Optical Studies on Dirac and Weyl Semimetals

Total Page:16

File Type:pdf, Size:1020Kb

Optical Studies on Dirac and Weyl Semimetals Optical Studies on Dirac and Weyl Semimetals Von der Fakult¨at Mathematik und Physik der Universit¨at Stuttgart zur Erlangung der Wurde¨ eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung vorgelegt von Micha Benjamin Schilling aus Gunzburg¨ Hauptberichter: Prof. Dr. Martin Dressel Mitberichter: Dr. Jurgen Smet Tag der mundlichen¨ Prufung:¨ 19.11.2018 Prufungsvorsitzende:¨ Prof. Dr. Maria Daghofer 1. Physikalisches Institut der Universit¨at Stuttgart 2018 Wer die Grenzen akzeptiert, der ist grenzenlos beschr¨ankt! Paul Hartmut Wurdig¨ (Sido) in 'Grenzenlos' - Sido feat. Marius Muller-Westernhagen¨ (2013) To God and all creation Abstract This thesis presents the results of optical spectroscopy measurements on various Dirac materials, including the nodal line semimetal ZrSiS, the topologically non- trivial half-Heusler compounds YbPtBi and GdPtBi, and the anisotropic Dirac semimetals CaMnBi2 and SrMnBi2. Generally, optical studies of this kind access the low-energy excitation spectra of the materials. In case of Dirac materials, optics probes the dynamics of Dirac and Weyl fermions, as well as other exotic quasiparticles emerging in these quantum materials. The major results, obtained in this work can be summarized as follows. In ZrSiS, the response of the nodal line Dirac fermions is revealed by a frequency- independent optical conductivity σ1(!), which arises from the effectively reduced dimensionality of the linearly dispersing bands [1,2]. This is consistent with band structure calculations [3] and verified by a theoretical model for the optical response of nodal line semimetals [2]. From our optical fits, we derive the length k0 of the nodal line in the reciprocal space and an upper limit for the energy gap ∆ induced by spin-orbit coupling. Additionally, we discuss the origin of two low-energy excitation modes in the optical spectrum and compare our interband results to theoretical calculations of Ref. [4]. For the half-Heusler compound YbPtBi, we provide a two-channel conduction model containing highly mobile (Dirac-like) electrons and conventional holes [5]. This model is verified by magneto-transport and Hall measurements, as well as by a double-Drude fit for the intraband optical conductivity. The mobility of the elec- trons is found to be record high for half-Heusler compounds. This is a strong indication for Dirac-like states, which are usually associated with high charge car- rier mobilities [6,7]. The interband spectrum of YbPtBi is compared to the results obtained on the sister compound GdPtBi. For both, we find strong evidence for the recently predicted triple point fermions, which emerge when a doubly degenerate and a non-degenerate band cross [8]. Namely, we find that the frequency depen- v dence of the interband conductivity is linear [9, 10]. From the slope of σ1(!) we derive the Fermi velocity of the relevant linear dispersing bands. We compare these results to band structure calculations and find excellent agreement. Finally, we trace the fingerprints of the anisotropic Dirac states in CaMnBi2 and SrMnBi2. In the low-frequency range, the interband conductivity of both com- pounds disperses linearly with frequency. This is caused by linear dispersions of the bands in all three dimensions. From the slope of σ1(!), we calculate the Fermi velocity and obtain values in good agreement with theory and angle-resolved pho- toemission spectroscopy measurements [11]. At higher frequencies, the effective band dimensionality is reduced due to the strong anisotropy. This is observed as −1 a σ1(!) / ! decay in the optical conductivity. In CaMnBi2, we identify an anomaly at 50 K, present in both, dc conductivity and our optical spectrum, and narrow down the origin of this anomaly to a density wave scenario. This is further verified by magnetic susceptibility measurements and the presence of Fermi surface nesting in CaMnBi2 [12]. Overall, the results of this thesis confirm the relevance of Dirac physics for all studied materials and reveal that the low-energy electrodynamics of these compounds are governed by the quasiparticles possessing Dirac(-like) dispersion relations. vi dt. Zusammenfassung Diese Arbeit fasst die Ergebnisse von optischen Spektroskopie-Messungen an ver- schiedenen Dirac Materialien, unter anderem am nodal line Halbmetall ZrSiS, an den topologisch nicht-trivialen half-Heusler Materialien YbPtBi und GdPtBi und an den anisotropischen Dirac Halbmetallen CaMnBi2 und SrMnBi2. Im Allgemeinen bieten optische Untersuchungen dieser Art einen Zugang zu den Anregungsspek- tren der Materialien im Bereich kleiner Energien. Bezuglich¨ Dirac Materialien un- tersuchen solche optischen Messungen die Dynamik der Dirac und Weyl Fermionen, ebenso von anderen Quasiteilchen welche in dieser Art von Quantenmaterialien vor- kommen k¨onnen. Die wichtigsten Ergebnisse dieser Arbeit k¨onnen folgendermaßen zusammengefasst werden: In ZrSiS wird die Antwort der nodal line Dirac Fermionen durch eine Frequenz- unabh¨angige optische Leitf¨ahigkeit σ1(!) enthullt,¨ welche von der effektiv reduzier- ten Dimensionionalit¨at der linear verlaufenden B¨ander verursacht wird [1,2]. Dies stimmt mit Bandstruktur-Berechnungen uberein¨ [3] und wird durch ein theoreti- sches Modell fur¨ die optische Antwort sogenannter nodal line Halbmetallen veri- fiziert [2]. Aus unseren optischen Modellierungen leiten wir sowohl die L¨ange k0 der nodal line im reziproken Raum, als auch ein Maximalwert fur¨ die Energielucke¨ ∆, welche durch die Spin-Orbital-Wechselwirkung entsteht, ab. Zus¨atzlich diskutie- ren wir m¨ogliche Ursachen fur¨ zwei Anregungsmoden im Bereich kleiner Energien und vergleichen unsere Interband-Ergebnisse mit theoretischen Berechnungen aus Ref. [4]. Fur¨ das half-Heusler Material YbPtBi entwickeln wir ein zwei-Kanal Leitungs- modell, welches sehr bewegliche (Dirac-¨ahnliche) Elektronen und normale L¨ocher enth¨alt [5]. Dieses Modell best¨atigen wir durch magnetische Transportmessungen, Hall Messungen und ein zwei-Drude Modell fur¨ die intraband optische Leitf¨ahigkeit. Die Beweglichkeit der Elektronen stellt einen neuen Rekord fur¨ half-Heusler Ma- terialien auf und liefert einen starken Hinweis auf Dirac-¨ahnliche Zust¨ande, wel- vii che ublicherweise¨ mit einer sehr hohen Beweglichkeit der Ladungstr¨ager in Verbin- dung gebracht werden [6,7]. Das Interband-Spektrum von YbPtBi wird zudem mit den Ergebnissen des verwandten Materials GdPtBi verglichen. Fur¨ beide finden wir deutliche Anzeichen fur¨ die erst kurzlich¨ vorhergesagten Triple-Punkt Fermio- nen, welche auftreten wenn ein zweifach entartetes Band und ein nicht entartetes Band sich schneiden [8]. Dies zeigt sich in einer linearen Frequenzabh¨angigkeit der Interband-Leitf¨ahigkeit [9, 10]. Aus der Steigung der Leitf¨ahigkeit leiten wir die Fer- mi Geschwindigkeit der involvierten linear verlaufenden B¨ander ab. Die Ergebnisse liefern eine ausgezeichnete Ubereinstimmung¨ mit Bandstruktur-Berechnungen. Abschließend spuren¨ wir die Charakteristiken der anisotropischen Dirac Zust¨ande in CaMnBi2 und SrMnBi2 auf. Im Bereich kleiner Frequenzen steigt die Interband- Leitf¨ahigkeit linear mit der Frequenz an. Dies wird durch linear verlaufende B¨ander in drei Dimensionen verursacht. Aus der Steigung der Leitf¨ahigkeit berechnen wir die Fermi Geschwindigkeit und finden eine gute Ubereinstimmung¨ mit theoreti- schen Werten und winkelaufgel¨osten Photoemissionsspektroskopie Messungens [11]. Bei h¨oheren Frequenzen wird die effektive Banddimensionalit¨at auf Grund der starken Anisotropie reduziert, welches durch eine !−1 Abh¨angigkeit der optischen Leitf¨ahigkeit best¨atigt wird. In CaMnBi2 beobachten wir sowohl in der DC als auch in der optischen Leitf¨ahigkeit eine Anomalie bei 50 K und schr¨anken die Ursache der Anomalie auf eine Zustandsdichte-Welle ein. Dies wird durch die Messung der magnetischen Suszeptibilit¨at und die Realisierung von Fermi Oberfl¨achen nesting weiter bekr¨aftigt [12]. Insgesamt best¨atigen die Ergebnisse dieser Arbeit die Bedeutsamkeit der Dirac Phy- sik fur¨ alle untersuchten Materialien und enthullen,¨ dass die Elektrodynamik im Be- reich kleiner Energien von Quasiteilchen mit Dirac(-¨ahnlicher) Dispersionsrelation bestimmt wird. Struktur der Arbeit Nach einer kurzen Einfuhrung¨ und Motivation in Kapitel 1, ist die Arbeit folgen- dermaßen gegliedert: Kapitel 2 liefert einen theoretischen Einstieg in das Feld der Dirac Physik in Fest- k¨orpern. Dies beinhaltet sowohl einen Vergleich verschiedener Messmethoden, viii welche fur¨ die Enthullung¨ der Spuren der Dirac Physik verwendet werden k¨onnen als auch eine ausfuhrliche¨ Diskussion der Antwort von Dirac Materia- lien in der frequenzabh¨angigen optischen Leitf¨ahigkeit. Kapitel 3 bietet einen Uberblick¨ uber¨ das Prinzip der Fourier-Transform Infrarot- spektroskopie, die verwendeten experimentellen Aufbauten und die Datenaus- wertung, inklusive des Verfahrens zur Datenextrapolation und der Kramers- Kronig Transformation. Kapitel4-6 beinhalten die experimentellen Ergebnisse dieser Arbeit. Jedes Kapitel beginnt mit einer kurzen Beschreibung des untersuchten Materials, gefolgt von einer allgemeinen Darstellung der optischen Ergebnisse und endet mit einer Interpretation unter Berucksichtigung¨ der speziellen Bandstruktur jedes Materials. Kapitel 4 diskutiert die optische Antwort des nodal line Halbmetalls ZrSiS und seine frequenzunabh¨angige optische Leitf¨ahigkeit, welche einen di- rekten Zugang zur L¨ange der nodal line im reziproken Raum liefert. Kapitel 5 behandelt das half-Heusler Material YbPtBi mit
Recommended publications
  • Type-III and Tilted Dirac Cones Emerging from Flat Bands in Photonic Orbital Graphene M
    Type-III and Tilted Dirac Cones Emerging from Flat Bands in Photonic Orbital Graphene M. Milićević, G. Montambaux, T. Ozawa, O. Jamadi, B. Real, I. Sagnes, A. Lemaitre, L. Le Gratiet, A. Harouri, J. Bloch, et al. To cite this version: M. Milićević, G. Montambaux, T. Ozawa, O. Jamadi, B. Real, et al.. Type-III and Tilted Dirac Cones Emerging from Flat Bands in Photonic Orbital Graphene. Physical Review X, American Physical Society, 2019, 9 (3), 10.1103/PhysRevX.9.031010. hal-02335931 HAL Id: hal-02335931 https://hal.archives-ouvertes.fr/hal-02335931 Submitted on 28 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICAL REVIEW X 9, 031010 (2019) Featured in Physics Type-III and Tilted Dirac Cones Emerging from Flat Bands in Photonic Orbital Graphene M. Milićević,1 G. Montambaux,2 T. Ozawa,3 O. Jamadi,4 B. Real,4 I. Sagnes,1 A. Lemaître,1 L. Le Gratiet,1 A. Harouri,1 J. Bloch,1 and A. Amo4 1Centre de Nanosciences et de Nanotechnologies (C2N), CNRS Universit´e Paris-Sud/Paris-Saclay, Palaiseau, France 2Laboratoire de Physique des Solides,
    [Show full text]
  • Landau Quantization of Dirac Fermions in Graphene and Its Multilayers
    Front. Phys. 12(4), 127208 (2017) DOI 10.1007/s11467-016-0655-5 REVIEW ARTICLE Landau quantization of Dirac fermions in graphene and its multilayers Long-jing Yin (殷隆晶), Ke-ke Bai (白珂珂), Wen-xiao Wang (王文晓), Si-Yu Li (李思宇), Yu Zhang (张钰), Lin He (何林)ǂ The Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China Corresponding author. E-mail: ǂ[email protected] Received December 28, 2016; accepted January 26, 2017 When electrons are confined in a two-dimensional (2D) system, typical quantum–mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum–mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties. Keywords Landau quantization, graphene, STM/STS, stacking order, strain and defect PACS numbers Contents 1 Introduction ....................................................................................................................... 2 2 Landau quantization in graphene monolayer, Bernal bilayer, and Bernal trilayer ...........
    [Show full text]
  • Borophosphene: a New Anisotropic Dirac Cone Monolayer with High
    Borophosphene: a New Anisotropic Dirac Cone Monolayer with High Fermi Velocity and Unique Feature of Self-doping Yang Zhang,†,‡ Jun Kang,‡ Fan Zheng,‡ Peng-Fei Gao,† Sheng-Li Zhang,† and Lin-Wang Wang*,‡ †Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Department of Applied Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, China ‡Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ABSTRACT: Two-dimensional (2D) Dirac cone materials exhibit linear energy dispersion at the Fermi level, where the effective masses of carriers are very close to zero and the Fermi velocity is ultrahigh, only 2 ~ 3 orders of magnitude lower than the light velocity. Such the Dirac cone materials have great promise in high-performance electronic devices. Herein, we have employed the genetic algorithms methods combining with first-principles calculations to propose a new 2D anisotropic Dirac cone material, that is, orthorhombic boron phosphide (BP) monolayer named as borophosphene. Molecular dynamics simulation and phonon dispersion have been used to evaluate the dynamic and thermal stability of borophosphene. Because of the unique arrangements of B-B and P-P dimers, the mechanical and electronic properties are highly anisotropic. Of great interest is that the Dirac cone of the borophosphene is robust, independent of in-plane biaxial and uniaxial strains, and can also be observed in its one-dimensional (1D) zigzag nanoribbons and armchair nanotubes. The Fermi velocities are ~ 105 m/s, the same order of magnitude with that of graphene. By using a tight-binding model, the origin of the Dirac cone of borophosphene is analyzed.
    [Show full text]
  • Introduction to Dirac Materials and Topological Insulators Jérome Cayssol
    Introduction to Dirac materials and topological insulators Jérome Cayssol To cite this version: Jérome Cayssol. Introduction to Dirac materials and topological insulators. Comptes Rendus Physique, Centre Mersenne, 2013, 14 (9-10), pp.760-778. 10.1016/j.crhy.2013.09.012. hal-00942955 HAL Id: hal-00942955 https://hal.archives-ouvertes.fr/hal-00942955 Submitted on 1 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Topological insulators/Isolants topologiques Introduction to Dirac materials and topological insulators Introduction aux matériaux de Dirac et aux isolants topologiques ∗ Jérôme Cayssol a,b, a Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany b LOMA (UMR 5798), CNRS and University Bordeaux-1, 33045 Talence, France article info abstract Keywords: We present a short pedagogical introduction to the physics of Dirac materials, restricted Dirac fermions to graphene and two-dimensional topological insulators. We start with a brief reminder of Graphene the Dirac and Weyl equations in the particle physics context. Turning to condensed matter Topological insulators systems, semimetallic graphene and various Dirac insulators are introduced, including the Edge modes Haldane and the Kane–Mele topological insulators.
    [Show full text]
  • The Rare Two-Dimensional Materials with Dirac Cones
    The Rare Two-Dimensional Materials with Dirac Cones Jinying Wang, Shibin Deng, Zhongfan Liu, and Zhirong Liu* 1 Center for Nanochemstry, Colledge of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China *Email address: [email protected] Note: This manuscript has been published as Natl. Sci. Rev. 2 (1), 22-39 (2015), refer to: http://nsr.oxfordjournals.org/content/2/1/22.full Keywords: graphene, silicene, graphyne, two-dimensional, Dirac cone, Dirac materials ABSTRACT Inspired by the great development of graphene, more and more works have been conducted to seek new two-dimensional (2D) materials with Dirac cones. Although 2D Dirac materials possess many novel properties and physics, they are rare compared with the numerous 2D materials. To provide explanation for the rarity of 2D Dirac materials as well as clues in searching for new Dirac systems, here we review the recent theoretical aspects of various 2D Dirac materials, including graphene, silicene, germanene, graphynes, several boron and carbon sheets, transition metal oxides (VO2)n/(TiO2)m and (CrO2)n/(TiO2)m, organic and organometallic crystals, so-MoS2, and artificial lattices (electron gases and ultracold atoms). Their structural and electronic properties are summarized. We also investigate how Dirac points emerge, move, and merge in these systems. The von Neumann-Wigner theorem is used to explain the scarcity of Dirac cones in 2D systems, which leads to rigorous requirements on the symmetry, parameters, Fermi level, and band overlap of materials to
    [Show full text]
  • Manipulating Type-I and Type-II Dirac Polaritons in Cavity-Embedded Honeycomb Metasurfaces
    ORE Open Research Exeter TITLE Manipulating Type-I and Type-II Dirac Polaritons in Cavity-Embedded Honeycomb Metasurfaces AUTHORS Mann, C-R; Sturges, TJ; Weick, G; et al. JOURNAL Nature Communications DEPOSITED IN ORE 21 March 2018 This version available at http://hdl.handle.net/10871/33238 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication ARTICLE DOI: 10.1038/s41467-018-03982-7 OPEN Manipulating type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces Charlie-Ray Mann 1, Thomas J. Sturges 1, Guillaume Weick2, William L. Barnes 1 & Eros Mariani1 Pseudorelativistic Dirac quasiparticles have emerged in a plethora of artificial graphene systems that mimic the underlying honeycomb symmetry of graphene. However, it is notoriously difficult to manipulate their properties without modifying the lattice structure. 1234567890():,; Here we theoretically investigate polaritons supported by honeycomb metasurfaces and, despite the trivial nature of the resonant elements, we unveil rich Dirac physics stemming from a non-trivial winding in the light–matter interaction. The metasurfaces simultaneously exhibit two distinct species of massless Dirac polaritons, namely type-I and type-II. By modifying only the photonic environment via an enclosing cavity, one can manipulate the location of the type-II Dirac points, leading to qualitatively different polariton phases. This enables one to alter the fundamental properties of the emergent Dirac polaritons while preserving the lattice structure—a unique scenario which has no analog in real or artificial graphene systems.
    [Show full text]
  • Landau Quantization of Topological Surface States in Bi2se3
    Selected for a Viewpoint in Physics week ending PRL 105, 076801 (2010) PHYSICAL REVIEW LETTERS 13 AUGUST 2010 Landau Quantization of Topological Surface States in Bi2Se3 Peng Cheng,1 Canli Song,1 Tong Zhang,1,2 Yanyi Zhang,1 Yilin Wang,2 Jin-Feng Jia,1 Jing Wang,1 Yayu Wang,1 Bang-Fen Zhu,1 Xi Chen,1,* Xucun Ma,2,† Ke He,2 Lili Wang,2 Xi Dai,2 Zhong Fang,2 Xincheng Xie,2 Xiao-Liang Qi,3,4 Chao-Xing Liu,4,5 Shou-Cheng Zhang,4 and Qi-Kun Xue1,2 1Department of Physics, Tsinghua University, Beijing 100084, China 2Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3Microsoft Research, Station Q, University of California, Santa Barbara, California 93106, USA 4Department of Physics, Stanford University, Stanford California 94305, USA 5Physikalisches Institut, Universita¨tWu¨rzburg, D-97074 Wu¨rzburg, Germany (Received 25 May 2010; published 9 August 2010) We report the direct observation of Landau quantization in Bi2Se3 thin films by using a low-temperature scanning tunneling microscope. In particular, we discovered the zeroth Landau level, which is predicted to give rise to the half-quantized Hall effect for the topological surface states. The existence of the discrete Landau levels (LLs) and the suppression of LLs by surface impurities strongly support the 2D nature of the topological states. These observations may eventually lead to the realization of quantum Hall effect in topological insulators. DOI: 10.1103/PhysRevLett.105.076801 PACS numbers: 73.20.Àr, 68.37.Ef, 71.70.Di, 72.25.Dc The recent theoretical prediction and experimental real- 0:03 =cm and thickness of 0.1 mm.
    [Show full text]
  • Dirac Material Graphene
    Dirac Material Graphene Elena Sheka Russian Peoples’ Friendship University of Russia Moscow, 117198 Russia [email protected] Abstract. The paper presents author’s view on spin-rooted properties of graphene supported by numerous experimental and calculation evidences. Correlation of odd pz electrons of the honeycomb lattice meets a strict demand “different orbitals for different spins”, which leads to spin polarization of electronic states, on the one hand, and generation of an impressive pool of local spins distributed over the lattice, on the other. These features characterize graphene as a peculiar semimetal with Dirac cone spectrum at particular points of Brillouin zone. However, spin-orbit coupling (SOC), though small but available, supplemented by dynamic SOC caused by electron correlation, transforms graphene-semimetal into graphene-topological insulator (TI). The consequent topological non-triviality and local spins are proposed to discuss such peculiar properties of graphene as high temperature ferromagnetism and outstanding chemical behavior. The connection of these new findings with difficulties met at attempting to convert graphene-TI into semiconductor one is discussed. Key words: graphene, Dirac fermions, quasi-relativistic description, hexagonal honeycomb structure, local spins, open-shell molecules, spin-orbital coupling, quantum spin Hall insulator, high temperature ferromagnetism, chemical activity. 1. Introduction Presented in the current paper concerns three main issues laying the foundation of spin features of graphene: (1) a significant correlation of pz odd electrons, exhibited in terms of spin peculiarities of the unrestricted Hartree-Fock (UHF) solutions, (2) spin-orbital coupling (SOC) and (3) the crucial role of the C=C bond length distribution over the body in exhibiting the spin- based features.
    [Show full text]
  • Dirac Cone, Flat Band and Saddle Point in Kagome Magnet Ymn6sn6
    ARTICLE https://doi.org/10.1038/s41467-021-23536-8 OPEN Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6 Man Li 1, Qi Wang1, Guangwei Wang2, Zhihong Yuan2, Wenhua Song1, Rui Lou3,4,5, Zhengtai Liu 6, ✉ ✉ ✉ ✉ Yaobo Huang7, Zhonghao Liu6,8 , Hechang Lei 1 , Zhiping Yin 2 & Shancai Wang 1 Kagome-lattices of 3d-transition metals hosting Weyl/Dirac fermions and topological flat bands exhibit non-trivial topological characters and novel quantum phases, such as the 1234567890():,; anomalous Hall effect and fractional quantum Hall effect. With consideration of spin–orbit coupling and electron correlation, several instabilities could be induced. The typical char- acters of the electronic structure of a kagome lattice, i.e., the saddle point, Dirac-cone, and flat band, around the Fermi energy (EF) remain elusive in magnetic kagome materials. We present the experimental observation of the complete features in ferromagnetic kagome layers of YMn6Sn6 helically coupled along the c-axis, by using angle-resolved photoemission spectroscopy and band structure calculations. We demonstrate a Dirac dispersion near EF, which is predicted by spin-polarized theoretical calculations, carries an intrinsic Berry cur- vature and contributes to the anomalous Hall effect in transport measurements. In addition, a flat band and a saddle point with a high density of states near EF are observed. These multi- sets of kagome features are of orbital-selective origin and could cause multi-orbital mag- netism. The Dirac fermion, flat band and saddle point in the vicinity of EF open an opportunity in manipulating the topological properties in magnetic materials. 1 Department of Physics and Beijing Key Laboratory of Opto-Electronic Functional Materials & Micro-Nano Devices, Renmin University of China, Beijing, China.
    [Show full text]
  • Arxiv:1707.04503V2 [Physics.Optics] 4 Mar 2018 2
    Manipulating Type-I and Type-II Dirac Polaritons in Cavity-Embedded Honeycomb Metasurfaces Charlie-Ray Mann,1 Thomas J. Sturges,1 Guillaume Weick,2 William L. Barnes,1 and Eros Mariani1 1EPSRC Centre for Doctoral Training in Metamaterials (XM2), Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, United Kingdom. 2Universite´ de Strasbourg, CNRS, Institut de Physique et Chimie des Materiaux´ de Strasbourg, UMR 7504, F-67000 Strasbourg, France. Pseudorelativistic Dirac quasiparticles have emerged in a plethora of artificial graphene systems that mimic the underlying honeycomb symmetry of graphene. However, it is notoriously difficult to manipulate their properties without modifying the lattice structure. Here we theoretically investigate polaritons supported by honeycomb metasurfaces and, despite the trivial nature of the resonant elements, we unveil rich Dirac physics stemming from a non-trivial winding in the light-matter interaction. A new kind of type-II Dirac point emerges which simultaneously exists with its conventional type-I counterpart. By modifying only the photonic environment via an enclosing cavity, one can manipulate the location of the type-II Dirac points, leading to distinct polariton phases. This enables one to alter the fundamental properties of the emergent Dirac polaritons while preserv- ing the lattice structure—a unique scenario which has no analog in real or artificial graphene systems so far. Exploiting the photonic environment will thus give rise to unexplored Dirac physics at the subwavelength scale. arXiv:1707.04503v2 [physics.optics] 4 Mar 2018 2 The groundbreaking discovery of monolayer graphene [1] has inspired an extensive quest to emulate massless Dirac quasi- particles in a myriad of distinct artificial graphene systems [2–11], ranging from ultracold atoms in optical lattices [3] to evanescently coupled photonic waveguide arrays [4].
    [Show full text]
  • Tilted and Type-III Dirac Cones Emerging from Flat Bands in Photonic Orbital Graphene
    Tilted and type-III Dirac cones emerging from flat bands in photonic orbital graphene M. Milicevic 1, G. Montambaux 2, T. Ozawa 3, I. Sagnes 1, A. Lemaître 1, L. Le Gratiet 1, A. Harouri 1, J. Bloch 1, A. Amo 4* 1Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, C2N- Marcoussis, 91460 Marcoussis, France 2Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France 3 Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Wako, Saitama 351-0198, Japan 4Univ. Lille, CNRS, UMR 8523 – PhLAM – Physique des Lasers Atomes et Molécules, F-59000 Lille, France *[email protected] The extraordinary electronic properties of Dirac materials, the two-dimensional partners of Weyl semimetals, arise from the linear crossings in their band structure. When the dispersion around the Dirac points is tilted, the emergence of intricate transport phenomena has been predicted, such as modified Klein tunnelling, intrinsic anomalous Hall effects and ferrimagnetism. However, Dirac materials are rare, particularly with tilted Dirac cones. Recently, artificial materials whose building blocks present orbital degrees of freedom have appeared as promising candidates for the engineering of exotic Dirac dispersions. Here we take advantage of the orbital structure of photonic resonators arranged in a honeycomb lattice to implement photonic lattices with semi- Dirac, tilted and, most interestingly, type-III Dirac cones that combine flat and linear dispersions. The tilted cones emerge from the touching of a flat and a parabolic band with a non-trivial topological charge. These results open the way to the synthesis of orbital Dirac matter with unconventional transport properties and, in combination with polariton nonlinearities, to the study of topological and Dirac superfluids in photonic lattices.
    [Show full text]
  • Type-I and Type-II Dirac Fermions in Graphene with Nitrogen Line Defects
    Type-I and type-II Dirac fermions in graphene with nitrogen line defects Honghong Zhang, Yuee Xie, Chengyong Zhong, Zhongwei Zhang and Yuanping Chen* School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan, 411105, China. Abstract: Recently, type-II Dirac fermions characterized by strongly titled Dirac cones have been proposed. The new fermions exhibit unique physical properties different from the type-I Dirac fermions in graphene, and thus attract tremendous attentions. Up to date, all type-II fermions are only found in the heavy compounds with strong spin obit coupling. Here, we propose that both type-I and type-II Dirac fermions can exist in the graphene embedding nitrogen line defects. While the types of Dirac fermions are determined by the size W of graphene nanoribbons between the line defects. By comparing the two types of Dirac fermions, their different physical properties and originations are revealed directly. Remarkably, the type-I Dirac points induce one Fermi arc corresponding to edge states along the armchair direction, while the type-II Dirac points induce two Fermi arcs corresponding to two sets of edge states along the zigzag direction. These results not only expand our views on the Dirac fermions in two-dimensional structures, but also extend their applications in electronics. Keywords: type-I Dirac fermion, type-II Dirac fermion, graphene, line defects, first principles *Corresponding author. E-mail address: [email protected] (Y. Chen). 1 1. Introduction Since 2004, graphene has been extensive studied because of its excellent electronic properties and extensive applications [1-3]. Most unique electronic properties of graphene are originated from its special band structure with Dirac cones [4-10].
    [Show full text]