Design and Construction of the First Commercial Cheng Cycle Series 7 Cogeneration Plant

Total Page:16

File Type:pdf, Size:1020Kb

Design and Construction of the First Commercial Cheng Cycle Series 7 Cogeneration Plant THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 E. 47 St., New York, N.Y. 10017 The Society shall not be responsible for statements of opinions advanced in papers or in dis- cussion at meetings of the Society or of its Divisions or Sections, or printed in its publications. Discussion is printed only if the paper is published in an ASME Journal Papers are available from ASME for fifteen months after the meeting. Printed in USA. Design and Construction of the First Commercial Cheng Cycle Series 7 Cogeneration Plant J. LLOYO JONES, DR. CHUNG-NAN CHANG, DR. RAMARAO V. DIGUMARTHI, DR. WILLIAM M. CONLON International Power Technology Palo Alto, Calif. ABSTRACT on the Cheng Cycle. The HRSG unit consists of: A description is given of the Cheng Cycle Engine a superheater, located immediately downstream of and its application to cogeneration based upon the the turbine exhaust diffuser section, to raise first commercial plant. The paper covers a description the temperature of the injection steam to as high of the plant and its components, unique design features, a value as possible before injection. This the automatic control system and the plant operational temperature elevation reduces the amount of features. Initial operating performance and NOx additional fuel that needs to be supplied to the emission characteristics are cited. gas turbine to raise the temperature of the steam to turbine inlet temperature, and thus enhances INTRODUCTION the engine heat rate. The Cheng Cycle Series 7 Engine represents an a secondary combustor, located immediately down- innovative new concept in industrial gas turbines. A stream of the superheater, followed by a combustion detailed discussion of the Cheng Cycle, the potential duct section. This secondary combustion provides gains in power and efficiency that its application for the production of additional steam either would yield for a number of gas turbine engines, and for increased power generation or for process, an example of the performance improvements it offers depending upon the desired operating condition. in cogeneration applications is given in Reference 1. Three units were installed in two cogeneration an evaporator, located immediately downstream of plants by International Power Technology, Inc. in the combustion duct, for steam generation. 1984. Both plants completed acceptance tests in December 1984, and were in commercial operation in an economizer, located downstream of the steam January, 1985. Two units comprise a single plant generator, and at Sunkist Growers, Inc., in Ontario, California. The third unit, the first to be placed in operation, a feedwater heater. is located at the California State University at San Jose. This paper describes briefly the Cheng The operating regime of the Cheng Cycle Series 7 Engine Cycle Engine concept and characteristics and the Cogeneration application is illustrated in Fig. 2. San Jose State University cogeneration plant compo- Point 2 indicates the power generated by the basic nents, design features, operation and control system gas turbine driving the generator with no steam characteristics and initial performance levels. injection, and the amount of steam for process generated by the HRSG with no heat added to the exhaust gas by THE CHENG CYCLE SERIES 7 ENGINE COGENERATION SYSTEM the secondary combustor. Under this condition, the superheater operates dry. As steam is directed from An illustration of the Cheng Cycle Series 7 process to the gas turbine, the power output of the Engine in a cogeneration plant installation is given turbine and of the generator increases along line 2-1, in Fig. 1. The Cheng Cycle Series 7 Engine consists which represents a constant turbine inlet temperature of an Allison 501-KH gas turbine in combination with of 1895 degF (1308 degK) the highest allowable firing a heat recovery steam generator (HRSG) that is closely temperature for continuous duty. At point 1 all of matched to assure high cycle efficiency. Steam from the steam generated by the gas turbine exhaust heat the HRSG is injected into the gas turbine combustion energy is injected into the gas turbine and none is region to increase the power output of the basic available for process. Use of the secondary combustor engine. The KH version of the 501 engine incorporates expands the operating regime of the cogeneration system modifications by Allison specifically for operation from line 1-2 to include the entire area A . Line 3-4 Presented at the 1985 Beijing International Gas Turbine Symposium and Exposition Beijing, People’s Republic of China — September 1-7, 1985 STEAM TO ‘PROCESS - GENERATING SET 4 HEAT RECOVERY STEAM GENERATOR CHENG CYCLE SERIES 7-COGEN PLANT LAYOUT Fig. 1 by derating the gas turbine operation to lower turbine inlet temperatures. In the first commercial installa- tion at the California State University in San Jose, initial operation is being limited to a turbine inlet temperature of 1800 degF (1255 degK and a secondary combustion firing rate to provide a temperature of 1400 degF (1033 degK) entering the evaporator. The operating regimes for this plant are defined by the dotted lines in Fig. 2. THE FIRST COMMERCIAL PLANT The first commercial plant completed its formal acceptance tests in December, 1984. The plant is an indoor installation located in a previously unused TURBINE DERATING & | section of the existing power house at the University SECONDARY COMBUSTION | that had originally been planned for expansion of | the existing plant. A sectional elevation view of the | plant is given in Fig. 3, where it may be seen that | , , | | I. | | | | | major components are on a ground level operating floor, 0 1.0 20 3.0 40 with auxiliary equipment in a basement. The primary PROCESS THERMAL OUTPUT fuel is natural gas, which is supplied by the local MILLION Btu/Hour utility at a pressure of 100 to 150 psig. A rotary type gas compressor boosts the pressure to 300+ psig CHENG CYCLE SERIES 7-COGEN required to supply the gas turbine. The liquid fuel OPERATING REGIME is pumped from underground tanks to an elevated head tank from which it is drawn by a shaft driven fuel Fig. 2 pump on the gas turbine. Engine air is drawn from above through ducting into a plenum within the gas turbine-generator set enclosure. The ducting extends represents firing of the secondary combustor to obtain down to the basement level and outside to an open a temperature of 1600 degF (1144 degK entering the subsurface areaway. A self-cleaning filter and an evaporator. evaporative cooler through which the engine air is In most cogeneration installations, the process drawn are located in this areaway. Cooling air for steam demand is given highest priority. for example, If the generator, gearbox and gas turbine is drawn into the process steam demand were 20 million BTU/hour, the enclosure through a silencer/filter on top of the the electrical power output would be limited to about enclosure, circulated separately through the generator 4 megawatts. If a higher power output were required, and through the remainder of the enclosure and exhausted firing of the secondary combustor would provide through two ducts extending through the roof. additional steam for injection into the gas turbine Plan views of both the operating floor level and to permit the electrical power to be raised to any the basement level are shown in Figs. 4 and 5. The level up to the maximum of 6 megawatts, while maintain- engine inlet air ducting extension may be seen in these ing the process steam flow of 20 million BTU/hour. Figures and the filter and cooler units may be seen in Alternately, if the process steam demand increased, Fig. 5. The rather abrupt expansion duct section firing of the secondary combustor would permit the joining the gas turbine exhaust nozzle covering to the generation of more steam for process, while maintaining superheater is of internally insulated double wall the electrical power output of 4 megawatts. Obviously construction and is fitted with a series of turning combinations exist to permit operation anywhere within vanes to avoid flow separation and maintain the pressure the area A. Operation in areas B and C are possible 2 Fig. 3 ELEVATION VIEW, COGENERATION PLANT PLAN VIEW, COGENERATION PLANT, OPERATING FLOOR LEVEL. Fig. 5 PLAN VIEW, COGENERATION PLANT, BASEMENT LEVEL. drop of the exhaust gas/steam mixture at the lowest boilers will be placed on standby and used to provide practical value. Photographs taken during the final steam during periods when the cogeneration plant is construction stages and showing the generator set down for maintenance or overhaul. enclosure and HRSG are presented in Figs. 6 and 7. Electrical power is generated at 12.47 KV, the While the gas turbine generator set and the HRSG were voltage of the main electrical bus, and the generator designed to keep the external noise levels to within is tied through a protective breaker directly to the acceptable values, the plant control room is sound bus. Electrical energy is supplied to serve the proofed and air conditioned. Interconnecting power University needs, and excess is exported to the local and instrumentation wiring from the generator set, utility (Pacific Gas and Electric Company) grid. If the HRSG and auxiliary equipment is run in trays the University electric demand exceeds the output of beneath the operating floor, leaving a relatively the cogeneration plant, the shortfall can be imported free and uncluttered area around the unit. Cooling from the utility grid. In case the utility grid is fans for the compressed natural gas and for the down, the cogeneration plant can supply the University generator, gear box and gas turbine lubricating oil as an isolated grid. draw air through heat exchanger units and exhaust The cogeneration plant was installed at no cost into an open cooling tower area.
Recommended publications
  • Evaporative Gas Turbine Cycles. a Thermodynamic Evaluation of Their
    Department of Heat and Power Engineering Evaporative gas turbine cycles- A thermodynamic evaluation of their potential by Per Rosin MASTER ismm#N if ms bocmmt is wmnts FWBH SALES PltlUfTEI Dokumentutgivere HJ/LTH Dokumentnamn Ookumentbeteckning Inst f6r Varme- och kraftteknik Rapport ISRN LUTMDN/TMVK-7010-SE Hendliggare Utgivnlngsdatum Arendebetecknlng Mars 1993 FOriettere Rosdn, Per M. Dokumenxtitel och undertitol Evaporative gas turbine cycles- A thermodynamic evaluation of their potetial Relerat (semmandrag) The report presents a systematic method of thermodynamically evaluating different gas turbine cycles, treating the working fluids as ideal gases (cp = cp (T)). All models used to simulate different components in the cycles are presented in the report in detail and then connected in a computer program fully developed by the author. The report focuses on the theme of evaporative gas turbine cycles, in which low level heat is used to evaporate water into the compressed air stream between the compressor and recuperator. This leads to efficiency levels close to a comparable combined cycle but without the steam bottoming cycle! A parametric analysis has been conducted with the aim of deciding the best configuration of an evaporative cycle both for an uncooled expander and for a cooled expander. The model proposed to simulate the cooled expander is a combination between two existing models. Relerat ekrivet av Rosdn Per M. Foreleg till ytterligare nyekelord evaporation, humidification, gas turbine, intercooler, aftercooler, recuperator, economiser, air-cooled expander, humid air turbine cycle, HAT, steam injection Klattitiketionnystem och -klau(er) Indextermer (enge kella) 12 10 Omflng Ovriga bibliogretiske uppgiftei 6 2 67 sidor SIS Sprlk engelska en lig t Sekretessuppgifter ISSN ISBN ; .• e ..
    [Show full text]
  • Advanced Power Cycles with Mixtures As the Working Fluid
    Advanced Power Cycles with Mixtures as the Working Fluid Maria Jonsson Doctoral Thesis Department of Chemical Engineering and Technology, Energy Processes Royal Institute of Technology Stockholm, Sweden, 2003 Advanced Power Cycles with Mixtures as the Working Fluid Maria Jonsson Doctoral Thesis Department of Chemical Engineering and Technology, Energy Processes Royal Institute of Technology Stockholm, Sweden, 2003 TRITA-KET R173 ISSN 1104-3466 ISRN KTH/KET/R--173--SE ISBN 91-7283-443-9 Contact information: Royal Institute of Technology Department of Chemical Engineering and Technology, Division of Energy Processes SE-100 44 Stockholm Sweden Copyright © Maria Jonsson, 2003 All rights reserved Printed in Sweden Universitetsservice US AB Stockholm, 2003 Advanced Power Cycles with Mixtures as the Working Fluid Maria Jonsson Department of Chemical Engineering and Technology, Energy Processes Royal Institute of Technology, Stockholm, Sweden Abstract The world demand for electrical power increases continuously, requiring efficient and low-cost methods for power generation. This thesis investigates two advanced power cycles with mixtures as the working fluid: the Kalina cycle, alternatively called the ammonia-water cycle, and the evaporative gas turbine cycle. These cycles have the potential of improved performance regarding electrical efficiency, specific power output, specific investment cost and cost of electricity compared with the conventional technology, since the mixture working fluids enable efficient energy recovery. This thesis shows that the ammonia-water cycle has a better thermodynamic performance than the steam Rankine cycle as a bottoming process for natural gas- fired gas and gas-diesel engines, since the majority of the ammonia-water cycle configurations investigated generated more power than steam cycles.
    [Show full text]
  • Gas Turbine Cycle Incorporating Simultaneous, Parallel, Dual-Mode Heat Recovery
    Europaisches Patentamt J European Patent Office 00 Publication number: 0 275 121 Office europeen des brevets A2 EUROPEAN PATENT APPLICATION Application number: 88100532.6 IntCI.*: F 01 K 21/04 F 02 C 3/30 Date of filing: 15.01.88 Priority: 15.01.87 US 3548 ® Applicant: El-Masrl, Maher A. 9 Clubhouse Lane Date of publication of application: Wayland, MA 01778 (US) 20.07.88 Bulletin 88/29 @ Inventor: El-Masrl, Maher A. Designated Contracting States: 9 Clubhouse Lane CH DE FR QB IT LI Wayland, MA 01778 (US) @ Representative: Heidrlch, Udo, Dr. jur., Dipl.-Phys. Franziskanerstrasse 30 D-8000 Miinchen 80 (DE) @ Gas turbine cycle incorporating simultaneous, parallel, dual-mode heat recovery. (g?) The cycle includes water-injection, steam-injection, re- cuperation (or regeneration) and waste-heat boiler heat recovery in an arrangement that provides high thermal efficiency, flexible operation in a cogeneration plant and favorable capital cost in relation to thermodynamic performance when compared to currently practiced cycles. In the present cycle, the sensible enthalpy of the exhaust gases between turbine exit and stack is used to simultaneously and in-parallel heat both air and water/steam. A smaller amount of water is boiled than in the known Cheng cycle, in which the exhaust heat is used only to heat water/steam. Thus, the latent heat exhausted at the stack in the present cycle is lower than that for the Cheng cycle resulting in higher efficiency. CM S CM Si Bundesdruckerei Berlin 1 0 275 121 Description GAS TURBINE CYCLE INCORPORATING SIMULTANEOUS, PARALLEL, DUAL-MODE HEAT RECOVERY bine combustor pressure.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,644,011 B2 Cheng (45) Date of Patent: Nov
    USOO6644O11B2 (12) United States Patent (10) Patent No.: US 6,644,011 B2 Cheng (45) Date of Patent: Nov. 11, 2003 (54) ADVANCED CHENG COMBINED CYCLE 5,370,772 A * 12/1994 Arpalahti et al. ........ 60/39.182 5,613,356 A * 3/1997 Frutschi................... 60/39.182 (75) Inventor: Dah Yu Cheng, Los Altos Hills, CA 6.256,978 B1 7/2001 Gericke et al. .......... 60/39.182 (US) * cited by examiner (73) ASSignee: She's yet Systems, Inc., Mountain Primary Examiner Michael Koczo 1eW, (US) (74) Attorney, Agent, or Firm-Cooper & Dunham LLP (*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. An Advanced Cheng Combined Cycle engine is a combi nation of the Cheng Cycle or the Advanced Cheng Cycle and (21) Appl. No.: 09/816,588 a combined cycle, and Serves to further enhance the power 9 generation capability of either the Cheng Cycle, the (22) Filed: Mar 23, 2001 Advanced Cheng Cycle, or the combined cycle alone. Agas O O turbine is provided, having a turbine generating power, a (65) Prior Publication Data compressor receiving power from the turbine, and a com US 2001/0039797 A1 Nov. 15, 2001 bustion chamber to which is input compressed air from the compressor along with fuel and combustion products for Related U.S. Application Data producing energy to drive the turbine, the gas turbine (60) Provisional application No. 60/191,599, filed on Mar. 24, producing a hot stream gas. Aheat recovery Steam generator 2000.
    [Show full text]
  • Thermodynamic Modelling and Optimization of a Dual Pressure Reheat Combined Power Cycle
    Sadhan¯ a¯ Vol. 35, Part 5, October 2010, pp. 597–608. © Indian Academy of Sciences Thermodynamic modelling and optimization of a dual pressure reheat combined power cycle T SRINIVAS School of Mechanical and Building Sciences, Vellore Institute of Technology University, Vellore 632 014 e-mail: [email protected] MS received 11 September 2008; revised 18 February 2010; accepted 19 July 2010 Abstract. Heat recovery steam generator (HRSG) plays a key role on performance of combined cycle (CC). In this work, attention was focused on a dual pressure reheat (DPRH) HRSG to maximize the heat recovery and hence performance of CC. Deaerator, an essential open feed water heater in steam bottoming cycle was located to enhance the efficiency and remove the dissolved gasses in feedwater. Each of the heating section in HRSG is solved from the local flue gas condition with an aim of getting minimum possible temperature difference. For high performance, better conditions for compressor, HRSG sections, steam reheater and deaerator are developed. The CC system is optimized at a gas turbine inlet temperature of 1400◦C due to the present available technology of modern gas turbine blade cooling systems. The exergetic losses in CC system are compared with each other. The present DPRH HRSG model has been compared and validated with the plant and published data. Keywords. Combined cycle; dual pressure; deaerator; exergy analysis; heat recovery steam generator. 1. Introduction Combined cycle (CC) power plants are gaining wider acceptance due to more and more avail- ability of natural gas, now a days, because of their higher overall thermal efficiencies, peaking and two-shifting capabilities, fast start-up capabilities and lesser cooling water requirements.
    [Show full text]
  • Offshore Rankine Cycles
    Offshore Rankine Cycles Jo Brandsar Master of Energy and Environmental Engineering Submission date: June 2012 Supervisor: Trygve Magne Eikevik, EPT Co-supervisor: Armin Hafner, SINTEF Energy Research Norwegian University of Science and Technology Department of Energy and Process Engineering Abstract This paper summarizes my master thesis during the spring semester 2012 at the Institute of Energy and Process Engineering, NTNU, Norway. The project was given to me as a collaboration with an ongoing project at SINTEF Energy Re- search. The focus represent electricity production offshore by applying a Rankine cycle with surplus heat as the energy source. Investigations concern foremost a comparison between steam and organic cycles and the effect the waste heat recov- ery unit (WHRU) has on the cycle as a whole. I would like to thank; my supervisors, Prof. Trygve M. Eikevik, Department of Energy and Process Engineering, NTNU, Armin Hafner and Daniel Rohde, SIN- TEF Energy, for technical guidance; my fellow inmates at room B432 for moral support and Atle Brandsar for final proofreading. I Sammendrag Tittelen p˚adenne oppgaven - "Offshore Rankine Cycles" - er svært generell og dekker et stort spekter av tekniske felt, f.eks. termodynamiske sykluser (Rankine, ORC, Bray- ton, Kalina, etc.), mekanisk utstyr (gass-/dampturbin, varmevekslere og ekstra utstyr) og sikkerhetsaspekter (brennbar og/eller giftig væske, høye temperaturer og trykk) for ˚anevne de viktigste. Avhandlingen forsøker ˚agi en kortfattet oversikt over alle kri- tiske punkter og alternativer, og over implementering av en varmegjenvinningsprosess p˚a offshore-anlegg, selv om fokus har vært p˚ato mer spesifiserte tilfeller, nemlig: Sammenligning av en dampsyklus vs.
    [Show full text]
  • Assessment and Modelling of the Waste Heat Availability from Gas Turbine Based CHP Systems for ORC Systems
    European Association for the International Conference on Renewable Energies and Power Quality Development of Renewable Energies, Environment (ICREPQ’12) and Power Quality (EA4EPQ) Santiago de Compostela (Spain), 28th to 30th March, 2012 Assessment and modelling of the waste heat availability from gas turbine based CHP systems for ORC systems E. Firdaus1, K.Saaed1, D.Bryant2, M.Jones1, S.Biggs3 and B.Bahawodin1 1 Computing Engineering and Mathematics University of Brighton BN2 4GJ (United Kingdom) Phone/Fax number: +0044 203 0060166/65, e-mail: [email protected], [email protected], [email protected], [email protected] 2 Heatcatcher Ltd. The Roller Mill Mill Lane Uckfield TN22 5AA (United Kingdom) Phone/Fax number: +0044 203 0060166/65, e-mail: [email protected] 3 Efficient Air Ltd. The Roller Mill Mill Lane Uckfield TN22 5AA (United Kingdom) Phone/Fax number: +0044 182 5748150/51, e-mail: [email protected] Abstract. This paper presents the findings of modelling of Interest in capturing low-grade (low temperature) heat waste heat availability from a Combined Heat and Power (CHP) has grown dramatically in past decades [1]. Important system with a rated electrical output of 4.35 MW and steam alternatives have been proposed to generate electricity production of 8,165 kg/hr at 16 barg. The model has been from low temperature heat sources such as solar thermal developed using HYSYS DynamicsTM. The amount of waste heat power, industrial waste heat, engine exhaust gases and available from the CHP system is dependent on the ambient air, domestic boilers [1]-[2].
    [Show full text]
  • Topcycle: a Novel High Performance and Fuel Flexible Gas Turbine Cycle
    sustainability Concept Paper TopCycle: A Novel High Performance and Fuel Flexible Gas Turbine Cycle Simeon Dybe 1,*, Michael Bartlett 2, Jens Pålsson 2 and Panagiotis Stathopoulos 3 1 Fluid Dynamics, Technische Universität Berlin, 10623 Berlin, Germany 2 Phoenix BioPower AB, Drottning Kristinas väg 18, 114 24 Stockholm, Sweden; [email protected] (M.B.); [email protected] (J.P.) 3 Unsteady Thermodynamics in Gas Turbine Processes, Technische Universität Berlin, 10623 Berlin, Germany; [email protected] * Correspondence: [email protected] Abstract: High pressure humidified cycles can combine high operational flexibility and high thermal efficiency. The current work introduces such a cycle, namely TopCycle, which provides the necessary combustion infrastructure to operate on a wide fuel variety in a steam-rich atmosphere. The cycle configuration is presented in detail, and its operation is exemplified on the basis of simulation results. Operation at design condition results in electric efficiencies higher than 50% (lower heating value (LHV)) and power densities higher than 2100 kW/kgair (referred to intake air flow). A sensitivity analysis identifies the cycle performance as a function of representative parameters, which provide the basis for future operation and design improvements. As for any gas turbine cycle, TopCycle’s electric efficiency can be effectively improved by increasing the turbine inlet temperature, optimizing the economizer heat recovery, as well as elevating the working pressure. Finally, TopCycle’s performance is compared to a state-of-the-art combined cycle (CC) at equivalent operation parameters. The TopCycle operates at an elevated electric efficiency and considerably higher power density, which can be transferred into smaller plant footprint and dimensions and thus lower investment costs at equal power output in comparison to a CC.
    [Show full text]
  • Dynamic Modelling of a Cheng Cycle
    Dynamic modelling of a Cheng Cycle Citation for published version (APA): Doelman, R. B. (1995). Dynamic modelling of a Cheng Cycle. Technische Universiteit Eindhoven. Document status and date: Published: 01/01/1995 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim.
    [Show full text]
  • Power Enhancement of the Brayton Cycle by Steam Utilization
    archives of thermodynamics Vol. 33(2012), No. 3, 39–50 DOI: 10.2478/v10173-012-0016-x Power enhancement of the Brayton cycle by steam utilization KRZYSZTOF JESIONEK1 ANDRZEJ CHRZCZONOWSKI1 PAWEŁ ZIÓŁKOWSKI 2 ∗ JANUSZ BADUR2 1 Wrocław University of Technology, Faculty of Mechanical and Power Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland 2 The Szewalski Institute of Fluid-Flow Machinery of Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland Abstract The paper presents thermodynamic analysis of the gas-steam unit of the 65 MWe combined heat and power station. Numerical analyses of the station was performed for the nominal operation conditions determining the Brayton and combined cycle. Furthermore, steam utilization for the gas turbine propulsion in the Cheng cycle was analysed. In the considered modernization, steam generated in the heat recovery steam generator unit is directed into the gas turbine combustion chamber, resulting in the Brayton cycle power increase. Computational flow mechanics codes were used in the analysis of the thermodynamic and operational parameters of the unit. Keywords: Brayton cycle; Gas-steam unit; Cheng cycle; Numerical analysis; CHP Nomenclature h –specificenthalpy,kJ/kg k – relative steam flux coefficient lt –specificwork,kJ/kg N –power,kW ∗Corresponding author. E-mail address: [email protected] Authenticated | 195.187.97.1 Download Date | 12/12/12 9:52 AM 40 K. Jesionek, A. Chrzczonowski, P. Ziółkowski and J. Badur m˙ – mass flux, kg/s P – pressure, Pa ˙ QC – heat flux, kWt ˙ Qchem – chemical energy flux, kW t – temperature, oC T – temperature, K Wd – fuel calorific value, kJ/kg Greek symbols η –efficiency,% Π – compression Subscripts a –air el – electrical EC –CHPstation ex –exhaust f –fuel GT – at the gas turbine outlet i –internal m – mechanical s –steam TIT – turbine inlet temperature (average temperature in combustion chamber) 1s, 2s,..
    [Show full text]
  • Thermodynamic Modeling and Optimization of Multi-Pressure Heat Recovery Steam Generator in Combined Power Cycle
    Journal of Scientific & Industrial Research SRINIVAS et al: OPTIMUM PRESSURE HEAT RECOVERY STEAM GENERATOR IN COMBINED CYCLE Vol. 67, October 2008, pp.827-834 827 Thermodynamic modeling and optimization of multi-pressure heat recovery steam generator in combined power cycle T Srinivas1*, A V S S K S Gupta2 and B V Reddy3 1School of Mechanical and Building Sciences, VIT University, Vellore 632 014 2Department of Mechanical Engineering, J N T U College of Engineering, Kukatpally, Hyderabad 500 080 3Faculty of Engineering and Applied Sciences, University of Ontario Institute of Technology, Oshawa, ON, L1H 7K4, Canada Received 27 September 2007; revised 17 July 2008; accepted 21 July 2008 Optimum configuration for single pressure (SP), dual pressure (DP) and triple pressure (TP) heat recovery steam generator (HRSG) is presented to improve heat recovery and thereby exergy efficiency of combined cycle. Deaerator was added to enhance efficiency and remove dissolved gases in feed water. A new method was introduced to evaluate low pressure (LP) and intermediate pressure (IP) in HRSG from local flue gas temperature to get minimum possible temperature difference in heaters instead of a usual fixation of pressures. Optimum location for deaerator was found at 1, 3 and 5 bar respectively for SP, DP and TP in heat recovery at a high pressure (HP) of 200 bar. Results also showed optimum pressure for air compression and steam reheater by means of three categories of heat recovery. Key words: Combined cycle, Deaerator, Exergy analysis, Heat recovery, Multi pressure, Steam generator Introduction Ragland & Stenzel6 compared four plant designs using Combined cycle (CC) power plants are gaining wider natural gas with a view of cost benefits achieved through acceptance due to more and more availability of natural HRSG optimization.
    [Show full text]
  • Thermodynamic Properties of Humid Air and Their Application in Advanced Power Generation Cycles
    Thermodynamic properties of humid air and their application in advanced power generation cycles Xiaoyan Ji Doctoral Thesis in Chemical Engineering KTH-Royal Institute of Technology Department of Chemical Engineering and Technology Energy Processes SE-100 44 Stockholm, Sweden Contact information: Royal Institute of Technology School of Chemical Science and Engineering, Division of Energy Processes SE-100 44 Stockholm Sweden Copyright ©Xiaoyan Ji, 2006 All rights reserved Printed in Sweden Universitetsservice US AB Stockholm, 2006 TRITA-KET R229 ISSN 1104-3466 ISRN KTH/KET/R--229--SE ISBN 91-7178-437-3 2 Thermodynamic properties of humid air and their application in advanced power generation cycles Xiaoyan Ji School of Chemical Science and Engineering, Energy Processes KTH-Royal Institute of Technology, Stockholm, Sweden Abstract Water or steam is added into the working fluid (often air) in gas turbines to improve the performance of gas turbine cycles. A typical application is the humidified gas turbine that has the potential to give high efficiencies, high specific power output, low emissions and low specific investment. A heat recovery system is integrated in the cycle with a humidifier for moisturizing the high-pressure air from the compressor as a kernel. Based on today’s gas turbines, the operating temperature and pressure in the humidifier are up to about 523 K and 40 bar, respectively. The operating temperature of the heat exchanger after the humidifier is up to 1773 K. The technology of water or steam addition is also used in the process of compressed air energy storage (CAES), and the operating pressure is up to 150 bar.
    [Show full text]