Mobidb 3.0: More Annotations for Intrinsic Disorder, Conformational

Total Page:16

File Type:pdf, Size:1020Kb

Mobidb 3.0: More Annotations for Intrinsic Disorder, Conformational Published online 10 November 2017 Nucleic Acids Research, 2018, Vol. 46, Database issue D471–D476 doi: 10.1093/nar/gkx1071 MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins Damiano Piovesan1,†, Francesco Tabaro1,2,†, Lisanna Paladin1, Marco Necci1,3,4, Ivan Micetiˇ c´ 1, Carlo Camilloni5, Norman Davey6,7, Zsuzsanna Dosztanyi´ 8, Balint´ Mesz´ aros´ 8,9, Alexander M. Monzon10, Gustavo Parisi10, Eva Schad9, Pietro Sormanni11, Peter Tompa9,12,13, Michele Vendruscolo11, Wim F. Vranken12,13,14 and Silvio C.E. Tosatto1,15,* 1Department of Biomedical Sciences, University of Padua, via U. Bassi 58/b, 35131 Padua, Italy, 2Institute of Biosciences and Medical Technology, Arvo Ylpon¨ katu 34, 33520 Tampere, Finland, 3Department of Agricultural Sciences, University of Udine, via Palladio 8, 33100 Udine, Italy, 4Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all’Adige, Italy, 5Department of Biosciences, University of Milan, 20133 Milano, Italy, 6Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland, 7UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland, 8MTA-ELTE Lendulet¨ Bioinformatics Research Group, Department of Biochemistry, Eotv¨ os¨ Lorand´ University, 1/cPazm´ any´ Peter´ set´ any,´ H-1117, Budapest, Hungary, 9Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 7, H-1518 Budapest, Hungary, 10Structural Bioinformatics Group, Department of Science and Technology, National University of Quilmes, CONICET, Roque Saenz Pena 182, Bernal B1876BXD, Argentina, 11Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK, 12Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels 1050, Belgium, 13VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology (VIB), Brussels 1050, Belgium, 14Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, 1050 Brussels, Belgium and 15CNR Institute of Neuroscience, via U. Bassi 58/b, 35131 Padua, Italy Received September 22, 2017; Revised October 13, 2017; Editorial Decision October 16, 2017; Accepted October 19, 2017 ABSTRACT creation of a wide array of custom-made datasets for download and further analysis. A large amount The MobiDB (URL: mobidb.bio.unipd.it) database of of information and cross-links to more specialized protein disorder and mobility annotations has been databases are intended to make MobiDB the cen- significantly updated and upgraded since its last ma- tral resource for the scientific community working jor renewal in 2014. Several curated datasets for in- on protein intrinsic disorder and mobility. trinsic disorder and folding upon binding have been integrated from specialized databases. The indirect evidence has also been expanded to better capture INTRODUCTION information available in the PDB, such as high tem- The protein structure-function paradigm is a cornerstone perature residues in X-ray structures and overall con- of molecular biology, offering a mechanistic understanding formational diversity. Novel nuclear magnetic reso- of processes ranging from enzyme catalysis, signal transduc- nance chemical shift data provides an additional ex- tion to molecular recognition and allosteric regulation. Un- perimental information layer on conformational dy- derlying this paradigm is the assumption that proteins be- namics. Predictions have been expanded to provide come functional by assuming a well-defined structure, typ- new types of annotation on backbone rigidity, sec- ically described by the coordinates of all its atoms. A solid ondary structure preference and disordered bind- foundation of this view is provided by the 130 000 struc- tures of proteins and complexes in the Protein Data Bank, ing regions. MobiDB 3.0 contains information for PDB (1). However, it is increasingly recognized that many the complete UniProt protein set and synchroniza- proteins do not obey this rule. Intrinsically disordered pro- tion has been improved by covering all UniParc se- teins (IDPs) or regions (IDRs) are devoid of order in their quences. An advanced search function allows the native unbound state (2–4). Intrinsic disorder is prevalent *To whom correspondence should be addressed. Tel: +39 49 827 6269; Fax: +39 49 827 6363; Email: [email protected] †These authors contributed equally to the paper as first authors. C The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] Downloaded from https://academic.oup.com/nar/article-abstract/46/D1/D471/4612964 by guest on 08 February 2018 D472 Nucleic Acids Research, 2018, Vol. 46, Database issue in the human proteome (5), appears to play important sig- naling and regulatory roles (2) and is frequently involved in disease (6). The discovery of intrinsic disorder and its prevalence and functional importance is transforming the field of molecular biology. As intrinsic disorder is emerging as a general phenomenon, databases are collecting and pre- senting disorder related data in a systematic manner. Mo- biDB has been a major contributor by providing consensus predictions and functional annotations for all UniProt pro- teins, driving the field ahead (7,8). The MobiDB upgrade we present in this paper is essential for several reasons. There is a rapid advance in the functional understand- ing of intrinsic disorder. The functional classification of IDPs/IDRs is becoming ever more elaborate, with sev- eral newly recognized functional mechanisms (9). For ex- ample, the central role of intrinsic disorder in the forma- tion of membraneless organelles, such as nucleoli and stress granules, by liquid-liquid phase separation has been char- acterized recently (10–13). A wide range of experimen- tal observations on the structure-function relationship of IDPs/IDRs is furthering our understanding of disordered states and of the manners in which they function (14–16). These developments have also played a central role in the re- cent update of the DisProt database (17), the central repos- itory of experimentally characterized IDPs and IDRs. The re-curated version of this database contains experimental observations of disorder for more than 800 protein entries and a renewed functional ontology schema. The experimen- tal evidence on which it rests has also been significantly aug- mented to include a broad range of biophysical techniques. DisProt is the basis for most developments in disorder pre- dictors (18,19), and its recent update is a major motivation for a new version of MobiDB. Additional developments in the field make this release timely. A major source of intrinsic disorder is the identifi- Figure 1. Overview of different annotation data types (A) and levels of cation of residues with missing atomic coordinates in the accuracy (B) in MobiDB 3.0. PDB, which can now be augmented by cryo-electron mi- croscopy (cryo-EM) data. This is having a tremendous im- searches are facilitated by an improved search algorithm, pact on structural biology (20,21). Structural descriptions pre-calculated data and new sections in the database. of IDPs and IDRs under physiological conditions have also greatly advanced and are starting to appear in dedicated DATABASE DESCRIPTION databases such as IDEAL (22), DIBS (23) and MFIB (24). IDPs and IDRs can perform key roles in molecular recogni- MobiDB 3.0 is intended to be a central resource for large- tion by folding upon binding of short linear motifs (SLiMs) scale intrinsic disorder sequence annotation. This new ver- covered in the ELM database (25). Generally, the full func- sion is organized by both type of disorder annotation and tional characterization of IDPs and IDRs requires the de- quality of disorder evidence (Figure 1). Disorder informa- scription not just of their free (disordered) states (26,27), tion is grouped in three different sections: disorder, linear but also of their residual dynamics in the bound states (28). interacting peptides (LIPs) and secondary structure pop- Fuzzy (disordered) complexes can be found in FuzDB (29) ulations. The latter represents the conformational hetero- and structural ensembles describing the free form (30)in geneity of IDPs and IDRs as the ability to populate differ- the protein ensemble database (PED (31)). Techniques such ent secondary structure populations in solution. LIPs are as in-cell Nuclear magnetic resonance (NMR) spectroscopy structure fragments that interact with other molecules pre- (32,33) and single-molecule fluorescence (34) will soon help serving an elongated structure or folding upon binding. The study these structures in the physiological state. In reflec- data in MobiDB is organized hierarchically. The top tier is tion of all these developments, we are now launching a sig- formed by manually curated data from external databases nificantly updated version of our database, MobiDB 3.0. and represents the highest quality annotations. Annotations The new version incorporates additional curated data from derived from experimental data such as X-ray and NMR specialized databases. Novel annotation features include chemical shifts are indirect
Recommended publications
  • A Major Update of the Protein Ensemble Database for Intrinsically Disordered Proteins
    Lawrence Berkeley National Laboratory Recent Work Title PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Permalink https://escholarship.org/uc/item/0jm2h524 Journal Nucleic acids research, 49(D1) ISSN 0305-1048 Authors Lazar, Tamas Martínez-Pérez, Elizabeth Quaglia, Federica et al. Publication Date 2021 DOI 10.1093/nar/gkaa1021 Peer reviewed eScholarship.org Powered by the California Digital Library University of California D404–D411 Nucleic Acids Research, 2021, Vol. 49, Database issue Published online 10 December 2020 doi: 10.1093/nar/gkaa1021 PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins Tamas Lazar 1,2, Elizabeth Mart´ınez-Perez´ 3,4, Federica Quaglia 5, Andras´ Hatos 5, Luc´ıa B. Chemes 6,JavierA.Iserte 3, Nicolas´ A. Mendez´ 6, Nicolas´ A. Garrone 6, Tadeo E. Saldano˜ 7, Julia Marchetti 7, Ana Julia Velez Rueda 7, Pau Bernado´ 8, Martin Blackledge 9, Tiago N. Cordeiro 8,10, Eric Fagerberg 11, Julie D. Forman-Kay 12,13, Maria S. Fornasari 7, Toby J. Gibson 4, Gregory-Neal W. Gomes 14,15, Claudiu C. Gradinaru 14,15, Teresa Head-Gordon 16, Malene Ringkjøbing Jensen 9, Edward A. Lemke 17,18, Sonia Longhi 19, Cristina Marino-Buslje 3, Giovanni Minervini 5, Tanja Mittag 20, Alexander Miguel Monzon 5, Rohit V. Pappu 21, Gustavo Parisi 7, Sylvie Ricard-Blum 22,KierstenM.Ruff21, Edoardo Salladini 19, Marie Skepo¨ 11,23, Dmitri Svergun 24, Sylvain D. Vallet 22, Mihaly Varadi 25, Peter Tompa 1,2,26,*, Silvio C.E. Tosatto 5,* and Damiano Piovesan 5 1VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology, Brussels 1050, Belgium, 2Structural Biology Brussels, Bioengineering Sciences Department, Vrije Universiteit Brussel, Brussels 1050, Belgium, 3Bioinformatics Unit, Fundacion´ Instituto Leloir, Buenos Aires, C1405BWE, Argentina, 4Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany, 5Dept.
    [Show full text]
  • JOBIM 2020 Montpellier, 30 Juin
    JOBIM 2020 Montpellier, 30 juin - 3 juillet Long papers 1 Paper 1 Long-read error correction: a survey and qualitative comparison Pierre Morisse1, Thierry Lecroq2 and Arnaud Lefebvre2 1 Normandie Universit´e,UNIROUEN, INSA Rouen, LITIS, 76000 Rouen, France 2 Normandie Univ, UNIROUEN, LITIS, 76000 Rouen, France Corresponding author: [email protected] Extended preprint: https://doi.org/10.1101/2020.03.06.977975 Abstract Third generation sequencing technologies Pacific Biosciences and Oxford Nanopore Technologies were respectively made available in 2011 and 2014. In contrast with second generation sequencing technologies such as Illumina, these new technologies allow the se- quencing of long reads of tens to hundreds of kbps. These so-called long reads are partic- ularly promising, and are especially expected to solve various problems such as contig and haplotype assembly or scaffolding, for instance. However, these reads are also much more error prone than second generation reads, and display error rates reaching 10 to 30%, depending on the sequencing technology and to the version of the chemistry. Moreover, these errors are mainly composed of insertions and deletions, whereas most errors are substitutions in Illumina reads. As a result, long reads require efficient error correction, and a plethora of error correction tools, directly targeted at these reads, were developed in the past nine years. These methods can adopt a hybrid approach, using complementary short reads to perform correction, or a self-correction approach, only making use of the information contained in the long reads sequences. Both these approaches make use of various strategies such as multiple sequence alignment, de Bruijn graphs, hidden Markov models, or even combine different strategies.
    [Show full text]
  • Mobidb 3.0: More Annotations for Intrinsic Disorder
    Published online 10 November 2017 Nucleic Acids Research, 2018, Vol. 46, Database issue D471–D476 doi: 10.1093/nar/gkx1071 MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins Damiano Piovesan1,†, Francesco Tabaro1,2,†, Lisanna Paladin1, Marco Necci1,3,4, Ivan Micetiˇ c´ 1, Carlo Camilloni5, Norman Davey6,7, Zsuzsanna Dosztanyi´ 8, Balint´ Mesz´ aros´ 8,9, Alexander M. Monzon10, Gustavo Parisi10, Eva Schad9, Pietro Sormanni11, Peter Tompa9,12,13, Michele Vendruscolo11, Wim F. Vranken12,13,14 and Silvio C.E. Tosatto1,15,* 1Department of Biomedical Sciences, University of Padua, via U. Bassi 58/b, 35131 Padua, Italy, 2Institute of Biosciences and Medical Technology, Arvo Ylpon¨ katu 34, 33520 Tampere, Finland, 3Department of Agricultural Sciences, University of Udine, via Palladio 8, 33100 Udine, Italy, 4Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all’Adige, Italy, 5Department of Biosciences, University of Milan, 20133 Milano, Italy, 6Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland, 7UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland, 8MTA-ELTE Lendulet¨ Bioinformatics Research Group, Department of Biochemistry, Eotv¨ os¨ Lorand´ University, 1/cPazm´ any´ Peter´ set´ any,´ H-1117, Budapest, Hungary, 9Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 7, H-1518 Budapest, Hungary, 10Structural Bioinformatics Group, Department of Science and Technology, National University of Quilmes, CONICET, Roque Saenz Pena 182, Bernal B1876BXD, Argentina, 11Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK, 12Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels 1050, Belgium, 13VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology (VIB), Brussels 1050, Belgium, 14Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, 1050 Brussels, Belgium and 15CNR Institute of Neuroscience, via U.
    [Show full text]
  • Intrinsic Disorder in the Subcellular Compartments of the Human Cell Bi Zhao1, Akila Katuwawala1, Vladimir N
    IDPology of the Living Cell: Intrinsic Disorder in the Subcellular Compartments of the Human Cell Bi Zhao1, Akila Katuwawala1, Vladimir N. Uversky2,3* and Lukasz Kurgan1* 1Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA 2Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA 3Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia *corresponding authors: Lukasz Kurgan: Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, VA 23284, USA; Email: [email protected]; Phone: (804) 827-3986 Vladimir N. Uversky: Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA; Email: [email protected]; Phone: (813) 974-5816 Abstract Intrinsic disorder can be found in all proteomes of all kingdoms of life and in viruses, being particularly prevalent in the eukaryotes. We conduct a comprehensive analysis of the intrinsic disorder in the human proteins while mapping them into 24 compartments of the human cell. In agreement with previous studies, we show that human proteins are significantly enriched in disorder relative to a generic protein set that represents the protein universe. In fact, the fraction of proteins with long disordered regions and the average protein-level disorder content in the human proteome are about 3 times higher than in the protein universe. Furthermore, levels of intrinsic disorder in majority of human subcellular compartments significantly exceed the average disorder content in the protein universe.
    [Show full text]
  • Book of Abstracts Belgrade Bioinformatics Conference 2016
    Book of Abstracts Belgrade BioInformatics Conference 2016 20-24 June 2016, Belgrade, Serbia UNIVERSITY OF BELGRADE FACULTY OF MATHEMATICS Nenad Miti´c, editor Belgrade BioInformatics Conference 2016 Book of abstracts Belgrade, June 20th-24th The conference is organized by the Bioinformatics Research Group, University of Belgrade - Faculty of Mathematics (http://bioinfo.matf.bg.ac.rs). Coorganizers of the conference are: Faculty of Agriculture, Faculty of Biology, Faculty of Chemistry, Faculty of Physical Chemistry, Institute for Biological Re- search ”Siniˇsa Stankovi´c”, Institute for General and Physical Chemistry, Institute for Medical Research, Institute of Molecular Genetics and Genetic Engineering, Vinˇca Institute of Nuclear Sciences, Mathematical Institute of SASA, Belgrade, and COST - European Cooperation in Science and Technology The conference is financially supported by – Ministry of Education, Science and Technological Development of Republic of Serbia – Central European Initiative (CEI) – Telekom Srbija – SevenBridges Genomic – RNIDS - Register of National Internet Domain Names of Serbia – Genomix4Life Publication of this Book of abstracts is financed by the Ministry of Education, Science and Technological Development of Republic of Serbia Publisher: Faculty of Mathematics, University of Belgrade Printed in Serbia, by DonatGraf, Belgrade Serbian National Library Cataloguing in Publication Data Faculty of Mathematics, Belgrade Book of Abstracts: Belgrade BioInformatics Conference 2016, 20-24 June 2016.– Book of abstracts Nenad Miti´c, editor. XIX+151 pages, 24cm. Copyright c 2016 by Faculty of Mathematics, University of Belgrade All rights reserved. No part of this publication may be reproduced, stored in retrieval system, or transmited, in any form, or by any means, electronic, me- chanical, photocopying, recording or otherwise, without a prior premission of the publisher.
    [Show full text]
  • Mobidb 3.0: More Annotations for Intrinsic
    Published online 10 November 2017 Nucleic Acids Research, 2018, Vol. 46, Database issue D471–D476 doi: 10.1093/nar/gkx1071 MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins Damiano Piovesan1,†, Francesco Tabaro1,2,†, Lisanna Paladin1, Marco Necci1,3,4, Ivan Micetiˇ c´ 1, Carlo Camilloni5, Norman Davey6,7, Zsuzsanna Dosztanyi´ 8, Balint´ Mesz´ aros´ 8,9, Alexander M. Monzon10, Gustavo Parisi10, Eva Schad9, Pietro Sormanni11, Peter Tompa9,12,13, Michele Vendruscolo11, Wim F. Vranken12,13,14 and Silvio C.E. Tosatto1,15,* 1Department of Biomedical Sciences, University of Padua, via U. Bassi 58/b, 35131 Padua, Italy, 2Institute of Biosciences and Medical Technology, Arvo Ylpon¨ katu 34, 33520 Tampere, Finland, 3Department of Agricultural Sciences, University of Udine, via Palladio 8, 33100 Udine, Italy, 4Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all’Adige, Italy, 5Department of Biosciences, University of Milan, 20133 Milano, Italy, 6Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland, 7UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland, 8MTA-ELTE Lendulet¨ Bioinformatics Research Group, Department of Biochemistry, Eotv¨ os¨ Lorand´ University, 1/cPazm´ any´ Peter´ set´ any,´ H-1117, Budapest, Hungary, 9Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 7, H-1518 Budapest, Hungary, 10Structural Bioinformatics Group, Department of Science and Technology, National University of Quilmes, CONICET, Roque Saenz Pena 182, Bernal B1876BXD, Argentina, 11Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK, 12Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels 1050, Belgium, 13VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology (VIB), Brussels 1050, Belgium, 14Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, 1050 Brussels, Belgium and 15CNR Institute of Neuroscience, via U.
    [Show full text]
  • An Improved Database of Intrinsically Disordered and Mobile Proteins Emilio Potenza, Tomas´ Di Domenico, Ian Walsh and Silvio C.E
    Published online 31 October 2014 Nucleic Acids Research, 2015, Vol. 43, Database issue D315–D320 doi: 10.1093/nar/gku982 MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins Emilio Potenza, Tomas´ Di Domenico, Ian Walsh and Silvio C.E. Tosatto* Department of Biomedical Sciences, University of Padua, 35131 Padova, Italy Received August 15, 2014; Revised October 2, 2014; Accepted October 03, 2014 Downloaded from https://academic.oup.com/nar/article-abstract/43/D1/D315/2439671 by guest on 03 May 2019 ABSTRACT protein achieve its function. This paradigm has been chal- lenged by the collection of hundreds of proteins where func- MobiDB (http://mobidb.bio.unipd.it/) is a database of tion is determined by non-folding regions which play vital intrinsically disordered and mobile proteins. Intrin- biological roles (1,2). Flexible segments lacking a unique sically disordered regions are key for the function native structure, known as intrinsic disordered regions, are of numerous proteins. Here we provide a new ver- widespread in nature, especially in eukaryotic organisms sion of MobiDB, a centralized source aimed at pro- (3,4). The size of disordered regions can be short, long or viding the most complete picture on different fla- even encompass entire proteins and their non-enzymatic vors of disorder in protein structures covering all functions include regulation, protein–DNA/RNA interac- UniProt sequences (currently over 80 million). The tions and molecular recognition to name a few, for a recent database features three levels of annotation: man- review see e.g. (5). ually curated, indirect and predicted. Manually cu- One of the first repositories for experimentally deter- mined disorder was the DisProt database (6), containing rated data is extracted from the DisProt database.
    [Show full text]
  • Analysis and Consensus of Currently Available Intrinsic Protein Disorder
    Di Domenico et al. BMC Bioinformatics 2013, 14(Suppl 7):S3 http://www.biomedcentral.com/1471-2105/14/S7/S3 RESEARCH Open Access Analysis and consensus of currently available intrinsic protein disorder annotation sources in the MobiDB database Tomás Di Domenico, Ian Walsh, Silvio CE Tosatto* From Ninth Annual Meeting of the Italian Society of Bioinformatics (BITS) Catania, Sicily. 2-4 May 2012 Abstract Background: Intrinsic protein disorder is becoming an increasingly important topic in protein science. During the last few years, intrinsically disordered proteins (IDPs) have been shown to play a role in many important biological processes, e.g. protein signalling and regulation. This has sparked a need to better understand and characterize different types of IDPs, their functions and roles. Our recently published database, MobiDB, provides a centralized resource for accessing and analysing intrinsic protein disorder annotations. Results: Here, we present a thorough description and analysis of the data made available by MobiDB, providing descriptive statistics on the various available annotation sources. Version 1.2.1 of the database contains annotations for ca. 4,500,000 UniProt sequences, covering all eukaryotic proteomes. In addition, we describe a novel consensus annotation calculation and its related weighting scheme. The comparison between disorder information sources highlights how the MobiDB consensus captures the main features of intrinsic disorder and correlates well with manually curated datasets. Finally, we demonstrate the annotation of 13 eukaryotic model organisms through MobiDB’s datasets, and of an example protein through the interactive user interface. Conclusions: MobiDB is a central resource for intrinsic disorder research, containing both experimental data and predictions.
    [Show full text]
  • A Database of Classified Functional Binding Sites in Disordered And
    Yu et al. BMC Bioinformatics (2017) 18:206 DOI 10.1186/s12859-017-1620-1 DATABASE Open Access DisBind: A database of classified functional binding sites in disordered and structured regions of intrinsically disordered proteins Jia-Feng Yu1, Xiang-Hua Dou2, Yu-Jie Sha1, Chun-Ling Wang2, Hong-Bo Wang1, Yi-Ting Chen2, Feng Zhang2, Yaoqi Zhou1,3* and Ji-Hua Wang1,2* Abstract Background: Intrinsically unstructured or disordered proteins function via interacting with other molecules. Annotation of these binding sites is the first step for mapping functional impact of genetic variants in coding regions of human and other genomes, considering that a significant portion of eukaryotic genomes code for intrinsically disordered regions in proteins. Results: DisBind (available at http://biophy.dzu.edu.cn/DisBind) is a collection of experimentally supported binding sites in intrinsically disordered proteins and proteins with both structured and disordered regions. There are a total of 226 IDPs with functional site annotations. These IDPs contain 465 structured regions (ORs) and 428 IDRs according to annotation by DisProt. The database contains a total of 4232 binding residues (from UniProt and PDB structures) in which 2836 residues are in ORs and 1396 in IDRs. These binding sites are classified according to their interacting partners including proteins, RNA, DNA, metal ions and others with 2984, 258, 383, 350, and 262 annotated binding sites, respectively. Each entry contains site-specific annotations (structured regions, intrinsically disordered regions, and functional binding regions) that are experimentally supported according to PDB structures or annotations from UniProt. Conclusion: The searchable DisBind provides a reliable data resource for functional classification of intrinsically disordered proteins at the residue level.
    [Show full text]
  • Highly Accurate Protein Structure Prediction for the Human Proteome
    https://doi.org/10.1038/s41586-021-03828-1 Accelerated Article Preview Highly accurate protein structure predictionW for the human proteome E VI Received: 11 May 2021 K a t hr yn T un yasuvunakool, Jonas Adler, Zachary Wu, Tim Green, Michal Zielinski, Augustin Žídek, Alex Bridgland, Andrew Cowie, Clemens Meyer, AgataE Laydon, Accepted: 16 July 2021 Sameer Velankar, Gerard J. Kleywegt, Alex Bateman, Richard Evans, Alexander Pritzel, Accelerated Article Preview Published Michael Figurnov, Olaf Ronneberger, Russ Bates, Simon A. A.R Kohl, Anna Potapenko, online 22 July 2021 Andrew J. Ballard, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Ellen Clancy, David Reiman, Stig Petersen, Andrew W. Senior, Koray Kavukcuoglu,P Ewan Birney, Cite this article as: Tunyasuvunakool, Pushmeet Kohli, John Jumper & Demis Hassabis K. et al. Highly accurate protein structure prediction for the human proteome. Nature E https://doi.org/10.1038/s41586-021-03828-1 This is a PDF fle of a peer-reviewed paper that has been accepted for publication. ( 20 21 ). Although unedited, the content has beenL subjected to preliminary formatting. Nature is providing this early version ofC the typeset paper as a service to our authors and readers. The text and fgures will undergo copyediting and a proof review before the paper is published in its fnalI form. Please note that during the production process errors may be discoveredT which could afect the content, and all legal disclaimers apply. R A D E T A R E L E C C A Nature | www.nature.com Article Highly accurate protein structure prediction for the human proteome W 1 1 1 1 1 https://doi.org/10.1038/s41586-021-03828-1 Kathryn Tunyasuvunakool ✉, Jonas Adler , Zachary Wu , Tim Green , Michal Zielinski , 1 1 1 1 1 E Augustin Žídek , Alex Bridgland , Andrew Cowie , Clemens Meyer , Agata Laydon , Received: 11 May 2021 Sameer Velankar2, Gerard J.
    [Show full text]
  • Highly Accurate Protein Structure Prediction for the Human Proteome
    Article Highly accurate protein structure prediction for the human proteome https://doi.org/10.1038/s41586-021-03828-1 Kathryn Tunyasuvunakool1 ✉, Jonas Adler1, Zachary Wu1, Tim Green1, Michal Zielinski1, Augustin Žídek1, Alex Bridgland1, Andrew Cowie1, Clemens Meyer1, Agata Laydon1, Received: 11 May 2021 Sameer Velankar2, Gerard J. Kleywegt2, Alex Bateman2, Richard Evans1, Alexander Pritzel1, Accepted: 16 July 2021 Michael Figurnov1, Olaf Ronneberger1, Russ Bates1, Simon A. A. Kohl1, Anna Potapenko1, Andrew J. Ballard1, Bernardino Romera-Paredes1, Stanislav Nikolov1, Rishub Jain1, Published online: 22 July 2021 Ellen Clancy1, David Reiman1, Stig Petersen1, Andrew W. Senior1, Koray Kavukcuoglu1, Open access Ewan Birney2, Pushmeet Kohli1, John Jumper1,3 ✉ & Demis Hassabis1,3 ✉ Check for updates Protein structures can provide invaluable information, both for reasoning about biological processes and for enabling interventions such as structure-based drug development or targeted mutagenesis. After decades of efort, 17% of the total residues in human protein sequences are covered by an experimentally determined structure1. Here we markedly expand the structural coverage of the proteome by applying the state-of-the-art machine learning method, AlphaFold2, at a scale that covers almost the entire human proteome (98.5% of human proteins). The resulting dataset covers 58% of residues with a confdent prediction, of which a subset (36% of all residues) have very high confdence. We introduce several metrics developed by building on the AlphaFold model and use them to interpret the dataset, identifying strong multi-domain predictions as well as regions that are likely to be disordered. Finally, we provide some case studies to illustrate how high-quality predictions could be used to generate biological hypotheses.
    [Show full text]
  • Disprot Long Disorder • NMR Mobility (Mobi)
    TRAINING SCHOOL 1 24 -28 MAY 2021 Computational methods to study Phase Separation Lecture: Classification and evolution of non-globular proteins – Silvio Tosatto This content is shared under the license CC BY-NC Classification and evolution of non-globular proteins Silvio Tosatto BioComputing UP, Department of Biomedical Sciences, University of Padova, Italy URL: biocomputingup.it A case for protein “dark matter” ?? A case for protein “dark matter” ?? Repeats ??? A case for protein “dark matter” ?? Missing annotation Tandem repeat PDB code: 3oja_A Example: Non-globular protein PDB code: 3oja_A Non-globular proteins (NGPs) Unlike their globular counterparts, non-globular proteins do not have the typical globular shape. They tend to be elongated. Open questions: A typical globular protein: • Determinants? Non-globular proteins: • Structure? • Interactions? ● Intrinsically disordered (IDPs) • Function? ● Tandem repeated • Classification? ● Aggregating Non-globular proteins Towards an understanding of the "dark matter" in the protein universe Intrinsically disordered proteins 1/3 of the human ~100,000 transient, 70% of conditional, regulatory experimentally proteome interaction modules validated PTMs (Tompa et al. Mol. Cell. 2014) IDPs sample a wide spectrum of structure and dynamics (Miskei et al., J. Mol. Biol. 2020) Disorder prediction ESpritz: Flavors of disorder • A fast predictor for high-throughput (e.g. genome scale) analysis of protein disorder. • Available as both server and stand-alone version • Bidirectional recursive neural network (BRNN) • Three different flavors • X-ray short disorder • DisProt long disorder • NMR mobility (Mobi) Input: • Sequence-only (fast, slighly reduced accuracy) • PSI-BLAST profile (slower, more accurate) Time required to compute 1% of the human genome. (Walsh I, Martin AJ, Di Domenico T, Tosatto SC.
    [Show full text]