Regulation of Nuclear Mechanics and the Impact on DNA Damage

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Nuclear Mechanics and the Impact on DNA Damage International Journal of Molecular Sciences Review Regulation of Nuclear Mechanics and the Impact on DNA Damage Ália dos Santos 1,* and Christopher P. Toseland 1,2,* 1 Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK 2 Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK * Correspondence: a.d.santos@sheffield.ac.uk (Á.d.S.); c.toseland@sheffield.ac.uk (C.P.T.) Abstract: In eukaryotic cells, the nucleus houses the genomic material of the cell. The physical properties of the nucleus and its ability to sense external mechanical cues are tightly linked to the regulation of cellular events, such as gene expression. Nuclear mechanics and morphology are altered in many diseases such as cancer and premature ageing syndromes. Therefore, it is important to understand how different components contribute to nuclear processes, organisation and mechanics, and how they are misregulated in disease. Although, over the years, studies have focused on the nuclear lamina—a mesh of intermediate filament proteins residing between the chromatin and the nuclear membrane—there is growing evidence that chromatin structure and factors that regulate chromatin organisation are essential contributors to the physical properties of the nucleus. Here, we review the main structural components that contribute to the mechanical properties of the nucleus, with particular emphasis on chromatin structure. We also provide an example of how nuclear stiffness can both impact and be affected by cellular processes such as DNA damage and repair. Keywords: mechanics; DNA; chromatin; nucleus; lamin; cytoskeleton; DNA damage Citation: dos Santos, Á.; Toseland, C.P. Regulation of Nuclear Mechanics and the Impact on DNA Damage. Int. 1. Introduction J. Mol. Sci. 2021, 22, 3178. https:// doi.org/10.3390/ijms22063178 The nucleus houses the genetic information necessary for the activity and survival of the cell, but as we outline in this review, the nucleus is more than just a compartment to Academic Editor: house DNA. Although the nucleus is the largest and stiffest cellular organelle, it is also a Marie-Edith Chaboute highly dynamic organelle that can sense the external environment and rapidly adapt [1–3]. The nuclear envelope comprises a double membrane—the outer nuclear membrane and the Received: 25 February 2021 inner nuclear membrane—associated with various distinct transmembrane proteins, such Accepted: 18 March 2021 as nuclear pore complexes and LEM (Lap2, emerin, and Man1)-domain proteins [4]. This is Published: 20 March 2021 followed by an assembly of lamin filaments at the nuclear interior that provides structural stability to the organelle and tether chromatin to the nuclear envelope. From the outside, the Publisher’s Note: MDPI stays neutral nucleus is linked to the cytoskeleton through the Linker of Nucleoskleton and Cytoskeleton with regard to jurisdictional claims in (LINC) complex, which also binds to the nuclear lamina [5]. This nuclear connectivity published maps and institutional affil- allows external signals to modulate nuclear functions, such as transcription [6,7] and iations. DNA replication [8,9]. Moreover, it may allow communication in the opposite direction (Figure1). Within the nucleus, the DNA associates to histone cores to form nucleosomes, the building blocks of chromatin. Through epigenetic regulation, chromatin can be packaged Copyright: © 2021 by the authors. into different conformations and higher-order structures, which determine the accessibil- Licensee MDPI, Basel, Switzerland. ity [10] of DNA to replication [11,12], transcription [13,14], and repair machinery [15,16]. This article is an open access article Higher-order compact chromatin structures, known as heterochromatin, are largely inacces- distributed under the terms and sible and are usually associated with genomic regions of low transcriptional activity at the conditions of the Creative Commons nuclear periphery [17–19]. Meanwhile, more open conformations of chromatin, also known Attribution (CC BY) license (https:// as euchromatin, are easily accessible and represent areas of active gene expression [20,21]. creativecommons.org/licenses/by/ 4.0/). Int. J. Mol. Sci. 2021, 22, 3178. https://doi.org/10.3390/ijms22063178 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, x FOR Int.PEER J. Mol. REVIEW Sci. 2021 , 22, 3178 2 of 19 2 of 18 FigureFigure 1. 1. Schematic Schematic representation representation of the of interconnectivity the interconnectivity between cytoskeleton,between cytoskeleton, nuclear envelope nuclear and en- chromatin. Thevelope cytoskeleton and chromatin. is physically The connected cytoskeleton to the nuclear is physically envelope consistingconnected of theto the outer nuclear nuclear envelop membranee con- (ONM) and thesisting inner nuclearof the outer membrane nuclear (INM) membrane through the (ONM) LINC complex. and the The inner LINC nuclear complex membrane is formed of (I trimersNM) through of SUN-domain proteinsthe LINC that bindcomplex. different The KASH-domain LINC complex proteins is atformed the nuclear of trimers membrane. of SUN LINC- complexesdomain proteins can indirectly that associate bind with intermediarydifferent KASH filaments-domain and microtubules proteins throughat the nuclear cyto-linker membrane. proteins or LINC motor proteins,complexes respectively, can indirectly or directly as- interact withsociate actin filaments.with intermediary At the nuclear filaments interior, the and nuclear microtubules lamina tethers through chromatin cyto domains—lamina-associated-linker proteins or motor domains—to the nuclear envelope. This allows effective mechanotransduction in the cell. proteins, respectively, or directly interact with actin filaments. At the nuclear interior, the nu- clear lamina tethers chromatinVariations domains to the— biochemicallamina-associ componentsated domains of the—to nucleus the nuclear result inenve- changes to the lope. This allows effectivephysical mechanotransduction properties of the organelle in the and cell. its morphology. The nuclear mechanical properties, comprising the viscoelastic behaviour and plasticity, are tightly linked to cellular function Within the nucleus,and vary the between DNA cellassociates stages and to types histone [22]. Therecores are to fourform major nucleosomes, contributors tothe nuclear building blocks of chromatin.shape and the Through mechanical epigenetic properties: regulation, the magnitude chromatin of cytoskeletal can forcesbe packaged exerted on the organelle, the composition and thickness of the nuclear lamina, the level of chromatin into different conformationscompaction and within higher the nucleus,-order andstructures the activity, which of proteins determine that modulate the accessibil- DNA structure ity [10] of DNA to replication(Figure2). [11,12], transcription [13,14], and repair machinery [15,16]. Higher-order compact chromatinAltered nuclear structures, morphology known and mechanics as heterochromati are usually accompaniedn, are largely by inac- changes in cessible and are usuallygene expressionassociated and with cell function.genomic Changes regions in of the low shape transcriptional and size of the nucleus activity have at been reported for different diseases, and in some cases, this can also be used to help diagnosis. the nuclear peripheryFor [17 example,–19]. abnormallyMeanwhile, shaped more nuclei open can conformations be found in cardiomyopathies, of chromatin, progeria also and known as euchromatin,in cancer. are easily In particular, accessible nuclei and of represent cervical cancer areas cells of presentactive gene herniations expression or blebbing, [20,21]. and this constitutes part of the Pap smear test diagnosis [23]; in breast cancer, nuclear Variations to thepleomorphisms biochemical (altered components nuclear morphology) of the nucleus are used result for tumour in changes grading and to correlatesthe physical properties withof the patient organelle outcome and [24 its]. Itmorphology. is therefore essential The nuclear to understand mechanical how these proper- changes in nuclear morphology arise, how they reflect altered mechanical properties of the nucleus ties, comprising theand viscoelastic how this affects behaviour overall cellular and plasticity, function, mechanosensing are tightly linked and force to transduction. cellular function and vary betweenHere, cell we stages pay special and attention types [22] to the. There newly are emerging four datamajor on contributors the importance to of chro- nuclear shape and thematin mechanical dynamics andproperties: the regulation the magnitude of its spatial organisation.of cytoskeletal We alsoforces discuss exerted some new on the organelle, thetechnological compositio approachesn and thickness in mechanobiology of the nuclear and in lamina the study, the of chromatin level of architecture.chro- Finally, we will discuss how nuclear mechanics can influence cellular processes such as matin compaction withinDNA damage. the nucleus, and the activity of proteins that modulate DNA structure (Figure 2). Int.Int. J. J.Mol. Mol. Sci. Sci. 20212021,, 2222,, x 3178 FOR PEER REVIEW 3 of 18 3 of 19 Figure 2. Major contributors to nuclear morphology and mechanics. There are four major contribu- torsFigure to nuclear 2. Major mechanics contributors in the cell. to nuclear (i) Cytoskeletal morphology forces determine and mechanics. nuclear shapeThere and are morphology.four major contrib- Increasedutors to actinnuclear polymerisation
Recommended publications
  • Novel Nesprin-1 Mutations Associated with Dilated
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of East Anglia digital repository Human Molecular Genetics, 2017, Vol. 0, No. 0 1–19 doi: 10.1093/hmg/ddx116 Advance Access Publication Date: 7 April 2017 Original Article ORIGINAL ARTICLE Novel nesprin-1 mutations associated with dilated cardiomyopathy cause nuclear envelope disruption and defects in myogenesis Can Zhou1,2,†, Chen Li1,2,†, Bin Zhou3,4, Huaqin Sun4,5, Victoria Koullourou1,6, Ian Holt7, Megan J. Puckelwartz8, Derek T. Warren1, Robert Hayward1, Ziyuan Lin4,5, Lin Zhang3,4, Glenn E. Morris7, Elizabeth M. McNally8, Sue Shackleton6, Li Rao2, Catherine M. Shanahan1,‡ and Qiuping Zhang1,*,‡ 1King’s College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5 9NU, UK, 2Department of Cardiology, West China Hospital of Sichuan University, Chengdu 610041, China, 3Laboratory of Molecular Translational Medicine, 4Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, 5SCU-CUHK Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China, 6Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK, 7Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK and Institute for Science and Technology in Medicine, Keele University, ST5 5BG, UK and 8Center for Genetic Medicine, Northwestern University Feinberg
    [Show full text]
  • For the Safe Delivery of Essential Proteins
    Dedicated ‘Bodyguards’ for the Safe Delivery of Essential Proteins Dr Brigitte Pertschy DEDICATED ‘BODYGUARDS’ FOR THE SAFE DELIVERY OF ESSENTIAL PROTEINS Ribosomes are undoubtedly one of the most essential cellular components in life. These macromolecules are responsible for the synthesis of proteins in all living cells. Dr Brigitte Pertschy, Dr Ingrid Rössler and Jutta Hafner at the Institute of Molecular Biosciences at the University of Graz, Austria, have discovered that the safe delivery of essential ribosomal proteins that make up the ribosomes is dependant on ‘private bodyguards’ or ‘chaperones’. Nascent Ribosomal Proteins Journey Ribosome synthesis is an important of their synthesis and proper folding Across the Cell to the Nucleus and continuous process. Dr Pertschy of the proteins. Importins have also describes that a growing cell requires been reported as aides in the import of The ribosome is the intricate nano- up to 1,000 ribosomes to be synthesised proteins to the cell nucleus as well as in machinery that translates messenger per minute. The r-proteins are protecting proteins from aggregation. RNA strands (mRNA) into protein. Our produced in the cell cytoplasm by the DNA holds the instructions for building ribosome itself (that way, the ribosome The team speculated that since every protein needed for our bodies to participates in its own reproduction). r-proteins are produced at extremely function. Initially, DNA is transcribed From there the r-proteins must travel high amounts and their correct into mRNA, which contains the amino to the cell nucleus where in a complex functioning is so critical for a cell, these acid sequence of a particular protein.
    [Show full text]
  • Revealing the Mechanism of Xist-Mediated Silencing
    Revealing the Mechanism of Xist-mediated Silencing Thesis by Chun-Kan Chen In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended November 1, 2017 ii 2017 Chun-Kan Chen ORCID: 0000-0002-1194-9137 iii ACKNOWLEDGEMENTS First of all, I’d like to thank my great mentor, Dr. Mitch Guttman (California Institute of Technology, Pasadena, CA), who led me to become an independent researcher and gave me valuable advice that guided me to accomplish this thesis. He has always been supportive of my future plans and career goals. I really enjoyed every discussion we have had. We often generated some interesting ideas for projects during our discussions. I would also like to send my thanks to my lab mates, Amy Chow, Mario Blanco, and Erik Aznauryan, who helped me with many experiments to move the project forward. I’d like to acknowledge Dr. Kathrin Plath (University of California, Los Angeles, Los Angeles, CA) for the collaboration and his critical comments on this project. Also, I want to thank Jesse Engreitz and Patrick McDonel, who provided helpful comments and suggestions to the project. I want to thank my parents, brother, and parents-in-law who provided both instrumental and emotional support to assist me in completing my Ph.D. degree. I also want to thank my friends, Lily Chen, Pei-Ying Lin, Tzu-Yao Wang, and Wei Li, for giving me valuable social support during my years in graduate school. Last but not least, I would like to send my special thanks to my wife, Christine Juang, who has always been supportive.
    [Show full text]
  • Building the Interphase Nucleus: a Study on the Kinetics of 3D Chromosome Formation, Temporal Relation to Active Transcription, and the Role of Nuclear Rnas
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2020-07-28 Building the Interphase Nucleus: A study on the kinetics of 3D chromosome formation, temporal relation to active transcription, and the role of nuclear RNAs Kristin N. Abramo University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Bioinformatics Commons, Cell Biology Commons, Computational Biology Commons, Genomics Commons, Laboratory and Basic Science Research Commons, Molecular Biology Commons, Molecular Genetics Commons, and the Systems Biology Commons Repository Citation Abramo KN. (2020). Building the Interphase Nucleus: A study on the kinetics of 3D chromosome formation, temporal relation to active transcription, and the role of nuclear RNAs. GSBS Dissertations and Theses. https://doi.org/10.13028/a9gd-gw44. Retrieved from https://escholarship.umassmed.edu/ gsbs_diss/1099 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. BUILDING THE INTERPHASE NUCLEUS: A STUDY ON THE KINETICS OF 3D CHROMOSOME FORMATION, TEMPORAL RELATION TO ACTIVE TRANSCRIPTION, AND THE ROLE OF NUCLEAR RNAS A Dissertation Presented By KRISTIN N. ABRAMO Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPOPHY July 28, 2020 Program in Systems Biology, Interdisciplinary Graduate Program BUILDING THE INTERPHASE NUCLEUS: A STUDY ON THE KINETICS OF 3D CHROMOSOME FORMATION, TEMPORAL RELATION TO ACTIVE TRANSCRIPTION, AND THE ROLE OF NUCLEAR RNAS A Dissertation Presented By KRISTIN N.
    [Show full text]
  • Upon Microbial Challenge, Human Neutrophils Undergo Rapid Changes in Nuclear Architecture and Chromatin Folding to Orchestrate an Immediate Inflammatory Gene Program
    Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Upon microbial challenge, human neutrophils undergo rapid changes in nuclear architecture and chromatin folding to orchestrate an immediate inflammatory gene program Matthew Denholtz,1,5 Yina Zhu,1,5 Zhaoren He,1 Hanbin Lu,1 Takeshi Isoda,1,4 Simon Döhrmann,2 Victor Nizet,2,3 and Cornelis Murre1 1Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92039, USA; 2Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California 92093, USA; 3Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, USA Differentiating neutrophils undergo large-scale changes in nuclear morphology. How such alterations in structure are established and modulated upon exposure to microbial agents is largely unknown. Here, we found that prior to encounter with bacteria, an armamentarium of inflammatory genes was positioned in a transcriptionally passive environment suppressing premature transcriptional activation. Upon microbial exposure, however, human neu- trophils rapidly (<3 h) repositioned the ensemble of proinflammatory genes toward the transcriptionally permissive compartment. We show that the repositioning of genes was closely associated with the swift recruitment of cohesin across the inflammatory enhancer landscape, permitting an immediate transcriptional response upon bacterial exposure. We found that activated enhancers, marked by increased deposition of H3K27Ac, were highly enriched for cistromic elements associated with PU.1, CEBPB, TFE3, JUN, and FOSL2 occupancy. These data reveal how upon microbial challenge the cohesin machinery is recruited to an activated enhancer repertoire to instruct changes in chromatin folding, nuclear architecture, and to activate an inflammatory gene program.
    [Show full text]
  • Introduction to the Cell Cell History Cell Structures and Functions
    Introduction to the cell cell history cell structures and functions CK-12 Foundation December 16, 2009 CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high quality educational content that will serve both as core text as well as provide an adaptive environment for learning. Copyright ©2009 CK-12 Foundation This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Contents 1 Cell structure and function dec 16 5 1.1 Lesson 3.1: Introduction to Cells .................................. 5 3 www.ck12.org www.ck12.org 4 Chapter 1 Cell structure and function dec 16 1.1 Lesson 3.1: Introduction to Cells Lesson Objectives • Identify the scientists that first observed cells. • Outline the importance of microscopes in the discovery of cells. • Summarize what the cell theory proposes. • Identify the limitations on cell size. • Identify the four parts common to all cells. • Compare prokaryotic and eukaryotic cells. Introduction Knowing the make up of cells and how cells work is necessary to all of the biological sciences. Learning about the similarities and differences between cell types is particularly important to the fields of cell biology and molecular biology.
    [Show full text]
  • Nuclear Domains
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cold Spring Harbor Laboratory Institutional Repository CELL SCIENCE AT A GLANCE 2891 Nuclear domains dynamic structures and, in addition, nuclear pore complex has been shown to rapid protein exchange occurs between have a remarkable substructure, in which David L. Spector many of the domains and the a basket extends into the nucleoplasm. Cold Spring Harbor Laboratory, One Bungtown nucleoplasm (Misteli, 2001). An The peripheral nuclear lamina lies Road, Cold Spring Harbor, NY 11724, USA extensive effort is currently underway by inside the nuclear envelope and is (e-mail: [email protected]) numerous laboratories to determine the composed of lamins A/C and B and is biological function(s) associated with thought to play a role in regulating Journal of Cell Science 114, 2891-2893 (2001) © The Company of Biologists Ltd each domain. The accompanying poster nuclear envelope structure and presents an overview of commonly anchoring interphase chromatin at the The mammalian cell nucleus is a observed nuclear domains. nuclear periphery. Internal patches of membrane-bound organelle that contains lamin protein are also present in the the machinery essential for gene The nucleus is bounded by a nuclear nucleoplasm (Moir et al., 2000). The expression. Although early studies envelope, a double-membrane structure, cartoon depicts much of the nuclear suggested that little organization exists of which the outer membrane is envelope/peripheral lamina as within this compartment, more contiguous with the rough endoplasmic transparent, so that internal structures contemporary studies have identified an reticulum and is often studded with can be more easily observed.
    [Show full text]
  • Biogenesis of Nuclear Bodies
    Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Biogenesis of Nuclear Bodies Miroslav Dundr1 and Tom Misteli2 1Department of Cell Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Ilinois 60064 2National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 Correspondence: [email protected]; [email protected] The nucleus is unique amongst cellular organelles in that it contains a myriad of discrete suborganelles. These nuclear bodies are morphologically and molecularly distinct entities, and they host specific nuclear processes. Although the mode of biogenesis appears to differ widely between individual nuclear bodies, several common design principles are emerging, particularly, the ability of nuclear bodies to form de novo, a role of RNA as a struc- tural element and self-organization as a mode of formation. The controlled biogenesis of nuclear bodies is essential for faithful maintenance of nuclear architecture during the cell cycle and is an important part of cellular responses to intra- and extracellular events. he mammalian cell nucleus contains a mul- seems to act indirectly by regulating the local Ttitude of discrete suborganelles, referred to concentration of its components in the nucleo- as nuclear bodies or nuclear compartments plasm. (reviewed in Dundr and Misteli 2001; Spector In many ways, nuclear bodies are similar 2001; Lamond and Spector 2003; Handwerger to conventional cellular organelles in the cy- and Gall 2006; Zhao et al. 2009). These bodies toplasm. Like cytoplasmic organelles, they con- are an essential part of the nuclear landscape tain a specific set of resident proteins, which as they compartmentalize the nuclear space defines each structure molecularly.
    [Show full text]
  • SMC Complexes Orchestrate the Mitotic Chromatin Interaction Landscape
    Curr Genet DOI 10.1007/s00294-017-0755-y REVIEW SMC complexes orchestrate the mitotic chromatin interaction landscape Yasutaka Kakui1 · Frank Uhlmann1 Received: 13 September 2017 / Revised: 14 September 2017 / Accepted: 16 September 2017 © The Author(s) 2017. This article is an open access publication Abstract Chromatin is a very long DNA–protein complex Keywords Chromosome condensation · SMC complex · that controls the expression and inheritance of the genetic Chromatin · Cell cycle · Hi-C information. Chromatin is stored within the nucleus in interphase and further compacted into chromosomes dur- ing mitosis. This process, known as chromosome condensa- Introduction tion, is essential for faithful segregation of genomic DNA into daughter cells. Condensin and cohesin, members of How chromatin is spatially organized within the cell nucleus the structural maintenance of chromosomes (SMC) fam- and within chromosomes is a fundamental question in cell ily, are fundamental for chromosome architecture, both biology. Centimeter-long DNA molecules change their spa- for establishment of chromatin structure in the interphase tial chromatin organization within micrometer-sized cells nucleus and for the formation of condensed chromosomes during cell cycle progression. In interphase, chromatin is in mitosis. These ring-shaped SMC complexes are thought distributed throughout the nucleus to express the genetic to regulate the interactions between DNA strands by topo- information. When cells enter mitosis, chromatin becomes logically entrapping DNA. How this activity shapes chro- compacted to form mitotic chromosomes. Chromosome mosomes is not yet understood. Recent high throughput condensation, the gross morphological change of spatial chromosome conformation capture studies revealed how chromatin organization in mitosis, is indispensable for chromatin is reorganized during the cell cycle and have the faithful inheritance of genetic information.
    [Show full text]
  • Module IV Nucleus
    Module IV Nucleus Structure and functions of interphase nucleus, Nuclear membrane, pore complex, structure and functions of nucleolus Chromosomes – Structure; Heterochromatin, Euchromatin, Nucleosomes, Nucleus is the most important part of the cell situated in the cytoplasm. All the cellular activities are controlled by it. Nucleus is a directing and organizing unit without which the cell could not exist. It was discovered by Robert Brown (1831) in flowering plants and is now recognized as the structure that contains the hereditary material of the cell. The study of nucleus or karyosome constitutes karyology. The location of nucleus varies in the cell depending upon the species. Usually it is situated in the centre of the cell surrounded on all sides by cytoplasm. In green algae, Acetabularia, it shows various positions, though mainly present in the basal part of cell. Generally the nuclei are scattered in the cytoplasm. Morphology: 1. Shape: The shape of nucleus is variable according to cell type. It is generally spheroid but ellipsoid or flattened nuclei may also occur in certain cells. The nuclear margins are generally smooth but they may be lobulated bearing small infoldings of nuclear membrane as in leucocytes. In certain white blood corpuscles the nucleus is dumbbell-shaped and exhibits variation during life history stages. In human neutrophil, it is trilobed. 2. Number: Mostly cell contains a single nucleus, known as mononucleate cell. Cells containing two nuclei are known as binucleate cells (e.g., Paramecium), and cells of cartilage and liver. Sometimes more than two nuclei (3 to 100 nuclei) are present in a single cell.
    [Show full text]
  • DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy
    cells Review DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy Lu Zhang 1,2 and Xiaogang Li 2,3,* 1 Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; [email protected] 2 Department of Internal Medicine, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55905, USA 3 Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55905, USA * Correspondence: [email protected]; Tel.: +1-507-266-0110 Abstract: Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regula- tion has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis.
    [Show full text]
  • Multiple Controls Regulate Nucleostemin Partitioning Between Nucleolus and Nucleoplasm
    5124 Research Article Multiple controls regulate nucleostemin partitioning between nucleolus and nucleoplasm Lingjun Meng1, Hiroaki Yasumoto1 and Robert Y. L. Tsai1,* 1Center for Cancer and Stem Cell Biology, Alkek Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W Holcombe Blvd, Houston, TX 77030-3303, USA *Author for correspondence (e-mail: [email protected]) Accepted 6 October 2006 Journal of Cell Science 119, 5124-5136 Published by The Company of Biologists 2006 doi:10.1242/jcs.03292 Summary Nucleostemin plays an essential role in maintaining the nucleostemin. It interacts with both the basic and the GTP- continuous proliferation of stem cells and cancer cells. The binding domains of nucleostemin through a non-nucleolus- movement of nucleostemin between the nucleolus and the targeting region. Overexpression of the nucleolus-targeting nucleoplasm provides a dynamic way to partition the domain of RSL1D1 alone disperses nucleolar nucleostemin. nucleostemin protein between these two compartments. Loss of RSL1D1 expression reduces the compartmental size Here, we show that nucleostemin contains two nucleolus- and amount of nucleostemin in the nucleolus. Our work targeting regions, the basic and the GTP-binding domains, reveals that the partitioning of nucleostemin employs that exhibit a short and a long nucleolar retention time, complex mechanisms involving both nucleolar and respectively. In a GTP-unbound state, the nucleolus- nucleoplasmic components, and provides insight into the targeting activity of nucleostemin is blocked by a post-translational regulation of its activity. mechanism that traps its intermediate domain in the nucleoplasm. A nucleostemin-interacting protein, RSL1D1, Supplementary material available online at was identified that contains a ribosomal L1-domain.
    [Show full text]