Study on Alumina-Supported Cobalt–Nickel Oxide Catalyst for Synthesis of Acetonitrile from Ethanol

Total Page:16

File Type:pdf, Size:1020Kb

Study on Alumina-Supported Cobalt–Nickel Oxide Catalyst for Synthesis of Acetonitrile from Ethanol Catal Lett (2011) 141:168–177 DOI 10.1007/s10562-010-0468-z Study on Alumina-Supported Cobalt–Nickel Oxide Catalyst for Synthesis of Acetonitrile from Ethanol Cheng Feng • Yuecheng Zhang • Yining Zhang • Yanlong Wen • Jiquan Zhao Received: 2 July 2010 / Accepted: 8 October 2010 / Published online: 26 October 2010 Ó Springer Science+Business Media, LLC 2010 Abstract A new alumina-supported cobalt–nickel oxide 1 Introduction catalyst for the synthesis of acetonitrile from ethanol and ammonia was prepared by coprecipitation-kneading Acetonitrile is an important fine chemical product which has method. The parameters influencing the reaction were been widely used as the synthetic intermediate for pharma- studied thoroughly and an optimized process, which is ceutical, agricultural, and functional material chemicals [1]. running the reaction at 380 °C under atmospheric pressure It also used as a general purpose solvent for many com- while keeping the ammonia/alcohol molar ratio of 5 and pounds and movable phase in high-performance liquid GHSV of 1,163 h-1, was obtained. Under the optimized chromatographic analysis. Currently, it is mainly produced conditions the catalyst reached its best performance when as a by-product during the propylene ammoxidation process being on stream for 40 h, at which the yield of acetonitrile to acrylonitrile [2, 3]. With the increasing demand, it is dif- was 92.6%. Then the selectivity to acetonitrile decreased ficult to meet the need in the future to obtain acetonitrile only gradually but the yield of acetonitrile always remained from the production of acrylonitrile. Furthermore, the pro- higher than 81% within 720 h. The samples of the fresh and duction of acetonitrile as a by-product of acrylonitrile has the used catalyst were characterized by XRD, XPS, TEM, disadvantages of concomitance of toxic hydrogen cyanide EDX and N2 adsorption–desorption analysis. The results and difficulty in separation of the crude product [4]. There- revealed that carbon deposition and formation of metal fore, it is important to develop a green and advanced process carbides from the active species in the catalytic runs led to to produce acetonitrile. Many methods have been reported to the deterioration of the catalyst. synthesize acetonitrile from other chemical substances up till now. The raw materials include carbon monoxide [5–8], Keywords Cobalt–nickel oxide Á Catalyst Á Acetonitrile Á methane or other hydrocarbon compounds [9–14], ethanol Ethanol Á Deterioration Á Metal carbides [15–21] and acetic acid [22, 23]. Among all the raw materials ethanol becomes the first choice because it can provide a process which avoids the concomitance of high toxic hydrogen cyanide and gives high quality acetonitrile. Two approaches so-called amination-dehygrogenation [20, 21] and ammoxidation of ethanol [15–20] can be employed to the transfer of ethanol to acetonitrile. However, only the former can meet the need of avoiding formation of high toxic & C. Feng Á Y. Zhang Á Y. Zhang Á Y. Wen Á J. Zhao ( ) hydrogen cyanide. In 1960s, Kryukov et al. [24] first reported School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, the conversion of alcohols to acetonitriles by amination- People’s Republic of China dehygrogenation process over a fused iron catalyst. Since e-mail: [email protected] then, several catalysts have been reported to transfer ethanol to acetonitrile [4, 20, 25]. But all the catalysts suffer from a C. Feng College of Science, Agriculture University of Hebei, disadvantage of either a high ammonia/ethanol ratio Baoding 071001, People’s Republic of China dependence [20] or low acetonitrile selectivity [4]. Besides, 123 Study on Alumina-Supported Cobalt–Nickel Oxide Catalyst 169 no clear information about the lifetime and structures of the of the samples were recorded with a Rigaku D/max 2500 catalysts was mentioned in any of the reports. X-ray diffractometer using Cu Ka radiation (40 kV, 150 Recently, we prepared an alumina-supported cobalt– mA) in the range 2h = 10°–90°. X-ray photoelectron nickel oxide catalyst for the amination-dehygrogenation of spectroscopy (XPS) was performed with a PHI 1600 ethanol to acetonitrile by kneading method. The catalyst spectroscope using Mg Ka X-ray source for excitation. showed high catalytic activity, good selectivity and long Transmission electron micrographs (TEM) were obtained lifetime [21]. However, the catalyst was fragile during the on a JEOL 100CX-II instrument equipped with an energy course of regeneration for further investigation. For dispersive X-ray (EDX) detector (Oxford Instruments) at improving the mechanical strength of the catalyst, we used an accelerating voltage of 200 kV. Specimens for TEM coprecipitation-kneading method instead of kneading analysis were prepared by ultrasonic dispersion in n-buta- method to prepare a new alumina-supported cobalt–nickel nol where a drop of the resultant suspension was evapo- oxide catalyst. The catalyst also showed high activity, good rated on a lacey-carbon/Cu grid. The surface area, total selectivity to acetonitrile and long lifetime as that prepared pore volume and pore size distribution of the samples were by kneading method, but had good mechanical strength in measured at 77 K by nitrogen adsorption using a catalytic runs. Therefore, we characterized the catalyst Micromeritics ASAP 2020 Surface Area and Porosity thoroughly to explore the deterioration reasons of the new Analyzer. The crushing strength of the catalyst was mea- catalyst in catalytic runs. Herein, we present the results of sured on a ZQJ-II particle strength tester produced by the study. Dalian Intelligent Tester Plant. The applied force and idle stroke velocity were automatically set on 5 N/s and 1 mm/s, respectively. 2 Experimental Section The IR spectra of adsorbed pyridine were recorded using a Thermo Nicliet Nicolet Nexus 470 spectrometer equip- 2.1 Catalyst Preparation ped with a heatable and evacuatable IR cell with CaF2 windows, connected to a gas dosing-evacuating system. All the chemicals were reagent grade. The alumina-sup- The powdered samples were pressed into self-supporting ported cobalt–nickel oxide catalyst was prepared by wafers with a diameter of 20 mm and a weight of 50 mg. coprecipitation-kneading method as the following proce- Prior to analysis, all samples were pretreated at 400 °C for 5 dures. 44.4 g of Co(NO3)2Á6H2O and 6.7 g of Ni(NO3)2Á 1 h, under high vacuum conditions (5 9 10 Pa), followed 6H2O were dissolved in 302.6 g of distilled water, then into by cooling to 200 °C. Then, pyridine was adsorbed at this this solution was dropped 20% (w/w) sodium carbonate temperature for 15 min. The physisorbed pyridine was solution under vigorous stirring at 60 °C until the pH removed by evacuating during 1 h at 200 °C, under high reached 8. The reaction mixture was submitted to an aging vacuum conditions (5 9 105 Pa). Then the infrared spectra treatment at 80 °C for 0.5 h while maintained the pH of 8. were recorded. The resulting mixture was filtered and the solid separated was washed with distilled water until the pH of the filtrate 2.3 Catalytic Experiments reached 7 to remove the excess of sodium completely. Afterwards, the resulting solid was dried and pulverized to Catalytic tests were carried out in a continuous fixed-bed obtain a black powder finally. The black powder was mixed reactor. 30.0 mL of the catalyst sample was loaded into a with 34.7 g of c-Al2O3 pretreated with about 10 mL of 1% reactor (i.d. = 12 mm; length = 1,100 mm), which created diluted nitric acid. The mixture was kneaded for 3 h in a a catalyst zone of 100 mm. The temperature in the catalyst kneader and the resulting kneaded material was then pro- zone was kept constant and measured using a thermocouple cessed in an extruder to obtain extrudates in a diameter of located in the center of the catalyst bed. The ethanol (95%) 2 mm and length of 2.5 mm. The extrudates were superfi- was dosed into the reactor at a speed of 7.0 mL/h by a cially dried at 120 °C for 12 h, and then calcined at 550 °C syringe pump and the flux of ammonia was regulated by a for 4 h. The contents of Co and Ni were determined by PID cascade controller (STP 220 mL/min). The liquid inductively coupled plasma (ICP) spectroscopy. products were separated from a gas–liquid separator and analyzed by a gas chromatograph equipped with a 30 m of 2.2 Catalyst Characterization PEG-20M capillary column and a thermal conductivity detector (TCD) with H2 as carrier gas. The exhaust (H2, For determining the metal content, the sample was first NH3,C2H4 et al.) was analyzed by the same gas chro- dissolved in concentrated HNO3 and HF, and then the matograph with N2 as carrier gas. The components of the metal content of the solution was analyzed by a T.J.A. ICP- mixture were identified by a HP5971 MS equipped with a 9000(N?M) type ICP-AES instrument. The XRD patterns 30 m of PEG-20M capillary column. 123 170 C. Feng et al. 2.4 Regeneration Procedure 100 Regeneration of the used catalyst sample for further cata- lytic evaluation was carried out by continuously blowing 80 conversion of ethanol air (STP 250 mL/min) into the fixed-bed at 470 °C for 5 h selectivity of acetonitrile on-line. selectivity of butyronitrile 60 selectivity of ethylene selectivity of pyridine base selectivity of higher boiling 20 3 Results and Discussion components 10 3.1 Catalytic Activity Test Conversion/selectivity (%) 0 The mechanical strength of the catalyst was evaluated by 340 360 380 400 420 440 measuring the crushing strength of the catalyst.
Recommended publications
  • Supported Metal Hydroxides As Efficient Heterogeneous Catalysts for Green Functional Group Transformations
    Journal of the Japan Petroleum Institute, 57, (6), 251-260 (2014) 251 [Review Paper] Supported Metal Hydroxides as Efficient Heterogeneous Catalysts for Green Functional Group Transformations Kazuya YAMAGUCHI and Noritaka MIZUNO* Dept. of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN (Received August 23, 2014) This review article mainly describes our research on the development of highly active heterogeneous catalysts based on the properties of metal hydroxides and efficient green functional group transformations using these cata- lysts. Metal hydroxide species have both Lewis acid (metal center) and Brønsted base (hydroxy group) sites on the same metal sites. Combined action of the Lewis acid and Brønsted base paired sites can activate various types of organic substrates; for example, alcohols→alkoxides, amines→ amides, nitriles→η2-amidates, and terminal alkynes→acetylides. In the presence of supported ruthenium hydroxide catalyst (Ru(OH)x/Al2O3), oxidative dehydrogenation of alcohols and amines efficiently proceeds, forming the corresponding carbonyl compounds (aldehydes and ketones) and nitriles, respectively. Ru(OH)x /Al2O3 can also catalyze hydration of nitriles to pri- mary amides, ammoxidation of primary alcohols to nitriles, and formal α-oxygenation of primary amines to pri- mary amides. In addition, oxidative alkyne homocoupling and 1,3-dipolar cycloaddition efficiently proceed in the presence of supported copper hydroxide catalysts (Cu(OH)x /OMS-2 for homocoupling, Cu(OH)x/TiO2 and Cu(OH)x/Al2O3 for cycloaddition; where OMS-2 is manganese oxide-based octahedral molecular sieve, KMn8O16). The catalytic processes for these transformations are heterogeneous, and the catalysts can be reused several times with maintained high catalytic activity.
    [Show full text]
  • Catalysis Science & Technology
    Catalysis Science & Technology Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/catalysis Page 1 of 10 Catalysis Science & Technology Journal Name RSC Publishing ARTICLE Scheelite: A Versatile Structural Template for Selective Alkene Oxidation Catalysts Cite this: DOI: 10.1039/x0xx00000x J. F. Brazdil , Manuscript Received 00th January 2012, The scheelite (CaWO4) structure type serves as the framework for a wide variety of metal Accepted 00th January 2012 oxide catalysts used for the selective oxidation and ammoxidation of alkenes. Among the industrially important processes where these catalysts find application are propylene oxidation DOI: 10.1039/x0xx00000x to acrolein, propylene ammoxidation to acrylonitrile and butene oxidative dehydrogenation to www.rsc.org/ butadiene.
    [Show full text]
  • Ammoxidation Reactions 1 1.2 (Potential) Applications of Nitriles 3 1.3 Aromatic Nitriles As Intermediates in Selective Oxidation Reactions 5 2
    Catalytic conversion of alkylaromatics to aromatic nitriles Citation for published version (APA): Stobbelaar, P. J. (2000). Catalytic conversion of alkylaromatics to aromatic nitriles. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR538872 DOI: 10.6100/IR538872 Document status and date: Published: 01/01/2000 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Designing Multifunctionality Into Single Phase and Multiphase Metal-Oxide-Selective Propylene Ammoxidation Catalysts
    catalysts Review Designing Multifunctionality into Single Phase and Multiphase Metal-Oxide-Selective Propylene Ammoxidation Catalysts James F. Brazdil Archer Daniels Midland Company, James R. Randall Research Center, Decatur, IL 62521, USA; [email protected]; Tel.: +1-217-451-2870 Received: 5 February 2018; Accepted: 26 February 2018; Published: 2 March 2018 Abstract: Multifunctionality is the hallmark of most modern commercial heterogeneous catalyst systems in use today, including those used for the selective ammoxidation of propylene to acrylonitrile. It is the quintessential principle underlying commercial catalyst design efforts since petrochemical process development is invariably driven by the need to reduce manufacturing costs. This is in large part achieved through new and improved catalysts that increase selectivity and productivity. In addition, the future feedstocks for chemical processes will be invariably more refractory than those currently in use (e.g., replacing alkenes with alkanes or using CO2), thus requiring a disparate combination of chemical functions in order to effect multiple chemical transformations with the fewest separate process steps. This review summarizes the key chemical phenomena behind achieving the successful integration of multiple functions into a mixed-metal-oxide-selective ammoxidation catalyst. An experiential and functional catalyst design model is presented that consists of one or both of the following components: (1) a mixed-metal-oxide–solid solution where the individual metal components serve separate and necessary functions in the reaction mechanism through their atomic level interaction in the context of a single crystallographic structure; (2) the required elemental components and their catalytic function existing in separate phases, where these phases are able to interact for the purposes of electron and lattice oxygen transfer through the formation of a structurally coherent interface (i.e., epitaxy) between the separate crystal structures.
    [Show full text]
  • Selective Synthesis of Acetonitrile by Reaction of Ethanol with Ammonia Over Ni/Al2o3 Catalyst 1053
    Korean J. Chem. Eng., 36(7), 1051-1056 (2019) pISSN: 0256-1115 DOI: 10.1007/s11814-019-0294-y eISSN: 1975-7220 INVITED REVIEW PAPER INVITED REVIEW PAPER Selective synthesis of acetonitrile by reaction of ethanol with ammonia over Ni/Al2O3 catalyst Ye-Seul Jeong, Sang Hee An, and Chae-Ho Shin† Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea (Received 28 March 2019 • accepted 7 May 2019) AbstractA highly selective synthesis of acetonitrile was carried out by the reaction of ethanol with ammonia on a 10 wt% Ni/Al2O3 catalyst. The conversion of ethanol and selectivity to acetonitrile, ethylene, and monoethylamine were examined by varying experimental parameters such as ammonia partial pressure, reaction temperature, and space time. The increase in the ammonia partial pressure led to a considerable decrease in the conversion and small increase in the acetonitrile selectivity up to a molar ratio of NH3/ethanol of 3, followed by almost constant values. The partial reaction order of ethanol obtained by controlling the space time was one, while that of ammonia was negative, 0.4. The deacti- vation behavior of the catalyst after 100 h on stream reaction at 230 oC was analyzed by X-ray photoelectron spectros- copy and temperature programmed oxidation of the catalyst used. The catalyst deactivation was attributed to the gradual formation of nickel carbonitride on the catalyst surface. Keywords: Acetonitrile, Nickel Catalyst, Ethanol, Carbonitride, Deactivation INTRODUCTION face in a metallic state, so that a gradual deactivation is observed. The development of a highly selective acetonitrile synthesis catalyst Acetonitrile is used mainly as a solvent of extractive distillation, by controlling these simple experimental parameters is important isolation of butadiene from C4 hydrocarbons, in battery applica- to guide the development of novel catalysts in the future.
    [Show full text]
  • Acrylonitrile Safe Storage and Handling Guide Table of Contents
    Acrylonitrile Safe Storage and Handling Guide Table of Contents Introduction 1.0 Physical, chemical and thermodynamic properties 2.0 Storage 3.0 Transfer and transport 4.0 Fire safety 5.0 Occupational safety and health 6.0 Medical response and first aid 7.0 Emergency response and environmental protection 8.0 Section 1: Introduction This booklet was prepared for individuals who handle or • Since pure Acrylonitrile may self-polymerize, causing rapid may come in contact with Acrylonitrile. It is a compilation build-up of pressure and resulting in an explosion hazard, of practical, understandable information designed to guide Innovene adds inhibitor prior to shipment. This additive the reader in responsible handling of Acrylonitrile, and to inhibits self-polymerization, but does not eliminate all answer commonly raised questions about Acrylonitrile possibility of polymerization. safety. Before handling, always consult a current Material • Fires involving Acrylonitrile can release toxic gases such as Safety Data Sheet (MSDS), available from INEOS, for hydrogen cyanide, oxides of nitrogen or carbon monoxide. information on the chemical. For more complete or detailed Its vapors can easily form explosive mixtures in air. Since information, call the following numbers in the U.S.: these vapors are heavier than air, they can also travel along the ground and be ignited by open flames or sparks which Emergency Notification Number 877-856-3682 are some distance from the site of release. Non-Emergency Information Numer 866-363-2454 • The vapors of Acrylonitrile, if inhaled at certain concentra- Information contained in this booklet is not intended to tions, can produce serious acute (short-term) toxicity, replace any legal requirements for Acrylonitrile handling including loss of consciousness or death.
    [Show full text]
  • Hydrogen Cyanide and Cyanides: Human Health Aspects
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Concise International Chemical Assessment Document 61 HYDROGEN CYANIDE AND CYANIDES: HUMAN HEALTH ASPECTS Please note that the layout and pagination of this pdf file are not identical to the version in press First draft prepared by Prof. Fina Petrova Simeonova, Consultant, National Center of Hygiene, Medical Ecology and Nutrition, Sofia, Bulgaria; and Dr Lawrence Fishbein, Fairfax, Virginia, USA Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2004 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management
    [Show full text]
  • Catalytic Performance of Lanthanum Vanadate Catalysts in Ammoxidation of 2-Methylpyrazine
    catalysts Article Catalytic Performance of Lanthanum Vanadate Catalysts in Ammoxidation of 2-Methylpyrazine Venkata N. Kalevaru 1,*, Naresh Dhachapally 2 and Andreas Martin 1,* Received: 25 November 2015; Accepted: 7 January 2016; Published: 12 January 2016 Academic Editor: Stuart H. Taylor 1 Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany 2 SABIC Research and Technology Pvt. Ltd., Plot No. 81 to 85, Chikkadunnasandra, Sarjapura, Bangalore-562125, India; [email protected] * Correspondence: [email protected] (V.N.K.); [email protected] (A.M.); Tel.: +49-381-1281-284 (V.N.K.); +49-381-1281-246 (A.M.); Fax: +49-381-1281-51284 (V.N.K.); +49-381-1281-51246 (A.M.) Abstract: The influence of reaction conditions on the catalytic performance of lanthanum vanadate (La0.1V0.9Ox) catalyst in the ammoxidation of 2-methylpyrazine (MP) to 2-cyanopyarazine (CP) has been investigated. This novel catalytic material exhibited remarkably good performance with very high space-time-yields (STY) of CP. The reaction parameters such as the effect of temperature, gas hourly space velocity (GHSV) and all other reaction variables (e.g., NH3, air, and MP feed rates) on the catalytic performance were explored and optimized. For example, an increase in MP feed rate from 2 to >16 mmol/h led to decreased conversion of MP but increased the STY of CP significantly. Optimal performance was achieved when the reaction temperature was 420 ˝C and the molar ratio of 2-MP, ammonia, air, H2O and N2 in the feed gas was set to 1:7:26:13:22.
    [Show full text]
  • Lawrence Berkeley Labqf!T.Tory UNIVERSITY of CALIFORNIA EC-~"~ ""
    LBL-22126 C'.~ Lawrence Berkeley LabQf!t.tory UNIVERSITY OF CALIFORNIA EC-~"~ "" -. '''Y Materials & Molecular L~~""; 1. ·'1'1 /~f\i;) Research Division ~CCUUE\ITS SI=.:CTI0H MODEL CATALYTIC SYSTEMS: REACTIONS OF SMALL MOLECULES (C H 0H,NH ,CO,H ) ON TRANSITION METAL SURFACES 4 9 3 2 B. Naasz (Ph.D. Thesis) TWO-WEEK LOAN Cb;~il <i:"';/,,,~ November 1986 This is a Library Circulating C~py~:'~:, which may be borrowed for tw6 <w'eek ~ ".: .... Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 DISCLAIMER .This document was prepared as an account of work sponsored by the United, States Government. While this document is b'elieved to contain COlTect information, neither the United States Government nor any agency thereof, nor the Regents of the University of, California, nor any of their employees, makes any walTanty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus,product, or process disclosed, or represents that its use would'not infringe privately owned rights, Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. ' LBL-22126 MODEL CATALYTIC SYSTEMS: REACTIONS OF SMALL MOLECULES (C4H90H, NH3, CO AND H2) ON TRANSITION METAL SURFACES Brian Naasz (Ph.
    [Show full text]
  • 40 CFR Ch. I (7–1–12 Edition) Pt. 414, App. A
    Pt. 414, App. A 40 CFR Ch. I (7–1–12 Edition) APPENDIX A TO PART 414—NON- n-Butyl alcohol/Hydrogenation of n- COMPLEXED METAL-BEARING WASTE Butyraldehyde, Oxo process STREAMS AND CYANIDE-BEARING 1,4-Butanediol/Hydrogenation of 1,4- butynediol WASTE STREAMS Butryolactone/Dehydrogenation of 1,4- Chromium butanediol Caprolactam/From cyclohexane via Methylhydroabietate/Esterification of cyclohexanone and its oxime hydroabietic acid (rosin) with methanol Lilian (hydroxydihydrocitronellal)/Hydra- Acrylic acid/Oxidation of propylene via acro- tion and oxidation of citronellol lein 1,2-Dichloroethane/Oxyhydrochlorination of N-butyl alcohol/Hydrogenation of n- ethylene Butyraldehyde, Oxo process Dialkyldithiocarbamates, metal salts/ Cyclohexanone/From phenol via Dialkylamines + carbon disulfide cyclohexanol by hydrogenation-dehydro- 2-Ethylhexanol/from n-Butyraldehyde by genation Aldo condensation and hydrogenation Fatty amines/Hydrogenation of fatty nitriles Fatty amines/Hydrogenation of fatty nitriles (batch) (batch) Helioptropin/Oxidation of isosafrole, chro- Geraniol/B-Myrcene + Hydrogen chloride, mium catalyst esterification of geranyl chloride, hydrol- Isobutanol/Hydrogenation of ysis of geranyl acetate isobutyraldehyde, Oxo process Furfuryl alcohol/Hydrogenation of furfural Cyclohexyl Mercaptan/Cyclohexanol + Hy- Geranial (Citral)/Oxidation of geraniol (cop- drogen sulfide per catalyst) Ethyl Mercaptan/Ethanol + Hydrogen sulfide Glyoxal/Oxidation of ethylene glycol Methanol/H.P. Synthesis from natural gas Isobutanol/Hydrogenation of via
    [Show full text]
  • Process for the Production of Nitriles and Oxides
    Europaisches Patentamt 19 European Patent Office Office europeen des brevets (TT) Publication number: 0 381 369 B1 EUROPEAN PATENT SPECIFICATION @ Date of publication of patent specification : © int. ci.5 : C07C 255/08, C07C 253/26, 30.03.94 Bulletin 94/13 C07C 253/34, C07D 301/08 © Application number : 90300759.9 (22) Date of filing : 24.01.90 (S) Process for the production of nitriles and oxides. © Priority: 30.01.89 US 304055 © Proprietor : THE BOC GROUP, INC. 575 Mountain Avenue Murray Hill New Jersey 07974 (US) (43) Date of publication of application : 08.08.90 Bulletin 90/32 (72) Inventor : Ramachandran, Ramakrishnan 232 Hillside Avenue @ Publication of the grant of the patent : Allendale, New Jersey 07401 (US) 30.03.94 Bulletin 94/13 Inventor : Andrecovich, Mark J. 70 Eastern States Parkway Somerville, New Jersey 08876 (US) Inventor Satchel Donald P.Jr. @ Designated Contracting States : : I, AT BE DE ES FR GB IT NL SE 2 Ember Farm Way East Nolesy Surrey KT8 OBL (GB) Inventor : MacLean, Donald L. 102 Petticoat Lane References cited (56) : Annandale, New Jersey 08801 (US) EP-A- 0 318 205 EP-A- 0 328 280 EP-A- 0 336 592 GB-A- 1 378 178 (74) Representative : Wickham, Michael et al US-A- 4 609 502 c/o Patent and Trademark Department The BOC Group pic Chertsey Road Windlesham Surrey GU20 6HJ (GB) CO CO CO 00 CO Note : Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Catalytic Processes for the Transformation of Ethanol Into Acetonitrile
    Allma Mater Studiiorum – Uniiversiità dii Bollogna DOTTORATO DI RICERCA IN Chimica Industriale Ciclo XXV Settore Concorsuale di afferenza: 03/C2 Settore Scientifico disciplinare: CHIM 04 Catalytic processes for the transformation of ethanol into acetonitrile Presentata da: Federico Folco Coordinatore Dottorato Relatore Prof. Fabrizio Cavani Prof. Fabrizio Cavani Esame finale anno 2013 Allma Mater Studiiorum – Uniiversiità dii Bollogna DOTTORATO DI RICERCA IN Chimica Industriale Ciclo XXV Settore Concorsuale di afferenza: 03/C2 Settore Scientifico disciplinare: CHIM 04 Catalytic processes for the transformation of ethanol into acetonitrile Presentata da: Federico Folco Coordinatore Dottorato Relatore Prof. Fabrizio Cavani Prof. Fabrizio Cavani Esame finale anno 2013 ABSTRACT This thesis deals with the transformation of ethanol into acetonitrile. Two approaches are investigated: (a) the ammoxidation of ethanol to acetonitrile and (b) the amination of ethanol to acetonitrile. The reaction of ethanol ammoxidation to acetonitrile has been studied using several catalytic systems, such as vanadyl pyrophosphate, supported vanadium oxide, multimetal molibdates and antimonates. The main conclusions are: (I) The surface acidity must be very low, because acidity catalyzes several undesired reactions, such as the formation of ethylene, and of heavy compounds as well. (II) Supported vanadium oxide is the catalyst showing the best catalytic behaviour, but the role of the support is of crucial importance. (III) Both metal molybdates and antimonates show interesting catalytic behaviour, but are poorly active, and probably require harder conditions than those used with the V oxide-based catalysts. (IV) One key point in the reaction network is the rate of reaction between acetaldehyde (the first intermediate) and ammonia, compared to the parallel rates of acetaldehyde transformation into by-products (CO, CO2, HCN, heavy compounds).
    [Show full text]