Massive and Massless Spin-2 Scattering and Asymptotic Superluminality James Bonifacio,a;∗ Kurt Hinterbichler,a;y Austin Joyce,b;z and Rachel A. Rosenb;x aCERCA, Department of Physics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 bCenter for Theoretical Physics, Department of Physics, Columbia University, New York, NY 10027 Abstract We constrain theories of a massive spin-2 particle coupled to a massless spin-2 particle by demanding the absence of a time advance in eikonal scattering. This is an S- matrix consideration that leads to model-independent constraints on the cubic vertices present in the theory. Of the possible cubic vertices for the two spin-2 particles, the requirement of subluminality leaves a particular linear combination of cubic vertices of the Einstein{Hilbert type. Either the cubic vertices must appear in this combination or new physics must enter at a scale parametrically the same as the mass of the massive spin-2 field, modulo some standard caveats. These conclusions imply that there is a one-parameter family of ghost-free bimetric theories of gravity that are consistent with subluminal scattering. When both particles couple to additional matter, subluminality places additional constraints on the matter couplings. We additionally reproduce these arXiv:1712.10020v2 [hep-th] 13 Jul 2018 constraints by considering classical scattering off of a shockwave background in the ghost-free bimetric theory. ∗
[email protected] [email protected] [email protected] [email protected] Contents 1 Introduction3 2 On-Shell Cubic Amplitudes5 2.1 General construction . .5 2.2 Three massive particles .