamilyinthetransductionofsignalsfromextracellularannexinA1(Ernstetal.,

2004; Gavins et al., 2003; Hayhoe et al., 2006; Perretti et al., 2001). Although substantial progresshasbeenmadeinunderstandingofsignallingtransductionbyextracellularannexin

A1,itstillfarfromunderstood.MyprimaryresultswithextracellularannexinA1provided promisingdirectionbutconsiderableamountofworkneedtobedonebefore,Imakeany conclusion.Timeandsituationpermits,Iwouldliketopursuethisstudytoprovidemore insight in to role of extracellular annexin A1 in phagosome biogenesis. References 80

6. References

References 81

Aderem, A. and Underhill, D. M. (1999). Mechanisms of phagocytosis in macrophages. Annu.Rev.Immunol.17,593623.

Ahmad,S.F.,Chtcheglova,L.A.,Mayer,B.,Kuznetsov,S.A.andHinterdorfer,P.(2010). NanosensingofFcgammareceptorsonmacrophages.Anal.Bioanal.Chem.

AlHaddad,A.,Shonn,M.A.,Redlich,B.,Blocker,A.,Burkhardt,J.K.,Yu,H.,Hammer,J. A., III, Weiss, D. G., Steffen, W., Griffiths, G. et al. (2001). Myosin Va bound to phagosomesbindstoFactinanddelaysmicrotubuledependentmotility.Mol.Biol.Cell12, 27422755.

Allen,L.A.andAderem,A.(1996).Moleculardefinitionofdistinctcytoskeletalstructures involved in complement and Fc receptormediated phagocytosis in macrophages. J. Exp. Med.184,627637.

AlvarezMartinez,M.T.,Mani,J.C.,Porte,F.,FaivreSarrailh,C.,Liautard,J.P.andSri, W. J. (1996). Characterization of the interaction between annexin I and profilin. Eur. J. Biochem.238,777784.

AlvarezMartinez,M.T.,Porte,F.,Liautard,J.P.andSri,W.J.(1997).Effectsofprofilin annexinIassociationonsomepropertiesofbothprofilinandannexinI:modificationofthe inhibitoryactivityofprofilinonactinpolymerizationandinhibitionoftheselfassociationof annexinIanditsinteractionswithliposomes.Biochim.Biophys.Acta1339,331340.

Ando,Y.,Imamura,S.,Hong,Y.M.,Owada,M.K.,Kakunaga,T.andKannagi,R.(1989). Enhancement of calcium sensitivity of lipocortin I in phospholipid binding induced by limitedproteolysisandphosphorylationattheaminoterminusasanalyzedbyphospholipid affinitycolumnchromatography.J.Biol.Chem.264,69486955.

Araki, N. (2006). Role of microtubules and myosins in Fc gamma receptormediated phagocytosis.FrontBiosci.11,14791490.

Arnold, H., Henning, R. and Pette, D. (1971). Quantitative comparison of the binding of various glycolytic enzymes to Factin and the interaction of aldolase with Gactin. Eur. J. Biochem.22,121126.

Baum,B.andKunda,P.(2005).Actinnucleation:spireactinnucleatorinaclassofitsown. Curr.Biol.15,R305R308.

Becker, J. and Grasso, R. J. (1988). Suppression of yeast ingestion by dexamethasone in macrophagecultures:evidenceforasteroidinducedphagocytosisinhibitoryprotein.Int.J. Immunopharmacol.10,325338.

Bektas, M., Nurten, R., Gurel, Z., Sayers, Z. and Bermek, E. (1994). Interactions of eukaryotic elongation factor 2 with actin: a possible link between protein synthetic machineryandcytoskeleton.FEBSLett.356,8993.

Benaud,C.,Gentil,B.J.,Assard,N.,Court,M.,Garin,J.,Delphin,C.andBaudier,J.(2004). AHNAK interaction with the annexin 2/S100A10 complex regulates cell membrane cytoarchitecture.J.CellBiol.164,133144. References 82

Blackwood, R. A. and Ernst, J. D. (1990). Characterization of Ca2(+)dependent phospholipid binding, vesicle aggregation and membrane fusion by annexins. Biochem. J. 266,195200.

Blocker,A.,Severin,F.F.,Habermann,A.,Hyman,A.A.,Griffiths,G.andBurkhardt,J.K. (1996).Microtubuleassociatedproteindependentbindingofphagosomestomicrotubules.J. Biol.Chem.271,38033811.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantitiesofproteinutilizingtheprincipleofproteindyebinding.Anal.Biochem.72,248254.

Bretscher, A., Chambers, D., Nguyen, R. and Reczek, D. (2000). ERMMerlin and EBP50 proteinfamiliesinplasmamembraneorganizationandfunction. Annu.Rev.CellDev.Biol. 16,113143.

Cao,Y.,Li,Y.,Edelweiss,M.,Arun,B.,Rosen,D.,Resetkova,E.,Wu,Y.,Liu,J.,Sahin,A. andAlbarracin,C.T.(2008).LossofAnnexinA1ExpressioninBreastCancerProgression. Appl.Immunohistochem.Mol.Morphol.

Caron, E. and Hall, A. (1998). Identification of two distinct mechanisms of phagocytosis controlledbydifferentRhoGTPases.Science282,17171721.

Castellano, F., Chavrier, P. and Caron, E. (2001). Actin dynamics during phagocytosis. Semin.Immunol.13,347355.

Chapman,L.P.,Epton,M.J.,Buckingham,J.C.,Morris,J.F.andChristian,H.C.(2003). Evidenceforaroleoftheadenosine5triphosphatebindingcassettetransporterA1inthe externalization of annexin I from pituitary folliculostellate cells. Endocrinology 144, 1062 1073.

Chatterjee,B.E.,Yona,S.,Rosignoli,G.,Young,R.E.,Nourshargh,S.,Flower,R.J.and Perretti,M.(2005).Annexin1deficientneutrophilsexhibitenhancedtransmigrationinvivo andincreasedresponsivenessinvitro.J.Leukoc.Biol.78,639646.

Chesarone, M. A. and Goode, B. L. (2009). Actin nucleation and elongation factors: mechanismsandinterplay.Curr.Opin.CellBiol.21,2837.

Chimini, G. and Chavrier, P. (2000). Function of Rho family proteins in actin dynamics duringphagocytosisandengulfment.Nat.CellBiol.2,E191E196.

Chuah,S.Y.andPallen,C.J.(1989).Calciumdependentandphosphorylationstimulated proteolysisoflipocortinIbyanendogenousA431cellmembraneprotease.J.Biol.Chem.264, 2116021166.

Coppolino,M.G.,Dierckman,R.,Loijens,J.,Collins,R.F.,Pouladi,M.,JongstraBilen,J., Schreiber, A. D., Trimble, W. S., Anderson, R. and Grinstein, S. (2002). Inhibition of phosphatidylinositol4phosphate 5kinase Ialpha impairs localized actin remodeling and suppressesphagocytosis.J.Biol.Chem.277,4384943857. References 83

Creutz,C.E.,Pazoles,C.J.andPollard,H.B.(1978).Identificationandpurificationofan adrenalmedullaryprotein(synexin)thatcausescalciumdependentaggregationofisolated chromaffingranules.J.Biol.Chem.253,28582866.

Crumpton,M.J.andDedman,J.R.(1990).Proteinterminologytangle.Nature345,212.

DAcquisto,F.,Perretti,M.andFlower,R.J.(2008).AnnexinA1:apivotalregulatorofthe innateandadaptiveimmunesystems.Br.J.Pharmacol.155,152169.

Dahlgren,C.,Christophe,T.,Boulay,F.,Madianos,P.N.,Rabiet,M.J.andKarlsson,A. (2000). The synthetic chemoattractant TrpLysTyrMetValDMet activates neutrophils preferentiallythroughthelipoxinA(4)receptor.Blood95,18101818.

Defacque,H.,Egeberg,M.,Habermann,A.,Diakonova,M.,Roy,C.,Mangeat,P.,Voelter, W.,Marriott,G.,Pfannstiel,J.,Faulstich,H.etal.(2000).Involvementofezrin/moesininde novoactinassemblyonphagosomalmembranes.EMBOJ.19,199212.

Desjardins, M., Celis, J. E., van Meer, G., Dieplinger, H., Jahraus, A., Griffiths, G. and Huber, L.A. (1994a). Molecular characterization of phagosomes. J. Biol.Chem. 269, 32194 32200.

Desjardins,M.andGriffiths,G.(2003).Phagocytosis:latexleadstheway.Curr.Opin.Cell Biol.15,498503.

Desjardins, M., Huber, L. A., Parton, R. G. and Griffiths, G. (1994b). Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus.J.CellBiol.124,677688.

Diakonova, M., Bokoch, G. and Swanson, J. A. (2002). Dynamics of cytoskeletal proteins duringFcgammareceptormediatedphagocytosisinmacrophages.Mol.Biol.Cell13,402411.

Diakonova, M., Gerke, V., Ernst, J., Liautard, J. P., van, d., V and Griffiths, G. (1997). LocalizationoffiveannexinsinJ774macrophagesandonisolatedphagosomes.J.CellSci. 110(Pt10),11991213.

Dominguez,R.(2009).Actinfilamentnucleationandelongationfactorsstructurefunction relationships.CritRev.Biochem.Mol.Biol.44,351366.

East,L.andIsacke,C.M.(2002).Themannosereceptorfamily.Biochim.Biophys.Acta1572, 364386.

Ejiri, S. (2002). Moonlighting functions of polypeptide elongation factor 1: from actin bundlingtozincfingerproteinR1associatednuclearlocalization.Biosci.Biotechnol.Biochem. 66,121.

Ernst, S., Lange, C., Wilbers, A., Goebeler, V., Gerke, V. and Rescher, U. (2004). An annexin 1 Nterminal peptide activates leukocytes by triggering different members of the formylpeptidereceptorfamily.J.Immunol.172,76697676. References 84

Fujita,K.,Ye,L.H.,Sato,M.,Okagaki,T.,Nagamachi,Y.andKohama,K.(1999).Myosin light chain kinase from skeletal muscle regulates an ATPdependent interaction between actinandmyosinbybindingtoactin.Mol.CellBiochem.190,8590.

Futter,C.E.andWhite,I.J.(2007).Annexinsandendocytosis.Traffic.8,951958.

Gan,H.,Lee,J.,Ren,F.,Chen,M.,Kornfeld,H.andRemold,H.G.(2008).Mycobacterium tuberculosisblockscrosslinkingofannexin1andapoptoticenvelopeformationoninfected macrophagestomaintainvirulence.Nat.Immunol.9,11891197.

GarciaGarcia,E.andRosales,C.(2002).SignaltransductionduringFcreceptormediated phagocytosis.J.Leukoc.Biol.72,10921108.

Gavins, F. N., Yona, S., Kamal, A. M., Flower, R. J. and Perretti, M. (2003). Leukocyte antiadhesiveactionsofannexin1.Blood101,41404147.

Gerke, V., Creutz, C. E. and Moss, S. E. (2005). Annexins: linking Ca2+ signalling to membranedynamics.Nat.Rev.Mol.CellBiol.6,449461.

Gerke,V.andMoss,S.E.(1997).Annexinsandmembranedynamics.Biochim.Biophys.Acta 1357,129154.

Gerke,V.andMoss,S.E.(2002).Annexins:fromstructuretofunction.PhysiolRev.82,331 371.

Gerke,V.andWeber,K.(1984).Identityofp36KphosphorylateduponRoussarcomavirus transformation witha protein purified frombrush borders;calciumdependent binding to nonerythroidspectrinandFactin.EMBOJ.3,227233.

Glenney, J. R., Jr., Tack, B. and Powell, M. A. (1987). Calpactins: two distinct Ca++ regulatedphospholipidandactinbindingproteinsisolatedfromlungandplacenta.J.Cell Biol.104,503511.

Greenberg,S.,Burridge,K.andSilverstein,S.C.(1990).ColocalizationofFactinandtalin during Fc receptormediated phagocytosis in mouse macrophages. J. Exp. Med. 172, 1853 1856.

Griffiths, G. and Mayorga, L. (2007). Phagosome proteomes open the way to a better understandingofphagosomefunction.GenomeBiol.8,207.

Groves, E., Dart, A. E., Covarelli, V. and Caron, E. (2008). Molecular mechanisms of phagocyticuptakeinmammaliancells.CellMol.LifeSci.65,19571976.

Haas,A.(2007).Thephagosome:compartmentwithalicensetokill.Traffic.8,311330.

Hannon,R.,Croxtall,J.D.,Getting,S.J.,Roviezzo,F.,Yona,S.,PaulClark,M.J.,Gavins, F.N.,Perretti,M.,Morris,J.F.,Buckingham,J.C.etal.(2003).Aberrantinflammationand resistancetoglucocorticoidsinannexin1/mouse.FASEBJ.17,253255. References 85

Harricane, M. C., Caron, E., Porte, F. and Liautard, J. P.(1996). Distribution of annexinI during nonpathogen or pathogen phagocytosis by confocal imaging and immunogold electronmicroscopy.CellBiol.Int.20,193203.

Hayes, M. J., Rescher, U., Gerke, V. and Moss, S. E. (2004). Annexinactin interactions. Traffic.5,571576.

Hayhoe,R.P.,Kamal,A.M.,Solito,E.,Flower,R.J.,Cooper,D.andPerretti,M.(2006). Annexin1anditsbioactivepeptideinhibitneutrophilendotheliuminteractionsunderflow: indicationofdistinctreceptorinvolvement.Blood107,21232130.

Hoffmann,E.,Marion,S.,Mishra,B.B.,John,M.,Kratzke,R.,Ahmad,S.F.,Holzer,D., Anand, P. K., Weiss, D. G., Griffiths, G. et al. (2010). Initial receptorligand interactions modulategeneexpressionandphagosomalpropertiesduringbothearlyandlatestagesof phagocytosis.Eur.J.CellBiol.89,693704.

Jahraus,A.,Egeberg,M.,Hinner,B.,Habermann,A.,Sackman,E.,Pralle,A.,Faulstich,H., Rybin,V.,Defacque,H.andGriffiths,G.(2001a).ATPdependentmembraneassemblyof Factinfacilitatesmembranefusion.Mol.Biol.Cell12,155170.

Jahraus,A.,Egeberg,M.,Hinner,B.,Habermann,A.,Sackman,E.,Pralle,A.,Faulstich,H., Rybin,V.,Defacque,H.andGriffiths,G.(2001b).ATPdependentmembraneassemblyof Factinfacilitatesmembranefusion.Mol.Biol.Cell12,155170.

Kang, P. B., Azad, A. K., Torrelles, J. B., Kaufman, T. M., Beharka, A., Tibesar, E., DesJardin,L.E.andSchlesinger,L.S. (2005). The human macrophage mannose receptor directsMycobacteriumtuberculosislipoarabinomannanmediatedphagosomebiogenesis.J. Exp.Med.202,987999.

Kaufman,M.,Leto,T.andLevy,R.(1996).TranslocationofannexinItoplasmamembranes andphagosomesinhumanneutrophilsuponstimulationwithopsonizedzymosan:possible roleinphagosomefunction.Biochem.J.316(Pt1),3542.

Kiefer,F.,Brumell,J.,AlAlawi,N.,Latour,S.,Cheng,A.,Veillette,A.,Grinstein,S.and Pawson, T. (1998). The Syk protein tyrosine kinase is essential for Fcgamma receptor signalinginmacrophagesandneutrophils.Mol.CellBiol.18,42094220.

Knetsch,M.L.,Uyeda,T.Q.andManstein,D.J.(1999).Disturbedcommunicationbetween actinandnucleotidebindingsitesinamyosinIIwithtruncated50/20kDajunction.J.Biol. Chem.274,2013320138.

Kusumawati,A.,Cazevieille,C.,Porte,F.,Bettache,S.,Liautard,J.P.andSri,W.J.(2000). EarlyeventsandimplicationofFactinandannexinIassociatedstructuresinthephagocytic uptake of Brucella suis by the J774A.1 murine cell line and human monocytes. Microb. Pathog.28,343352.

Kusumawati, A., Liautard, J. P. and Sri, W. J. (2001). Implication of annexin 1 in phagocytosis: effects of nterminal domain deletions and point mutations of the phosphorylationsiteSer27.CellBiol.Int.25,809813. References 86

Kwiatkowska,K.andSobota,A.(1999).Signalingpathwaysinphagocytosis.Bioessays21, 422431.

Liebl, D. and Griffiths, G. (2009). Transient assembly of Factin by phagosomes delays phagosomefusionwithlysosomesincargooverloadedmacrophages.J.CellSci.122,2935 2945.

Lim,L.H.andPervaiz,S.(2007).Annexin1:thenewfaceofanoldmolecule.FASEBJ.21, 968975.

Lim, L. H., Solito, E., RussoMarie, F., Flower, R. J. and Perretti, M. (1998). Promoting detachment of neutrophils adherent to murine postcapillary venules to control inflammation:effectoflipocortin1.Proc.Natl.Acad.Sci.U.S.A95,1453514539.

Mao, Y. S. and Yin, H. L. (2007). Regulation of the actin cytoskeleton by phosphatidylinositol4phosphate5kinases.PflugersArch.455,518.

Martin, G. R., Perretti, M., Flower, R. J. and Wallace, J. L. (2008). Annexin1 modulates repairofgastricmucosalinjury.Am.J.PhysiolGastrointest.LiverPhysiol294,G764G769.

MartinezSolano, L., Nombela, C., Molero, G. and Gil, C. (2006). Differential protein expression of murine macrophages upon interaction with Candida albicans. Proteomics.6 Suppl1,S133S144.

May,R.C.andMachesky,L.M.(2001).Phagocytosisandtheactincytoskeleton.J.CellSci. 114,10611077.

Mayadas, T. N. and Cullere, X. (2005). Neutrophil beta2 integrins: moderators of life or deathdecisions.TrendsImmunol.26,388395.

McKanna,J.A.(1995).Lipocortin1inapoptosis:mammaryregression.Anat.Rec.242,110.

Miele, L., CordellaMiele, E., Facchiano, A. and Mukherjee, A. B. (1988). Novel anti inflammatory peptides from the region of highest similarity between uteroglobin and lipocortinI.Nature335,726730.

Miwa, N., Uebi, T. and Kawamura, S. (2008). S100annexin complexesbiology of conditionalassociation.FEBSJ.275,49454955.

Morel,E.,Parton,R.G.andGruenberg,J.(2009).AnnexinA2dependentpolymerizationof actinmediatesendosomebiogenesis.Dev.Cell16,445457.

Morrissette, N. S., Gold, E. S., Guo, J., Hamerman, J. A., Ozinsky, A., Bedian, V. and Aderem, A. A. (1999). Isolation and characterization of monoclonal antibodies directed againstnovelcomponentsofmacrophagephagosomes.J.CellSci.112(Pt24),47054713.

Moss,S.E.(1992).TheAnnexins.London:protlandpresslimited.

Moss,S.E.andMorgan,R.O.(2004).Theannexins.GenomeBiol.5,219. References 87

Nakamura, F., Huang, L., Pestonjamasp, K., Luna, E. J. and Furthmayr, H. (1999). Regulation of Factin binding to platelet moesin in vitro by both phosphorylation of threonine558andpolyphosphatidylinositides.Mol.Biol.Cell10,26692685.

Niedergang, F. and Chavrier, P. (2004). Signaling and membrane dynamics during phagocytosis:manyroadsleadtothephagos(R)ome.Curr.Opin.CellBiol.16,422428.

Niedergang,F.andChavrier,P.(2005).RegulationofphagocytosisbyRhoGTPases.Curr. Top.Microbiol.Immunol.291,4360.

Ofek, I., Goldhar, J., Keisari, Y. and Sharon, N. (1995). Nonopsonic phagocytosis of microorganisms.Annu.Rev.Microbiol.49,239276.

Perretti,M.(2003).Theannexin1receptor(s):istheplotunravelling?TrendsPharmacol.Sci. 24,574579.

Perretti,M.andDAcquisto,F.(2009).AnnexinA1andglucocorticoidsaseffectorsofthe resolutionofinflammation.Nat.Rev.Immunol.9,6270.

Perretti,M.andFlower,R.J.(1996).Measurementoflipocortin1levelsinmurineperipheral bloodleukocytesbyflowcytometry:modulationbyglucocorticoidsandinflammation.Br.J. Pharmacol.118,605610.

Perretti,M.,Getting,S.J.,Solito,E.,Murphy,P.M.andGao,J.L.(2001).Involvementof thereceptorforformylatedpeptidesintheinvivoantimigratoryactionsofannexin1and itsmimetics.Am.J.Pathol.158,19691973.

Porte,F.,deSanta,B.P.,Phalipou,S.,Liautard,J.P.andWidada,J.S.(1996).Changeinthe NterminaldomainconformationofannexinIthatcorrelateswithliposomeaggregationis impaired by Ser27 to Glu mutation that mimics phosphorylation. Biochim. Biophys. Acta 1293,177184.

Powell,M.A.andGlenney,J.R.(1987).RegulationofcalpactinIphospholipidbindingby calpactinIlightchainbindingandphosphorylationbyp60vsrc.Biochem.J.247,321328.

Rabinovitch, M. (1995). Professional and nonprofessional phagocytes: an introduction. TrendsCellBiol.5,8587.

Ravetch,J.V.andBolland,S.(2001).IgGFcreceptors.Annu.Rev.Immunol.19,275290.

Raynal,P.andPollard,H.B.(1994).Annexins:theproblemofassessingthebiologicalrole for a gene family of multifunctional calcium and phospholipidbinding proteins. Biochim. Biophys.Acta1197,6393.

Rothhut,B.(1997).Participationofannexinsinproteinphosphorylation.CellMol.LifeSci.53, 522526.

Sambrook, J. and Russell, D. W. (2006). The condensed protocols from Molecular cloning : a laboratorymanual.NewYork:ColdSpringHarborLaboratoryPress. References 88

Scannell, M., Flanagan, M. B., deStefani, A., Wynne, K. J., Cagney, G., Godson, C. and Maderna,P.(2007).Annexin1andpeptidederivativesarereleasedbyapoptoticcellsand stimulatephagocytosisofapoptoticneutrophilsbymacrophages.J.Immunol.178,45954605.

Schlaepfer, D. D. and Haigler, H. T. (1987). Characterization of Ca2+dependent phospholipidbindingandphosphorylationoflipocortinI.J.Biol.Chem.262,69316937.

Schutt,C.(1999).Fightinginfection:theroleoflipopolysaccharidebindingproteinsCD14 andLBP.Pathobiology67,227229.

Scott, C. C., Dobson, W., Botelho, R. J., CoadyOsberg, N., Chavrier, P., Knecht, D. A., Heath, C., Stahl, P. and Grinstein, S. (2005). Phosphatidylinositol4,5bisphosphate hydrolysisdirectsactinremodelingduringphagocytosis.J.CellBiol.169,139149.

Seemann,J.,Weber,K.,Osborn,M.,Parton,R.G.andGerke,V.(1996).Theassociationof annexin I with early endosomes is regulated by Ca2+ and requires an intact Nterminal domain.Mol.Biol.Cell7,13591374.

Slomianny, M. C., Dupont, A., Bouanou, F., Beseme, O., Guihot, A. L., Amouyel, P., Michalski, J. C. and Pinet, F. (2006). Profiling of membrane proteins from human macrophages:comparisonoftwoapproaches.Proteomics.6,23652375.

Smith,L.C.,Azumi,K.andNonaka,M.(1999).Complementsystemsininvertebrates.The ancientalternativeandlectinpathways.Immunopharmacology42,107120.

Stahl, P. D. and Ezekowitz, R. A. (1998). The mannose receptor is a pattern recognition receptorinvolvedinhostdefense.Curr.Opin.Immunol.10,5055.

Stuart,L.M.,Boulais,J.,Charriere,G.M.,Hennessy,E.J.,Brunet,S.,Jutras,I.,Goyette,G., Rondeau, C., Letarte, S., Huang, H. et al. (2007). A systems biology analysis of the Drosophilaphagosome.Nature445,95101.

Swanson,J.A.andHoppe,A.D.(2004).ThecoordinationofsignalingduringFcreceptor mediatedphagocytosis.J.Leukoc.Biol.76,10931103.

Takenawa,T.andItoh,T.(2001).Phosphoinositides,keymoleculesforregulationofactin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys.Acta1533,190206.

Taylor,P.R.,Gordon,S.andMartinezPomares,L.(2005).Themannosereceptor:linking homeostasisandimmunitythroughsugarrecognition.TrendsImmunol.26,104110.

Tellam,R.(1985).MechanismofCaCl2inducedactinpolymerization.Biochemistry24,4455 4460.

Thiel, C., Weber, K. and Gerke, V. (1991). Characterization of a Ca(2+)binding site in humanannexinIIbysitedirectedmutagenesis.J.Biol.Chem.266,1473214739.

Toyohara, A. and Inaba, K. (1989). Transport of phagosomes in mouse peritoneal macrophages.J.CellSci.94(Pt1),143153. References 89

Underhill,D.M.andOzinsky,A.(2002).Phagocytosisofmicrobes:complexityinaction. Annu.Rev.Immunol.20,825852.

Varticovski, L., Chahwala, S. B., Whitman, M., Cantley, L., Schindler, D., Chow, E. P., Sinclair,L.K.andPepinsky,R.B.(1988).LocationofsitesinhumanlipocortinIthatare phosphorylated by protein tyrosine kinases and protein kinases A and C. Biochemistry27, 36823690.

Vieira, O. V., Botelho, R. J. and Grinstein, S. (2002). Phagosome maturation: aging gracefully.Biochem.J.366,689704.

Wang, W. and Creutz, C. E. (1994). Role of the aminoterminal domain in regulating interactions of annexin I with membranes: effects of aminoterminal truncation and mutagenesisofthephosphorylationsites.Biochemistry33,275282.

Wear, M. A., Schafer, D. A. and Cooper, J. A. (2000). Actin dynamics: assembly and disassemblyofactinnetworks.Curr.Biol.10,R891R895.

Yam, P. T. and Theriot, J. A. (2004). Repeated cycles of rapid actin assembly and disassemblyonepithelialcellphagosomes.Mol.Biol.Cell15,56475658.

Yang, Y. H., Aeberli, D., Dacumos, A., Xue, J. R. and Morand, E. F. (2009). Annexin1 regulatesmacrophageIL6andTNFviaglucocorticoidinducedleucinezipper.J.Immunol. 183,14351445.

Yang,Y.H.,Toh,M.L.,Clyne,C.D.,Leech,M.,Aeberli,D.,Xue,J.,Dacumos,A.,Sharma, L.andMorand,E.F.(2006).Annexin1negativelyregulatesIL6expressionviaeffectson p38MAPKandMAPKphosphatase1.J.Immunol.177,81488153.

Yeung, T. and Grinstein, S. (2007). Lipid signaling and the modulation of surface charge duringphagocytosis.Immunol.Rev.219,1736.

Yona,S.,Buckingham,J.C.,Perretti,M.andFlower,R.J.(2004).Stimulusspecificdefectin thephagocyticpathwaysofannexin1nullmacrophages.Br.J.Pharmacol.142,890898.

Yona, S., Heinsbroek, S. E., Peiser, L., Gordon, S., Perretti, M. and Flower, R. J. (2006). Impairedphagocyticmechanisminannexin1nullmacrophages.Br.J.Pharmacol.148,469 477.

Yona, S., Ward, B., Buckingham, J. C., Perretti, M. and Flower, R. J.(2005).Macrophage biologyintheAnxA1/mouse.ProstaglandinsLeukot.Essent.FattyAcids72,95103. Acknowledgment 90

Acknowledgment

Firstandforemost,IwouldlikeexpressmygratitudetoPDDrSergeiKuznetsovfor accepting me as a PhD student and allowing me to get introduced with the fascinating scienceofthecytoskeletonandphagocytosis.IamgratefultohimforanexperiencethatI willcarrywithmethroughoutmylife.IthankProf.DieterWeissforallthoseshortbutyet informativeconversationsanddiscussionsduringmywholestay.Iamequallythankfulto DFZ (DFG; KU1528/3; SFB629) and European Commission for Marie Curie research fellowship(MRTNCT2006035946)forprovidingmuchneededfinancialsupport.

IamverymuchgratefultoDrVolkerGerkeforprovidingpurifiedproteins,plasmid constructsandvaluableguidanceformymanuscriptpreparation.Iamalsoverygratefulto Prof.JeanGruenbergandDrE.MorelforprovidingpurifiedannexinA2proteinandpGEX AnxA2expressionvector(DepartmentofBiochemistry,UniversityofGeneva,Switzerland). IwouldalsoliketoacknowledgemyprevioussupervisorDrAchyutSinhaandDrSantanu Datta,whoinspiredmetoundertakemygraduatestudy.IamalsothankfultoProf.Gareth GriffithstobearefereeofmyPhDthesis.

Furthermore,Iwouldliketothankallpreviousandrecentmembersofthemicroscopy centreforalltheirpracticalhelp,theniceatmosphereandnumerousfruitfultalksaboutlife and science. I am afraid of missing many but Furquan, Ramona, Eik, Ben, Tareck, Heiko deservespecialmention.MsBirgitWobithdeservesspecialthanksnotonlyforhertechnical supportsbutalsoforoutsidelaboratoryhelps.

I would like to thank my friends who have supported me during this journey. The yearsIspentinRostockwouldnothavebeenaswonderfulwithoutmyfriendsFurquan& Sana,Rahul,Lata&Bhaskar,Ankits,Jay,Sachin,Naveen,Raymond,MarieandBen.Iam especiallythankfultoDrSavvasforhelpingmeininitialstageofmylifeinRostock.Life wouldnothavebeenthesamewithouttheseduringmystayinRostock.Ialsothankother countlesspeopleImetinRostockforthewonderfulfriendshiptheyofferedme

Iowedeepestgratitudetomyparentswithouttheirbasiclessonsoflife;Iwouldnotbe thepersonIamtoday.IobligedmuchmorethanIcouldeverreturntotheminwholemy life.

My beloved wife and daughter procure special place in my acknowledgement. I cannotexpressmygratitudeinwordsbutIamverymuchgratefultothemforproviding muchneededemotionalandmoralsupport.Intheircompanyeverydaywassocheerfulthat I never felt ups and down. Dear, thanks a lot for standing next to me and providing me strengthtofightagainstoddsinourlife. CurriculumVitae 91

Curriculum Vitae

PersonalInformation

Name:DevangPatel DateofBirthandPlace: 26thJune,1981,Unjha,India CurrentAddress: KarlStr.15,18055Rostock,Germany PermanentAddress: A13 Samruddhi Tenament, Vatva Road, Isanpur, Ahmedabad382443,Gujarat,India Education

SinceApril2007 PhDstudentatUniversityofRostock,Germany March2002March2003 MastersofAppliedScience(Biotechnology),University ofWesternSydney,Australia June1998–June2001 Bachelor of Science (Biochemistry with vocational Biotechnology),GujaratUniversity,India ResearchExperience

SinceMarch2008 Marie Curie Early Stage Researcher, Project “Role of annexin A1 in phagocytosis” University of Rostock, Germany April2007–March2008 Project Assistant, University of Rostock, DFG Project “New protein involved in phagosome Factin interaction” December2003March2007 AssociateResearchScientist,AstraZenecaIndiaPrivate Limited,Bangalore,India March2002–December2002 Masters Thesis, “Cellulolytic enzyme production in submergedfermentation” Publications Patel,D.M.;AhmadS.F.;WeissD.G.;GerkeV.;KuznetsovS.A.(2010)AnnexinA1asa functional linker between the actin filaments and phagosomes during the phagocytosis, J. Cell.Sci.(Returnedwithminorrevision) Patel, D. M.; Ahmad S. F.; Weiss D. G.; Gerke V.; Kuznetsov S. A. (2010) Influence of receptor signalling on annexinA1recruitmentduring Fc andMannose receptor mediated phagocytosis.(UnderpreparationforFEBSLetters) Ahmad S. F., Patel D. M.,WeissD.G.,KuznetsovS.A.;InfluenceofFcreceptor distribution on mannose receptor mediated phagocytosis in mouse macrophages (manuscriptunderpreparationforJ.CellSci.) CurriculumVitae 92

PresentationsandTalks Patel,D.M.;AhmadF.;KuznetsovS.A.(2009)AnnexinA1asafunctionallinkerbetween actin systems and Phagosome in mouse macrophages, European Molecular Biology Organization(EMBO),Amsterdam,TheNetherlands,281August.(Posterpresentation) Patel,D.M.;HoffmannE.;AhmadF.;KuznetsovS.A.(2008)Plasmamembranereceptors define annexindependent interaction of mature phagosomes with Factin. Advanced Microscopy Techniques for Immunanoscopy conference, Barcelona, Spain, 1516 October. (OralandPosterpresentation) Ahmad,S.F.,ChtcheglovaL.A.,PatelD.M.,Wildling,L.,Hinterdorfer,P.andKuznetsov,S. A (2008) Mapping of macrophage receptors using latex bead system and atomic force microscopy. Advanced Microscopy Techniques for Immunanoscopy conference, Barcelona Spain,1516October.(PosterPresentation) Patel, D.M. and Kuznetsov S. (2008) New proteins involved in phagosome Factin interaction during the late stage of phagosome maturation. European Life Scientist Organization (ELSO) conference, Nice, France, 30 August 2 September (Poster Presentation) Patel,D.M.(2008)IdentificationofnewproteinsinvolvedinFActinmedicatedtransportof phagosome.AnnualPhagosomeMeeting,2008,Titisee,Germany(Oralpresentation) Patel, D.M. and Peiris, P. (2003) Cellulolytic enzyme production from sorghum waste in submerged fermentation by Trichoderma reesei. Fermentation and Bioprocessing Interest Group (FBIG) conference, Australia’s Biotechnology Organization, Sydney 1415 April (PosterPresentation) Declaration 93

Declaration

Selbstständigkeitserklärung

Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig angefertigt und ohne fremde Hilfe verfasst habe, keine außer den von mir angegebenen

Hilfsmitteln und Quellen dazu verwendet habe und die den benutzten Werken inhaltlich undwörtlichentnommenenStellenalssolchekenntlichgemachthabe.

Rostock,300910______

DevangPatel Supplementary 94

Supplementary Supplementary 95

No Proteinname Accession molecular Probability Unique %spectra Unique Identified numbers weight Peptides covered Spectra Spectra (Kda) 1 AhnakAHNAKnucleoproteinisoform1 IPI00553798 604.2 100% 92 2.10% 106 175 2 Myh9Myosin9 IPI00123181 226.3 100% 66 2.10% 85 179 3 FlnaIsoform1ofFilaminA IPI00131138 281.2 100% 29 0.47% 29 39 4 Pkm2PyruvatekinaseisozymeM2 IPI00407130 58.0 100% 20 0.62% 26 52 5 Anxa2AnnexinA2 IPI00468203 38.7 100% 15 0.53% 20 44 6 Pgk1;EG433594;EG668435phosphoglyceratekinase1 IPI00230002 44.5 100% 13 0.33% 15 28 7 Spnb2spectrinbeta2isoform2 IPI00121892 251.4 100% 13 0.18% 13 15 8 Spna2AdultmalebraincDNA,RIKENfulllengthenrichedlibrary, IPI00651953 114.1 100% 10 0.13% 10 11 clone:3526403B12product:Spectrinalphachain,brain(Spectrin,non erythroidalphachain)(AlphaIIspectrin)(Fodrinalphachain)homolog (Fragment) 9 Eef2Elongationfactor2 IPI00466069 95.3 100% 10 0.22% 1118 10 Spna2similartoSpectrinalphachain,brain(Spectrin,nonerythroid IPI00660522 235.3 100% 10 0.16% 10 13 alphachain)(AlphaIIspectrin)(Fodrinalphachain)isoform10 11 Myh11Isoform1ofMyosin11 IPI00114894 227.0 100% 8 0.29% 11 24 12 MsnMoesin IPI00110588 67.8 100% 8 0.14% 8 12 13 TktTransketolase IPI00137409 67.6 100% 7 0.13% 8 11 14 Pdia3proteindisulfideisomeraseassociated3 IPI00230108 56.7 100% 7 0.16% 7 13 15 JupJunctionplakoglobin IPI00229475 81.8 100% 7 0.11% 7 9 16 Tagln2MKIAA0120protein(Fragment) IPI00117007 24.2 100% 7 0.16% 7 13 17 Dspdesmoplakinisoform1 IPI00553419 332.9 100% 7 0.12% 7 10 18 2900073G15Rikmyosinlightchain,regulatoryBlike IPI00109044 19.9 100% 6 0.30% 8 25 19 AldoaFructosebisphosphatealdolaseA IPI00221402 39.3 100% 6 0.20% 7 17 20 Prdx1Peroxiredoxin1 IPI00121788 22.2 100% 6 0.17% 6 14 21 YarsTyrosyltRNAsynthetase IPI00314153 63.0 100% 6 0.08% 6 7 22 Krt16Keratinintermediatefilament16a IPI00131209 52.0 100% 6 0.08% 6 7 23 Tuba1aTubulinalpha1chain IPI00110753 50.1 100% 6 0.13% 8 11 24 Tomm34MitochondrialimportreceptorsubunitTOM34 IPI00165694 34.3 100% 6 0.13% 811 25 Actr3Actinlikeprotein3 IPI00115627 47.3 100% 6 0.08% 6 7 Supplementary 96

No Proteinname Accession molecular Probability Unique %spectra Unique Identified numbers weight Peptides covered Spectra Spectra (Kda) 26 Tubb2bTubulinbeta2Bchain IPI00109061 49.9 100% 6 0.12% 6 10 27 EG667952;LOC671953similartoMyosinlightpolypeptide6 IPI00264053 21.9 100% 6 0.22% 6 18 28 Krt5Keratin,typeIIcytoskeletal5 IPI00139301 61.8 100% 5 0.16% 5 13 29 Mtap4Microtubuleassociatedprotein4 IPI00408119 117.5 100% 5 0.07% 5 6 30 Actr2Actinlikeprotein2 IPI00177038 44.7 100% 5 0.10% 5 8 31 Stip1Stressinducedphosphoprotein1 IPI00121514 62.6 100% 5 0.06% 5 5 32 Eef1a2Elongationfactor1alpha2 IPI00119667 50.4 100% 5 0.16% 6 13 33 Ptpn6Isoform2ofTyrosineproteinphosphatasenonreceptortype6 IPI00225419 67.7 100% 5 0.06% 5 5 34 Krt19Keratin,typeIcytoskeletal19 IPI00112947 44.5 100% 5 0.11% 5 9 35 CacybpCalcyclinbindingprotein IPI00115650 26.5 100% 5 0.08% 5 7 36 Krt28similartoKeratin,typeIcytoskeletal10 IPI00750213 106.7 100% 4 0.22% 7 18 37 Eea1Earlyendosomeantigen1 IPI00453776 160.9 100% 4 0.05% 4 4 38 Eef1a1Elongationfactor1alpha1 IPI00307837 50.7 100% 4 0.14% 5 12 39 Krt6bKeratin,typeIIcytoskeletal6B IPI00131366 60.3 100% 3 0.18% 5 15 40 similartoSpectrinalphachain,brain(Spectrin,nonerythroidalpha IPI00137368 66.3 100% 3 0.05% 3 4 chain)(AlphaIIspectrin)(Fodrinalphachain)isoform38 41 Arpc1bArpc1bprotein IPI00125143 41.5 100% 3 0.05% 3 4 42 39kDaprotein IPI00133580 39.4 100% 3 0.12% 3 10 43 Snx22;PpibpeptidylprolylisomeraseB IPI00135686 23.7 100% 3 0.07% 4 6 44 Arpc4;Ttll3Actinrelatedprotein2/3complexsubunit4 IPI00138691 19.6 100% 3 0.07% 3 6 45 Krt14Keratin,typeIcytoskeletal14 IPI00227140 52.9 100% 3 0.10% 3 8 46 Eef1b2Elongationfactor1beta IPI00320208 24.7 100% 3 0.10% 4 8 47 Hmgb2HighmobilitygroupproteinB2 IPI00462291 24.1 100% 3 0.05% 3 4 48 Lrrfip1Isoform2ofLeucinerichrepeatflightlessinteractingprotein1 IPI00117277 71.3 100% 3 0.05% 3 4 49 Hist1h1cHistoneH1.2 IPI00223713 21.2 100% 3 0.04% 3 3 50 Anxa1AnnexinA1 IPI00230395 38.7 100% 3 0.05% 3 4 51 FusRNAbindingproteinFUS IPI00117063 52.7 100% 3 0.04% 3 3 52 Thoc4Isoform1ofTHOcomplexsubunit4 IPI00114407 26.9 100% 3 0.04% 3 3 53 Mdh2Malatedehydrogenase,mitochondrialprecursor IPI00323592 35.6 100% 3 0.05% 4 4 Supplementary 97

No Proteinname Accession molecular Probability Unique %spectra Unique Identified numbers weight Peptides covered Spectra Spectra (Kda) 54 Eef1gElongationfactor1gamma IPI00318841 50.0 100% 2 0.04% 2 3 55 Acta1Actin,alphaskeletalmuscle IPI00110827 42.0 100% 2 0.04% 3 3 56 Cct8Tcomplexprotein1subunittheta IPI00469268 59.5 100% 2 0.04% 2 3 57 Coro1aCoronin1A IPI00323600 51.0 100% 2 0.02% 2 2 58 Rcc2ProteinRCC2 IPI00222509 56.0 100% 2 0.02% 2 2 59 Mtap4Mtap4protein IPI00406741 91.4 100% 2 0.04% 2 3 60 Krt42TypeIkeratinKA22 IPI00468696 50.1 100% 2 0.13% 3 11 61 Krt79Keratin79 IPI00124499 57.5 100% 2 0.10% 3 8 62 Krt1Keratin,typeIIcytoskeletal1 IPI00625729 65.6 100% 2 0.08% 3 7 63 Tcea1Isoform2ofTranscriptionelongationfactorAprotein1 IPI00121887 33.9 100% 2 0.02% 2 2 64 Dync1i2Cytoplasmicdynein1intermediatechain2 IPI00131086 68.4 100% 2 0.04% 2 3 65 Krt13Isoform1ofKeratin,typeIcytoskeletal13 IPI00136056 47.7 100% 2 0.04% 2 3 66 Got2Aspartateaminotransferase,mitochondrialprecursor IPI00117312 47.4 100% 2 0.02% 2 2 67 Krt17Keratin,typeIcytoskeletal17 IPI00230365 48.1 100% 2 0.02% 2 2 68 Krt76AdultfemalevaginacDNA,RIKENfulllengthenrichedlibrary, IPI00346834 62.8 100% 2 0.07% 3 6 clone:9930024P18product:similartoKeratin2p 69 Krt6aKeratin,typeIIcytoskeletal6A IPI00131368 59.3 100% 2 0.04% 2 3 70 Hspa1lHeatshock70kDaprotein1L IPI00133208 70.6 100% 2 0.04% 2 3 71 TprNuclearporecomplexassociatedintranuclearcoiledcoilprotein IPI00177059 267.0 100% 2 0.02% 2 2 TPR 72 21kDaprotein IPI00339996 20.5 100% 2 0.04% 2 3 73 Fen1AdultmaletestiscDNA,RIKENfulllengthenrichedlibrary, IPI00410836 45.8 100% 2 0.04% 2 3 clone:4930584I03product:flapstructurespecificendonuclease1,full insertsequence 74 Lrrfip1Isoform1ofLeucinerichrepeatflightlessinteractingprotein1 IPI00654388 79.2 100% 2 0.04% 2 3 75 Krt42EScellscDNA,RIKENfulllengthenrichedlibrary, IPI00420316 26.3 99% 2 0.05% 2 4 clone:2410129K01product:similartoRADIATEDKERATINOCYTE MRNA266 76 ActbActin,cytoplasmic1 IPI00110850 41.7 89% 2 0.05% 2 4 Supplementary 98

No Proteinname Accession molecular Probability Unique %spectra Unique Identified numbers weight Peptides covered Spectra Spectra (Kda) 77 Krt73Keratin73 IPI00347110 58.9 100% 1 0.11% 2 9 78 Hspa8Heatshockcognate71kDaprotein IPI00323357 70.9 100% 1 0.01% 1 1 79 Arpc2Actinrelatedprotein2/3complexsubunit2 IPI00661414 34.3 100% 1 0.02% 1 2 80 Eif4hIsoformLongofEukaryotictranslationinitiationfactor4H IPI00124742 27.3 100% 1 0.01% 1 1 81 EG433073similartoactinrelatedprotein2/3complexsubunit2 IPI00461936 21.4 100% 1 0.01% 1 1 82 Ube2iSUMOconjugatingenzymeUBC9 IPI00119227 18.0 100% 1 0.02% 1 2 83 Eif5aEukaryotictranslationinitiationfactor5A1 IPI00108125 16.8 100% 1 0.02% 1 2 84 Psat1Phosphoserineaminotransferase IPI00115620 40.5 100% 1 0.01% 1 1 85 LOC213079similartoHighmobilitygroupprotein1 IPI00355265 20.3 100% 1 0.01% 1 1 86 Krt2keratincomplex2,basic,gene17 IPI00622240 70.9 100% 1 0.05% 1 4 87 Hn1lHematologicalandneurologicalexpressed1likeprotein IPI00107958 20.0 100% 1 0.01% 1 1 88 Pin4;EG628161PeptidylprolylcistransisomeraseNIMAinteracting4 IPI00109696 13.8 100% 1 0.02% 1 2 89 Tubb5Tubulinbeta5chain IPI00117352 49.7 100% 1 0.02% 1 2 90 EG622339similartoGlyceraldehyde3phosphatedehydrogenase IPI00123176 36.5 100% 1 0.02% 1 2 91 RbmxHeterogeneousnuclearribonucleoproteinG IPI00124979 42.3 100% 1 0.01% 1 1 92 Arpc5Actinrelatedprotein2/3complexsubunit5 IPI00399943 16.3 100% 1 0.01% 11 93 Calm2;Calm3;Calm112dayspregnantadultfemaleplacentacDNA, IPI00467841 21.5 100% 1 0.01% 1 1 RIKENfulllengthenrichedlibrary,clone:I530005B05 product:1,fullinsertsequence 94 NefhNeurofilamenttripletHprotein IPI00114241 117.0 100% 1 0.02% 1 2 95 1700009N14RikRIKENcDNA1700009N14gene IPI00127109 24.3 100% 1 0.01% 1 1 96 Myo1emyosinIE IPI00330649 126.8 99% 1 0.01% 1 1 97 AldocFructosebisphosphatealdolaseC IPI00119458 39.4 99% 1 0.01% 1 1 98 Prdx2Peroxiredoxin2 IPI00117910 21.8 99% 1 0.02% 1 2 99 GfapIsoform1ofGlialfibrillaryacidicprotein,astrocyte IPI00117042 49.9 98% 1 0.12% 2 10 100 Cct5Tcomplexprotein1subunitepsilon IPI00116279 59.6 98% 1 0.01% 1 1 101 Dnahc6similartoDyneinheavychainat16FCG7092PA IPI00408085 468.6 98% 1 0.01% 1 1 102 Icam2Intercellularadhesionmolecule2precursor IPI00117424 31.4 94% 1 0.01% 1 1 103 Krt2Keratin(Fragment) IPI00463282 25.3 89% 1 0.14% 2 12 Supplementary 99

No Proteinname Accession molecular Probability Unique %spectra Unique Identified numbers weight Peptides covered Spectra Spectra (Kda) 104 Sytl3Isoform1oflikeprotein3 IPI00118098 68.5 89% 1 0.02% 2 2 105 Krt25Keratin25 IPI00122621 48.9 89% 1 0.10% 1 8 106 Arpc3Actinrelatedprotein2/3complexsubunit3 IPI00124829 20.5 89% 1 0.04% 2 3 107 Try4;1810049H19RikPancreatictrypsin IPI00128108 26.3 89% 1 0.08% 2 7 108 Prss1Trypsinogen16 IPI00130391 26.1 89% 1 0.05% 2 4 109 Myl6bMyosinlightpolypeptide6B IPI00261638 22.7 89% 1 0.04% 1 3 110 Krt72TypeIIkeratinKb35 IPI00347096 56.7 89% 1 0.06% 2 5 111 Krt78keratinKb40 IPI00348328 89.8 89% 1 0.07% 2 6 112 Myl6IsoformSmoothmuscleofMyosinlightpolypeptide6 IPI00354819 16.9 89% 1 0.02% 1 2 113 Ddef2Isoform1ofDevelopmentanddifferentiationenhancingfactor2 IPI00355808 106.8 89% 1 0.05%24 114 AhnakAhnakprotein IPI00408251 18.7 89% 1 0.02% 2 2 115 Hmgb1HighmobilitygroupproteinB1 IPI00420261 24.9 89% 1 0.02% 1 2 116 Prdx4Peroxiredoxin4 IPI00116254 31.0 89% 1 0.04% 1 3 117 WasWiskottAldrichsyndromeproteinhomolog IPI00108084 54.2 89% 1 0.01% 1 1 118 LOC629750;LOC639383similartoubiquitinA52residueribosomal IPI00108590 15.4 89% 1 0.01% 1 1 proteinfusionproduct1 119 Tubb4Tubulinbeta4chain IPI00109073 49.5 89% 1 0.01% 1 1 120 Psma8Proteasomesubunitalphatype7like IPI00109122 27.8 89% 1 0.01% 1 1 121 Hnrpa012daysembryoheadcDNA,RIKENfulllengthenriched IPI00109813 30.5 89% 1 0.01% 1 1 library,clone:3010025E17product:Heterogeneousnuclear ribonucleoproteinA0(hnRNPA0)homolog 122 NacaNascentpolypeptideassociatedcomplexsubunitalpha,muscle IPI00111831 220.6 89% 1 0.01% 1 1 specificform 123 Fabp5Fattyacidbindingprotein,epidermal IPI00114162 15.1 89% 1 0.01% 1 1 124 NdphNorrinprecursor IPI00114341 14.7 89% 1 0.02% 1 2 125 Fnbp1Forminbindingprotein1 IPI00116278 64.6 89% 1 0.01% 1 1 126 18kDaprotein IPI00116718 17.9 89% 1 0.01% 1 1 127 Tuba1bTubulinalpha2chain IPI00117348 50.1 89% 1 0.02% 1 2 128 Mapre1MicrotubuleassociatedproteinRP/EBfamilymember1 IPI00117896 30.0 89% 1 0.01% 1 1 Supplementary 100

No Proteinname Accession molecular Probability Unique %spectra Unique Identified numbers weight Peptides covered Spectra Spectra (Kda) 129 Snrpd3SmallnuclearribonucleoproteinSmD3 IPI00119224 13.9 89% 1 0.02% 1 2 130 Sprr2bSmallprolinerichprotein2B IPI00119361 10.7 89% 1 0.04% 1 3 131 PlekPleckstrin IPI00119551 39.9 89% 1 0.01% 1 1 132 Hvcn1hydrogenvoltagegatedchannel1 IPI00120788 31.2 89% 1 0.01% 1 1 133 Tmem40Transmembraneprotein40 IPI00122469 24.9 89% 1 0.01% 1 1 134 Rasl29GTPbindingnuclearproteinRan,testisspecificisoform IPI00126133 24.4 89% 1 0.01% 1 1 135 Mtcp1P8MTCP1protein IPI00127299 7.7 89% 1 0.01% 1 1 136 Cspg4Isoform1ofChondroitinsulfateproteoglycan4precursor IPI00128915 252.4 89% 1 0.01% 1 1 137 Cdh16Cadherin16precursor IPI00129960 89.8 89% 1 0.01% 1 1 138 2210010C04Riktrypsinogen7 IPI00131674 26.4 89% 1 0.04% 1 3 139 Psma6Proteasomesubunitalphatype6 IPI00131845 27.4 89% 1 0.01% 1 1 140 RanGTPbindingnuclearproteinRan IPI00134621 24.4 89% 1 0.01% 1 1 141 Uba52;LOC669193;LOC676687;LOC666586Uba52protein IPI00138892 14.7 89% 1 0.01% 1 1 142 4933402J07RikAdultmaletestiscDNA,RIKENfulllengthenriched IPI00222019 31.2 89% 1 0.01% 1 1 library,clone:4933402J07product:weaklysimilartoHYPOTHETICAL 30.8kDaPROTEIN 143 Gpr128ProbableGproteincoupledreceptor128precursor IPI00222961 87.7 89% 1 0.01% 1 1 144 Srebf1IsoformSREBP1AW42ofSterolregulatoryelementbinding IPI00223219 116.2 89% 1 0.01% 1 1 protein1 145 Man2a2NglycanprocessingalphamannosidaseIIx IPI00224294 130.6 89% 1 0.01% 1 1 146 Hmgb1l;LOC625781HMGL6 IPI00229570 23.1 89% 1 0.02% 1 2 147 18kDaprotein IPI00277450 18.1 89% 1 0.04% 1 3 148 Chchd2Coiledcoilhelixcoiledcoilhelixdomaincontainingprotein2 IPI00284925 15.6 89% 1 0.01% 1 1 149 Kcnab2Voltagegatedpotassiumchannelsubunitbeta2 IPI00315359 41.0 89% 1 0.01% 1 1 150 Ewsr1Ewingsarcomahomolog IPI00322492 69.0 89% 1 0.01% 1 1 151 Myh10Myosin,heavypolypeptide10,nonmuscle IPI00338604 232.6 89% 1 0.01% 1 1 152 Trim40AdultmalececumcDNA,RIKENfulllengthenrichedlibrary, IPI00355276 27.9 89% 1 0.01% 1 1 clone:9130003O04product:hypotheticalZnfinger,Bbox/Znfinger, RINGcontainingprotein,fullinsertsequence Supplementary 101

No Proteinname Accession molecular Probability Unique %spectra Unique Identified numbers weight Peptides covered Spectra Spectra (Kda) 153 LystIsoform1ofLysosomaltraffickingregulator IPI00399954 425.4 89% 1 0.01% 1 1 154 6330407J23RikUncharacterizedproteinC6orf174homologprecursor IPI00403618 103.5 89% 1 0.01% 1 1 155 ArmetArmetprotein IPI00404019 19.0 89% 1 0.01% 1 1 156 Osbpl1aRCB0545OHTAcDNA,RIKENfulllengthenrichedlibrary, IPI00404881 44.3 89% 1 0.01% 1 1 clone:G430090F17product:similartoOSBPRELATEDPROTEIN1 157 EG229574Filaggrin2 IPI00406870 251.4 89% 1 0.02% 1 2 158 Slc1a1Solutecarrierfamily1(Neuronal/epithelialhighaffinity IPI00420244 56.7 89% 1 0.01% 1 1 glutamatetransporter,systemXag),member1 159 Psma2InvitrofertilizedeggscDNA,RIKENfulllengthenriched IPI00420745 27.5 89% 1 0.01% 1 1 library,clone:7420458H06product:proteasome(prosome,macropain) subunit,alphatype2,fullinsertsequence 160 BC033915Isoform1ofSerine/threonineproteinkinaseQSK IPI00453673 145.8 89% 1 0.04% 1 3 161 18kDaprotein IPI00458341 18.1 89% 1 0.01% 1 1 162 DmnSyneminisoformH IPI00469184 173.2 89% 1 0.01% 1 1 163 Eif2s1Eukaryotictranslationinitiationfactor2subunit1 IPI00474446 36.1 89% 1 0.01% 1 1 164 PpiaPeptidylprolylcistransisomeraseA IPI00554989 18.0 89% 1 0.02% 1 2 165 Spna2similartoSpectrinalphachain,brain(Spectrin,nonerythroid IPI00661701 278.2 89% 1 0.01% 1 1 alphachain)(AlphaIIspectrin)(Fodrinalphachain)isoform14 166 Lgr4LeucinerichrepeatcontainingGproteincoupledreceptor4 IPI00667018 101.3 89% 1 0.01% 1 1 167 Myh915dayspregnantadultfemaleamnioncDNA,RIKENfulllength IPI00788324 226.4 89% 1 0.04% 1 3 enrichedlibrary,clone:M421002E03product:myosinheavychainIX,full insertsequence 168 Krt14TypeIepidermalkeratin(Fragment) IPI00828528 10.6 89% 1 0.02% 1 2 169 GzmaIsoformHF2ofGranzymeAprecursor(Fragment) IPI00229002 28.5 89% 1 0.01% 1 1 170 Zcchc5Zincfinger,CCHCdomaincontaining5 IPI00345024 61.4 87% 1 0.01% 1 1 171 9130023D20RikRIKENcDNA9130023D20gene IPI00453534 63.4 87% 1 0.01% 1 1 172 Gansimilartogigaxonin IPI00749533 33.2 85% 1 0.01% 1 1 173 BB220380Isoform1ofPhosphoinositide3kinaseregulatorysubunit6 IPI00169971 84.6 76% 1 0.04% 1 3 174 Gpr126DevelopmentallyregulatedGproteincoupledreceptor IPI00461962 129.7 67% 1 0.01% 1 1 Supplementary 102

No Proteinname Accession molecular Probability Unique %spectra Unique Identified numbers weight Peptides covered Spectra Spectra (Kda) 175 EndogenousmurineleukemiaviruspolytropicprovirusDNA, IPI00761472 63.9 58% 1 0.01% 1 1 completecds 176 Hivep2HumanimmunodeficiencyvirustypeIenhancerbinding IPI00115900 266.7 56% 1 0.01% 1 1 protein2homolog 177 InhbaInhibinbetaAchainprecursor IPI00112347 47.4 53% 1 0.01% 1 1 178 Prrx1IsoformPMX1BofPairedmesodermhomeoboxprotein1 IPI00118248 27.3 46% 1 0.01% 1 1 179 Alg13ProbableglycosyltransferaseGLT28D1 IPI00108727 18.3 43% 1 0.02% 1 2