<<

archibots : intelligent and adaptable built environments a workshop on architectural at ubicomp 2009

all references from the papers: 1. Aarts, E., Harwig, E., and Schuurmans, M.: in Denning, J. (ed.): The Invisible Future, McGraw-Hill, New York, p. 235-250, 2001. 2. Addington, M., Schodek, D., Smart materials and technologies for the architecture and design professions, Amsterdam, Elsevier / Architectural Press, 2005. 3. Al-Emam, F., Kuo, C-L., Masse, D. Care On Rail: Extendable Adaptable Sliders, Emergency Room of the Future 2008, http://www.hsi.gatech.edu/erfuture/ 4. Ariely, D. Predictably Irrational. Harper Collins (2008), 244. 5. Asimov, I. I, . Random House, New York, USA, (2004). 6. Atchley, R. C., and Barusch, A. S.: Social Forces and Aging: An Introduction to Social Gerontology, Thomas Wadsworth Inc., Belmont, CA, 2004 7. Bach, K., Berthold Burkhardt and Frei Otto (1987).IL18: Forming Bubbles. Stuttgart: Institute for Lightweight Structures. 8. Bains, Sunny “Modular bots learn art of selfreinvention.” EE Times, October 15, 2007. 9. Bar-Cohen, Yoseph. Biologically Inspired Intelligent . Boca Raton, FL: SPIE- International Society for Optical Engineering, 2003. 10. Bernal, M., Do, E.Y-L. Variation from Repetition, in Proc. eCAADe (2007), 791-798 11. Beukers, A. and Ed van Hinte (1998). Lightnesss the Inevitable Renaissance of Minimum Energy Structures. Rotterdam: 010 Publishers. 12. Bier, H.: System-embedded Intelligence in Architecture, Dissertation, TUD, Delft, 2008. 13. Bratton, Benjamin, “The Turing City?” Mediascapes symposium, the Southern California Institute of Architecture. June 11, 2009. 14. Brown, Gary. “Introduction.” In Transportable Environments 2, edited by Robert Kronenburg, Joseph Lim and Wong Yunn Chii. London: Spon Press, 2002. 15. Bubner, E. (et al) (1975). IL12: Convertible Pneus. Stuttgart: Institute for Lightweight Structures. 16. Capek, K. Rossum’s Universal Robots. Penguin Books, London, UK, (2004). 17. Carnegie Mellon Team. Claytronics. http://www.cs.cmu.edu/~claytronics/. 18. Chapman, J., Emotionally Durable Design: Objects, Experience and Empathy, Earthscan, London, UK, 2005. 19. Chen, I .M., and J. Burdick. “Determining Task Optimal Modular Robot Assembly Configurations.” Paper presented at the IEEE International Conference on Robotics and , Nagoya, Japan, 1995. 20. Chen, J., DAM: Digital Animation Museum, M. Arch thesis, University of Washington, Seattle, 2002 21. Ciesielski, A. (1999). An Introduction to Rubber Technology. Shawbury, UK: Rapra Technology Ltd. 22. Coehlo, M., Maes,P., Responsive Materials in the Design of Adaptive Objects and Spaces, 2007. 23. Cohen DL, Malone E, Lipson H, Bonassar LJ. Direct Freeform Fabrication of Seeded Hydrogels in Arbitrary Geometries . Tissue Engineering 2006. 24. Concrete CanvasTM. http://www.concretecanvas.co.uk/. 25. Corchero, E., Solar Vintage http://www.distancelab.org/projects/solarvintage/ 26. Corwin, E.I., Jaeger, H.M., and Nagel, S.R. Structural signature of jamming in granular media. Nature 435, (2005), 1075-1078. 27. D. A. Norman. The Design of Future Things. Basic Books, 2007. 28. D. Wolber and G. Fisher. A demonstrational technique for developing interfaces with dynamically created objects. In UIST ’91: Proceedings of the 4th annual ACM symposium on software and technology, pages 221–230. ACM, 1991. 9 29. DESTATIS: Bevölkerung Deutschlands bis 2050, Statistisches Bundesamt Wiesbaden 2007, https://wwwec.destatis.de/csp/shop/sfg/bpm.html.cms.cBroker.cls?CSPCHD=00210001000142v 3xik3003646720647&cmspath=struktur,vollanzeige.csp&ID=1020576, last visited03.03.2008. 30. Dietz, A. (1969). Plastics for Architects and Builders. Cambridge, MA: MIT Press. 31. Do, E. Y-L., Gross, M. D. Environments for Creativity - A Lab for Making Things. Proc. Creativity and Cognition, ACM (2007), 27-36 32. Donev, A. et al. Improving the Density of Jammed Disordered Packings Using Ellipsoids. Science 303, (2004), 990-993. 33. Eastman, C. “Adaptive-Conditional Architecture.” Design Participation, Proc. Design Research Society’s Conference, 1971, Academy Editions, (1972), 51-57 34. EMERGE (Emergency Monitoring and Prevention), Specific Targeted Research Project (FP6- 2005-045056), http://www.emerge-project.eu, last visited 03.03.2008. 35. Eng, M., Camarata, K., Do, E. Y-L., Gross, M.D. FlexM: Designing a Physical Construction Kit for 3D Modeling", International Journal of Architectural Computing, (2006), 4 (2), 27-47, Multi- Science 36. F. Kawsar, T. Nakajima, and K. Fujinami. Deploy spontaneously: supporting end-users in building and enhancing a smart home. In UbiComp ’08: Proceedings of the 10th international conference on , pages 282–291, 2008 37. Fairs, M. On the Bri(n)ck at Graduate School of Design, Harvard University. Dezeen magazine, (11 May2009). http://www.dezeen.com/2009/05/11/. 38. Feenberg, A. Transforming Technology: A Critical Theory Revisited. New York: Oxford University Press (2002), 08. 39. Festo InteractiveWall. http://www.festo.com/cms/eu-us_us/10326.htm. 40. Forty, A., Space, in Forty, A., Words and buildings: a vocabulary of modern architecture, Thames & Hudson, London, UK, 2000. 41. Fox, Michael. “Beyond Kinetic.” Transportable Environments 2. Edited by Robert Kronenburg, Joseph Lim and Wong Yunn Chii. London: Spon Press, 2002. 42. Funiak, S. et al. Distributed Localization of Modular Robot Ensembles. Proc. RSS IV, (2008). 43. Gardner, M. Mathematical Games: The Fantastic Combinations of John Conway's New Solitaire Game 'Life'. Scientific American, 223, 4. (1970), 120-123. 44. Giselbrecht & Partner, Dynamic Façade, Kiefer Technic Showroom, Austria (2007), http://www.earchitect.co.uk/austria/kiefer_technic_showroom.htm 45. Gracias, D.H. et al. Forming Electrical Networks in Three Dimensions by Self-Assembly. Science 289, (2000), 1170-1172. 46. Green, K. eT al.; Three Robot-Rooms/The AWE Project. In the Proceedings of the 2006 CHI Conference, Montreal, Canada, April (2006). 47. Greenberg, S and Fitchett, C. Phidgets: Easy Development of Physical Interfaces through Physical Widgets. User Interface Software and Technology (UIST), ACM, (2001), 209-218. 48. Grosz, E., Architecture from the Outside, in Architecture from the Outside: Essays on Virtual and Real Space, MIT Press, Cambridge, USA, London, UK, 2001. 49. Hennicke, J. (et al) (1974). IL10: Grid Shells. Stuttgart: Institute for Lightweight Structures. 50. Herron, R., Harvey, B., A Walking City, in Archigram 5 (1964). 51. Hjelle, D. and Lipson, H. A Robotically Reconfigurable Truss. Proc. ReMAR 2009, (2009). 52. Hoberman Associates, Transformable Design, Adaptive Fritting, Harvard Graduate School of Design, http://hoberman.com/portfolio/gsd.php?projectname=Adaptive%20Fritting 53. Houayek, H. The Animated Work Environment: A Vision for Working Life in a Digital Society. Ph.D.Dissertation, Clemson University (2009). 54. Houayek, H., Green, K.E., and Walker, I.D., The Animated Work Environment: An Architectural- Robotic System for a Digital Society, VDM Verlag, (2009). 55. http://en.wikipedia.org/wiki/Ambient_Assisted_Living 56. http://en.wikipedia.org/wiki/Assistive_technology 57. http://en.wikipedia.org/wiki/Home_automation 58. http://www.ambient-lighting.eu/, last visited11.07.2009 59. Ishii, H and Ullmer, B. Tangible Bits: Towards Seamless Interfaces between People, Bits and Atoms. Human Factors in Computing (CHI), ACM, (1997), 234-241. 60. J. Ledford. 25 Projects for the Evil Genius. McGraw-Hill, 2006. 61. J. O’Brien, T. Rodden, M. Rouncefield, and J. Hughes. At home with the technology: an ethnographic study of a set-top-box trial. ACM Trans. Comput.-Hum. Interact., 6(3):282–308, 1999. 62. Johanson, B., Fox, A., and Winograd, T., The Interactive Workspaces Project: Experiences with Ubiquitous Computing Rooms. Pervasive Computing, April-June (2002), 71-78. 63. Kahn, N, Portfolio, http://nedkahn.com/wind.html 64. Kay, A. The Best Way to Predict the Future is to Invent It, Stanford Engineering, 1, 1 (1989), 1- 6. 65. Kemp, C.C., Fitzpatrick, P., Hirukawa, H., Yokoi, K., Harada, K., and Matumoto, Y., Humanoids. Chapter 56, in Springer Handbook of Robotics, Siciliano and Khatib, Eds., Springer, (2008), 1301-1334. 66. Kemp, M. Nano Meta-morphic Architecture. http://www.seriesdesignbuild.com/nano/main2.htm. 67. Kemp, Miles. “Meta-Morphic Architecture.” M.Arch thesis project: Southern California Institute of Architecture, 2004. 68. Khoshnevis, Behrokh. Automated Construction by Contour Crafting. Journal of Automation in Construction. 2004, Vol. 13, 1. 69. Kirby, B.T. et al. A Modular Robotic System Using Magnetic Force Effectors. Proc. IROS 2007, IEEE Comp. Soc. Press (2007), 2787-2793. 70. Kolarevic, B.: Digital Morphogenesis, Architecture in the Digital Age: Designing and Manufacturing, SponPress, London, 2003. 71. Koledin, M.J. Vacuum Immobilizer Support. USA (1992), Patent #5121756. 72. Kuhn, T.S.: The Structure of Scientific Revolutions, University of Chicago Press, Chicago, 1996. 73. Kurokawa, H. et al., “M-TRAN II: Metamorphosis from a Four-Legged Walker to a Caterpillar,” Proc.IROS03, pp.2452–2459, 2003. 74. Kurokawa, H. Murata S. Mtran 1, 2 and 3 Robot. http://unit.aist.go.jp/is/dsysd/mtran/top.htm. 75. L. Sun, K.J. Jakubenas, J.E. Crocker, S. Harrison, L.L. Shaw, and H.L. Marcus. Fabrication of In-Situ SiC/C Thermocouples by Selective Area Laser Deposition. Proc. Solid Freeform Fabrication Symposium, 1997. 76. Latour, Bruno, “Where are the Missing Masses?: The Sociology of the Door” 1992. http://www.brunolatour.fr/articles/article/050.html 77. Le Corbusier (1923) Towards a New Architecture (original title: Vers une architecture) Eng. Trans. 1927 78. Lipson, H. “Principles of modularity, regularity, and hierarchy for scalable systems.” Journal of Biological Physics and Chemistry 7, no. 4 (2007): 125–128. 79. Lipson, H., Zykov, V., Mytilinaios, E., and Adams, B. Self-Replication Robot. http://ccsl.mae.cornell.edu/self_replication. 80. Lipton JI, Cohen DL, Lipson, H. Brick Printing: Freeform Fabrication of Modular Architectural Elements with Embedded Systems. Proc. Solid Freeform Fabrication Symposium, 2009 81. Liu, A.J. and Nagel, S.R. Jamming is not just cool any more. Nature 396, (1998), 21. 82. Lund, B.D. and Yeager, R.H. Toy Figure and Manifold Assembly Therefor. USA (1996), Patent #5518436. 83. M. C. Mozer. The neural network house: An environment that adapts to its inhabitants. In The American Association for Spring Symposium on Intelligent Environments, pages 110–114, 1998. 84. M. Chan, D. Est`eve, C. Escriba, and E. Campo. A review of smart homes-present state and future challenges. Methods and Programs in Biomedicine, 1(1):55–81, 2008. 85. Mallon, Evan. Dissertation: Freeform Fabrication of Complete Electromechanical Devices. Ithaca NY : Cornell Univerisity, 2008. 86. Mallon, Evan. Fab@Home. http://fabathome.org. 87. Manzini, E. The Material of Invention: Materials and Design. Cambridge, MA: The MIT Press (1989), 40. 88. McCullough, M. Digital Ground: Pervasive Computing and Environmental Knowing. Cambridge, MA: The MIT Press (2004), 5. 89. Merrill, D, Kalanithi, J and Maes, P. Siftables: Towards Sensor Network User Interfaces. Tangible and Embedded Interaction (TEI), ACM, (2007), 75-78. 90. Miller, D.P., Nourbakhsh, I.R., and Siegwart, R., Robots for Education. Chapter 55, in Springer Handbook of Robotics, Siciliano and Khatib, Eds., Springer, (2008), 1283-1301. 91. Minsky, M. The Society of Mind. Simon and Schuster, New York, (1985). 92. Mitchell, W.J. C++ The self and the Networked Society. Cambridge, MA: The MIT Press, (2003), 38. 93. Moggridge, B. ed. Designing Interactions. Massachusetts, MIT Press (2007). 94. More information on the Inflatable Chair, visit http://www.youtube.com/watch?v=kuf2Vn5imc0 95. More information, and to see the Interactive Flower built prototype visit: http://www.youtube.com/watch?v=UejX2Db83cE 96. Mossé, A., Constellation Wallpaper, 2006. http://aureliemosse.com/exchange/bin/view/AurelieMosse/ConstellationWallpaper 97. Mossé, A., IInd Ventulett Symposium : textiletectonics, Georgia Tech., 2008, report. http://textilefutures.co.uk/exchange/bin/view/TextileFutures/TextileTectonics 98. Mumford, Lewis, Technics and Civilization, Harvest Books. 1963. 99. Nagpal, R. Self-Assembling Global Shape, using Ideas from Biology and Origami. in Thomas Hull ed. Origami3 3rd International Meeting of Origami Science, Mathematics and Technology (3OSME), A.K. Peters, 2002. 100. Negroponte, N. (1970). The Architecture Machine. Cambridge, MA: MIT Press. 101. Negroponte, N. (1975). Soft Architecture Machines. Cambridge, MA: MIT Press. 102. Oosterhuis, K. Hyperbodies: Towards an E-motive architecture. Basel, Switzerland: Birkäuser, (2003). 103. Orwell, G. 1984. Heritage Publishers, USA, (1987). 104. Otto, F. (1995). IL35: Pneu and Bone. Stuttgart: Institute for Lightweight Structures. 105. P. Darbee. : The Details. Smarthome Technology, 2005. 106. Pask, G. (1969). An Approach to . New York, NY: Harper & Brothers. 107. Pask, G. (Introduction to) Frazer, J. An Evolutionary Architecture, London: Architectural Association Publications, Themes VII, John Frazer and the Architectural Association, 1995. 108. Pask, G., The Architectural Relevance of Cybernetics, Architectural Design (September, 1969), 494-496. 109. Pohlman, N.A. et al. Surface roughness in granular : Influence on angle of repose and the absence of segregation. Phy. Rev. E 73, (2006), 031304. 110. Priest, John W., and Jose M. Sanchez. Product Development and Design for Manufacturing, A Collaborative Approach to Producibility and Reliability, 2nd ed. Boca Raton, FL: CRC Press, 2001. 111. Quarmby, A. (1974). Plastics and Architecture. New York: Praeger Publishers, Inc. 112. Ramsgard Thomsen, M., Textile Logics in a Moving Architecture, CHI 2009. 113. Ras E., Becker M., Koch J.: Engineering Tele-Health Solutions in the Ambient Assisted Living Lab, Proceedings of the Workshop First International Workshop on Smart Homes for Tele- Health, in conjunction with IEEE 21st International Conference on Advanced Information Networking and Applications, AINA'07, Niagara Falls, Canada, May, 2007 114. Reynolds, C.: Flocks, Herds, and Schools – A Distributed Behavioral Model, Computer Graphics, 21/4 SIGGRAPH '87 Conference Proceedings, 1987. 115. S. S. Intille. Designing a . IEEE Pervasive Computing, 1(2):76–82, 2002. 116. Shelton, E, Adaptable Urban Plaza Seating, Digital Design Studio Spring 2000, University of Washington 117. Shneiderman, B. Direct Manipulation: A Step Beyond Programming Languages. Computer, 16, 8. (1983), 57-69. 118. Sivcevic, E. Trans-Dorm: transformable space, http://wiki.cc.gatech.edu/designcomp/index.php/Happy_Healthy_Home Happy Healthy Home 2009, Ga Tech 119. Slessor, C.: Atlantic Star, Architectural Review, 102/12: 30-42, USA, 1997. 120. Song, C., Wang, P., and Makse, H.A. A phase diagram for jammed matter. Nature 453, (2008), 629-632. 121. Star Wars, 20th Century Fox Motion Pictures, (1977). 122. Steg, H.; Strese, H.; Loroff, C.; Hull, J.; Schmidt, S.: "Europe Is Facing a Demographic Challenge Ambient - Assisted Living Offers Solutions", http://www.aaleurope. eu/Published/Final%20Version.pdf, March 2006,last visited 20.01.2008. 123. Streitz, N.A., Geissler, J., and Holmer, T., Roomware for Cooperative Buildings: Integrated Design of Architectural Spaces and Information Spaces. In Cooperative Buildings – Integrating Information, Organization and Architecture, Proceedings First International Workshop on Cooperative Buildings (CoBuild’98), Darmstadt, Germany, Springer: Heidelberg, (1998), 4-21. 124. Susani, M., The Sensible Home, 1994. http://museum.doorsofperception.com/doors2/transcripts/susani.html 125. Toffoli, T. and Margolus, N. : concepts and realization. Physica D 47, (1991), 263-272. 126. Tolley M.T. et al. Advances Towards Programmable Matter. Proc. MicroTAS 2008, (2008), 653- 655. 127. TU Delft, Hyperbody: http://www.bk.tudelft.nl/live/pagina.jsp?id=d75c3a7d-59f3-4137-908e- 092fe7b816db&lang=nl 128. Vitruvius, De Architectura [On Architecture], trans. F. Granger. Cambridge: Harvard, (1985). 129. Weiser, M., The Computer for the 21st Century. Scientific American, Vol. 265, No. 3, (1991), 66- 75. 130. Weller, M P and Do, E Y-L. Architectural Robotics: A New Paradigm for the Built Environment. Design Sciences and Technology (EuropIA.11), EuropIA, (2007), 353-362. 131. Weller, M P, Gross, M D and Goldstein, S C. Hyperform Specification: Designing and Interacting with Self- Reconfiguring Materials. Personal and Ubiquitous Computing. (2009), (to appear). 132. Weller, M P, Kirby, B T, Brown, H B, Gross, M D and Goldstein, S C. Design of Prismatic Cube Modules for Convex Corner Traversal in 3d. Intelligent Robots and Systems (IROS), IEEE, (2009), (to appear). 133. Weller, M. P., Espresso Blocks: Self-configuring Building Blocks, M. Arch thesis, U Washington, 2003 134. Wikipedia. http://en.wikipedia.org/wiki/Self-Reconfiguring_Modular_Robotics. 135. Wolfram MathWorld. http://mathworld.wolfram.com/Dodecahedron.html. 136. World's Smallest , Dartmouth College Office of Public Affairs, Press Release. http://www.dartmouth.edu/~news/releases/2005/09/14.html 137. Xu, H., Louge, M.Y., and Jenkins, J.T. Flow development of a sheared collisional granular flow. Powders and Grains 2001, (2001), 359-362. 138. Yim, M, Shen, W-M, Salemi, B, Rus, D, Moll, M, Lipson, H, Klavins, E and Chirikjian, G S. Modular Self- Reconfigurable Robot Systems. Robotics and Automation, 14, 1. (2007), 43-52. 139. Yim, M., Duff, D. and Roufas, K. PolyBot: A Modular Reconfigurable Robot Intl. Conf. on Robotics and Automation (ICRA), IEEE, 2000, 515-519. 140. Ying Zhang, Kimon Roufas, Mark Yim, Craig Eldershaw, Massively Distributed Control Nets for Modular Reconfigurable Robots. 2002 AAAI Spring Symposium on Intelligent Distributed and Embedded Systems. 141. Zcorp. Spectrum Z™510. http://www.zcorp.com/en/Products/3D-Printers/Spectrum- Z510/spage.aspx. 142. Zeisel, J. Inquiry by Design: Environment/Behavior/Neuroscience in Architecture, Interiors, Landscape, and Planning. New York, Norton & Company (2006), 77. 143. Zhang, Z. et al. Thermal vestige of the zerotemperature jamming transition. Nature 459, (2009), 230-233. 144. Zuk, William and Roger H. Clark (1970). Kinetic Architecture. New York: Van Nostrand Reinhold.