FULLTEXT01.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

FULLTEXT01.Pdf Designing transparent display experience through the use of kinetic interaction A Master’s Thesis by Interaction Design Master’s Programme Rafael Rybczyński School of Arts and Communication (K3) Malmö University, Sweden August 2017 MSwedenugust 2017 Designing transparent display experience through the use of kinetic interaction Interaction Design Master’s Programme School of Arts and Communication (K3) Malmö University, Sweden August 2017 Author: Rafael Rybczyński Supervisor: Susan Kozel Examiner: Clint Heyer Thesis Project I 15 credits 2017 Acknowledgements Over the lengths of this thesis project I have received support and encouragement from a many people. First of all, I would like to thank my supervisor Susan Kozel for advising me to trust my own instinct. Moreover I would like humbly to thank all the participants without whom this project would not have been possible. Also humbly I thank Alvar, Sanna, and Susanne for shelter and feedback. For proofreading my thanks goes to Jan Felix Rybczyński and Sanna Minkkinen. Finally, my deepest gratitude is reserved to my father Dr. med. Jerzy Antoni Rybczyński. Rest in peace. I would have wished for you reading this paper. Author’s notes Often during the process of doing this study I was asked why transparent displays. What’s the point? Probably I would say this goes way back to my childhood when enjoying my father reading novel stories to us as good night stories. A good example of great stories was Scheerbart’s utopian architectural vision The Gray Cloth who told about the great Swiss architect who traveled by an airship. Wherever he went, he designed buildings made from brightly colored glass, including the roof. Modern architecture has always fascinated me, and even though I did not study architecture I choose eventually to learn in interaction design to understand how close this discipline goes hand in hand with architectural principles and thoughts. Abstract This essay presents a study into the domain of architecture meeting new interaction design principles. The paper discusses future transparent surfaces to become programmable kinetic user interfaces, usable as information and communication channels to simplify our everyday environment. Based on the approach of using the five methodologies: Cultural Probes, Research Through Design, Grounded Theory, Star Life Cycle Model and Wizard of Oz; consistent data was collected to design and iterate on a visionary interface prototype to bridge the use of freehand gestures through motion sensing and moreover supported by RFID in a building structure on a see-through background. The objective of this paper is to unravel the main research question of how can people through kinetic interaction use organic interfaces on transparent surfaces? Several possible uses were ideated such as multiple shared user access, collaborative interaction on both sides. The primary research was answered through a final presented prototype combining a CV system with RFID for multiple and collaborative usages. User experiences and feedback makes an array of applications possible how a transparent interfaces with kinetic interaction can be applied to the interior and exterior such as fridge, mirror, doors, glass panels, alarm systems, games and the home entertainment. In today’s norm screens in the shape of a square are obsolete and support of new patterns, forms and materials are needed. Fieldwork concluded that kinetic interaction could flawlessly unite real world conditions with computer-generated substance, and become the design environment for future interactions to communicate with the user. We no longer seek to be bound to stiff shaped Graphical User Interfaces. Adding a transparent surface as background for such kinetic motion is underlying paradigm for the content to be projected into any ambience and surroundings. List of abbreviations 2D - Two-dimensional image 3D - Three-dimensional image AI – Artificial Intelligence AR - Augmented Reality AV - Audio/Video CP – Cultural probes CPU - Central Processing Unit CV – Computer Vision DYI – Do-it-Yourself EC - Electrochromic smart windows / Switchable glass FOLED - Flexible organic light-emitting diodes GUI – Graphical User Interface HCI - Human-Computer Interaction HOE - Holographic optical elements HUD - Head-up Display KOI - Kinetic Organic Interface KUI – Kinetic User Interfaces LCD - Liquid Crystal Display LED - Light-emitting diodes I/O – Input/Output IR - Infrared ITD - Interactive Transparent Display MIT - Massachusetts Institute of Technology MR - Mixed Reality NUI – Natural User Interface OLED - Organic light-emitting diodes OUI - Organic User Interfaces RAM – Random Access Memory RFID - Radio frequency identification Rtd - Research through Design RUI - Remote-use User Interface SDK – Software Development Kit SAR – Spatial Augmented Reality TUI – Tangible User Interface Ubicomp – Ubiquitous computing UI – User Interface VR - Virtual Reality WYSIWYG - What-You-See-Is-What-You-Get Keywords and Phrases This report will use keywords and phrases, which may require further clarification: KOI is an acronym for Kinetic Organic Interface that can have any shape or form. This new class of emerging KOI employ kinetic motion to embody and communicate information to people. (Parker et al., 2008)1 Multimodal interfaces provide users with greater expressive power, naturalness, flexibility through combining modalities such as body movements, hand gestures, touch, speech, pen, sight and sound to enrich humans experience (Oviatt, 2002) Matter is one possible future scenario of continued progress in nanoscale technology that is based to “create a physical artefact using programmable matter that will eventually be able to mimic the original object’s shape, movement. Visual appearance, sound and tactile qualities” 2 3 (Goldstein et al., 2005) Programmable physical architecture is a visionary concept for “future architecture where physical features of architectural elements and facades can be dynamically changed and reprogrammed according to people’s needs”4 (Rekimoto, 2012) Switchable glass is also known as Electrochromic (EC) smart windows. ECs are capable to control visible light and solar radiation into buildings. Moreover EC can “impart energy efficiency as well as human comfort by having different transmittance levels depending on dynamic need.” 5 Smart windows are currently being used in an increasing number of constructions in architecture. (Granqvist, 2014) 1 Oviatt, S. (1999), “Ten Myths of Multimodal Interaction”, November1999/Vol.42, No.11 Communication of the ACM 2 http://www.cs.cmu.edu/~./claytronics/ 3 Goldstein, S. et al. (2005), “Programmable Matter”, Invisible Computing, Carnegie Mellon University, pp. 99-101 4 Rekimoto, J. et al. (2012), “Squama: Modular Visibility Control of Walls and Windows for Programmable Physical Architectures”, AVI 12, May 21-25, 2012, Capri Island, Italy, Copyright 2012 ACM 978-1-4503-1287-5/12/05 5 Claes G. Granqvist, C.G. (2014), “Electrochromics for smart windows: Oxide-based thin films and devices”, Thin Solid Films 564, 2014 Elsevier B.V., pp. 1–38 “The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it“ Mark Weiser Table of contents 1. Introduction ..................................................................................................... 10 2. Research Focus .............................................................................................. 13 3. Methodology .................................................................................................... 14 4. Literature Review and Related work ................................................................ 16 1. 4.1. Living and adapting to emerging technologies in the home domain ..... 16 4.2. Ubiquitous computing and the Internet of Things .................................. 17 4.3. Window – A static information medium in the peripheral background ... 18 4.4. Tangible User Interfaces ........................................................................ 21 4.5. Vision and RFID sensors ....................................................................... 22 4.6. Computer Vision, Depth-sensing cameras and dynamic environments . 23 4.7. Multi-touch, NUIs, Surface Computing, OUIs ......................................... 25 4.8. Gesture recognition ................................................................................ 27 5. Summary ........................................................................................................... 28 6. Exploratory Research & Field Studies ............................................................... 29 6.1. Brainstorming, set up of goals and requirements .................................... 29 6.2. The Scenario workshop ........................................................................... 32 7. Lo-fi experiments – Project Nimetön ................................................................... 35 7.1. Paper mock-up ......................................................................................... 35 7.2. Prototyping Nimetön ................................................................................. 36 7.3. Validation Phase ....................................................................................... 36 7.4. Evaluation Phase ...................................................................................... 38 7.5. Summary ..................................................................................................
Recommended publications
  • Openfog Reference Architecture for Fog Computing
    OpenFog Reference Architecture for Fog Computing Produced by the OpenFog Consortium Architecture Working Group www.OpenFogConsortium.org February 2017 1 OPFRA001.020817 © OpenFog Consortium. All rights reserved. Use of this Document Copyright © 2017 OpenFog Consortium. All rights reserved. Published in the USA. Published February 2017. This is an OpenFog Consortium document and is to be used in accordance with the terms and conditions set forth below. The information contained in this document is subject to change without notice. The information in this publication was developed under the OpenFog Consortium Intellectual Property Rights policy and is provided as is. OpenFog Consortium makes no representations or warranties of any kind with respect to the information in this publication, and specifically disclaims implied warranties of fitness for a particular purpose. This document contains content that is protected by copyright. Copying or distributing the content from this document without permission is prohibited. OpenFog Consortium and the OpenFog Consortium logo are registered trademarks of OpenFog Consortium in the United States and other countries. All other trademarks used herein are the property of their respective owners. Acknowledgements The OpenFog Reference Architecture is the product of the OpenFog Architecture Workgroup, co-chaired by Charles Byers (Cisco) and Robert Swanson (Intel). It represents the collaborative work of the global membership of the OpenFog Consortium. We wish to thank these organizations for contributing
    [Show full text]
  • Multimodal Interfaces Sharon Oviatt Center for Human-Computer
    Chapter to appear in Handbook of Human-Computer Interaction, (ed. by J. Jacko & A. Sears), Lawrence Erlbaum: New Jersey, 2002. Multimodal Interfaces Sharon Oviatt Center for Human-Computer Communication, Computer Science Dept. Oregon Graduate Institute of Science & Technology Beaverton, Oregon, USA 1. What are multimodal systems, and why are we building them? Multimodal systems process two or more combined user input modes— such as speech, pen, touch, manual gestures, gaze, and head and body movements— in a coordinated manner with multimedia system output. This class of systems represents a new direction for computing, and a paradigm shift away from conventional WIMP interfaces. Since the appearance of Bolt’s (1980) “Put That There” demonstration system, which processed speech in parallel with touch-pad pointing, a variety of new multimodal systems has emerged. This new class of interfaces aims to recognize naturally occurring forms of human language and behavior, which incorporate at least one recognition-based technology (e.g., speech, pen, vision). The development of novel multimodal systems has been enabled by the myriad input and output technologies currently becoming available, including new devices and improvements in recognition-based technologies. This chapter will review the main types of multimodal interfaces, their advantages and cognitive science underpinnings, primary features and architectural characteristics, and general research in the field of multimodal interaction and interface design. The growing interest in multimodal interface design is inspired largely by the goal of supporting more transparent, flexible, efficient, and powerfully expressive means of human-computer interaction. Multimodal interfaces are expected to be easier to learn and use, and are preferred by users for many applications.
    [Show full text]
  • Casual Immersive Viewing with Smartphones
    Casual Immersive Viewing with Smartphones Ismo Rakkolainen, Roope Raisamo Matthew Turk, Tobias Höllerer Karri Palovuori TAUCHI Research Center Computer Science Department Department of Electronics University of Tampere University of California Tampere Univ. of Tech. 33014 Tampere, Finland Santa Barbara, CA 93106, USA 33720 Tampere, Finland [email protected] mturk, [email protected] [email protected] 1 ABSTRACT ter stereoscope , yet suitable for a much wider range of media. In this paper, we explore how to better integrate virtual reality Such an embedded VR viewer would always be available to the viewing to a smartphone. We present novel designs for casual user. Along with various sensors it would also bring spatial 3D (short-term) immersive viewing of spatial and 3D content, such as and immersive user interfaces (UI) closer to mainstream usage. augmented and virtual reality, with smartphones. Our goal is to Lightweight and high-resolution virtual views can be created with create a simple and low-cost casual-viewing design which could various kinds of hand-held micro-displays or head-mounted dis- be retrofitted and eventually be embedded into smartphones, in- plays (HMD), or projected to the environment with pico projec- stead of using larger spatial viewing accessories. We explore dif- tors. Current HMDs are not pocket-sized or suitable for casual ferent designs and implemented several prototypes. One prototype use. Even lightweight HMDs are too big to be carried everywhere uses thin and light near-to-eye optics with a smartphone display, and may not always be available. They are very immersive and thus providing the user with the functionality of a large, high- suitable for use at homes and offices for many purposes, but they resolution virtual display.
    [Show full text]
  • Swarm Robotics Applications Using Argos and Mavproxy |
    WHITE PAPER Autonomous Swarms in Active Services Abstract Robotics has evolved across multiple industry segments, from manufacturing to advanced technology, surveillance, and disaster management. Typically, robotics-driven processes are characterized by a set of pre-defined requirements and operations, carried out by individual robots (bots), and performed at an accelerated pace. However, collective decision making by autonomous intelligent robots, leveraging the concepts of machine learning and artificial intelligence (AI), is becoming increasingly important for agile operations. Technological advances have helped realize swarm operations, in which autonomous bots work in a coordinated manner to effectively execute tasks. In this paper, we propose the approach, design, and implementation of a robot swarm ecosystem that enables: n Active servicing: Collective decision making and execution to solve problems n Collaboration: Automated swarm response to priority services, without external directives n Automaticity: Leveraging blockchain for real- time processing of services being advertised as well as exchange of information WHITE PAPER Autonomous Swarms: Current Trends and Challenges The robotics landscape is rapidly evolving, with bots already being deployed for enterprise operations, commercial purposes, home automation and industrial applications. Robot swarms are being leveraged across segments including retail, travel, healthcare, manufacturing and semiconductors, for a variety of use cases. These swarms are being enabled with the autonomy to operate independently once a preset task or a passive service is assigned, leading to an evolved ecosystem of autonomous nodes or swarms. However, autonomous nodes/swarms executing passive services have two specific failure points. One is central management and the other is a non-configurable preset task. De-centralized management is a viable option, but it only scales down the risk and does not eliminate the point of failure.
    [Show full text]
  • Smart Dust Technology
    250, Mini-Project Report Amy Haas Smart Dust Technology Smart dust is an emerging technology with a huge potential for becoming an internationally successful commercial venture. Now is the best time to invest in smart dust – right at the point at which the scientific community is close to perfecting the technology and its applications but its potential has not yet been realized by the capitalist market. Fundamental Concept Smart dust is a theoretical concept of a tiny wireless sensor network, made up of microelectromechanical sensors (called MEMS), robots, or devices, usually referred to as motes, that have self-contained sensing, computation, communication and power1. According to the smart dust project design created by a team of UC Berkeley researchers2, within each of these motes is an integrated package of “MEMS sensors, a semiconductor laser diode and MEMS beam-steering mirror for active optical transmission, a MEMS corner-cube retroreflector for passive optical transmission, an optical receiver, signalprocessing and control circuitry, and a power source based on thick-film batteries and solar cells.” The intent is that these motes will eventually become the size of a grain of sand or a dust particle, hence the name “smart dust”, but the technology still has a long way to go to achieve its target size. In current sensor technology, the sensors are about the size of a bottle cap or small coin. As with most electronic devices or technologies, the biggest challenges in achieving actual smart dust are the power consumption issues and making the batteries small enough. Although there is a lot of work being done on solar cells to keep the motes self-sustaining, the components are just not small enough yet to actually be considered smart dust.
    [Show full text]
  • Arxiv:1409.1484V3 [Cs.CV] 3 Apr 2015 Literature with Respect to Naming This Video Perspective
    1 The Evolution of First Person Vision Methods: A Survey A. Betancourt1,2, P. Morerio1, C.S. Regazzoni1, and M. Rauterberg2 1Department of Naval, Electric, Electronic and Telecommunications Engineering DITEN - University of Genova, Italy 2Designed Intelligence Group, Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands F Abstract—The emergence of new wearable technologies such as ac- tion cameras and smart-glasses has increased the interest of computer vision scientists in the First Person perspective. Nowadays, this field is attracting attention and investments of companies aiming to develop 25 30 commercial devices with First Person Vision recording capabilities. Due to this interest, an increasing demand of methods to process these videos, possibly in real-time, is expected. Current approaches present a particular combinations of different image features and quantitative methods to accomplish specific objectives like object detection, activity recognition, user machine interaction and so on. This paper summarizes Number of Articles the evolution of the state of the art in First Person Vision video analysis between 1997 and 2014, highlighting, among others, most commonly used features, methods, challenges and opportunities within the field. 0 5 10 15 20 1997 1999 2001 2003 2005 2007 2009 2011 2013 Year Index Terms—First Person Vision, Egocentric Vision, Wearable De- vices, Smart-Glasses, Computer Vision, Video Analytics, Human- Fig. 1. Number of articles per year directly related to FPV video machine Interaction. analysis. This plot contains the articles published until 2014, to the best of our knowledge 1 INTRODUCTION Mann who, back in 1997 [12], described the field with these Portable head-mounted cameras, able to record dynamic high words : quality first-person videos, have become a common item “Let’s imagine a new approach to computing in which among sportsmen over the last five years.
    [Show full text]
  • Supporting Mobile Swarm Robotics in Low Power and Lossy Sensor Networks 1 Introduction
    1 Supporting Mobile Swarm Robotics in Low Power and Lossy Sensor Networks Kevin Andrea [email protected] Robert Simon [email protected] Sean Luke [email protected] Department of Computer Science George Mason University 4400 University Drive MSN 4A5 Fairfax, VA 22030 USA Summary Wireless low-power and lossy networks (LLNs) are a key enabling technology for the deployment of massively scaled self-organizing sensor swarm systems. Supporting applications such as providing human users situational awareness across large areas requires that swarm-friendly LLNs effectively support communication between embedded and mobile devices, such as autonomous robots. The reason for this is that large scale embedded sensor applications such as unattended ground sensing systems typically do not have full end-to-end connectivity, but suffer frequent communication partitions. Further, it is desirable for many tactical applications to offload tasks to mobile robots. Despite the importance of support this communication pattern, there has been relatively little work in designing and evaluating LLN-friendly protocols capable of supporting such interactions. This paper addresses the above problem by describing the design, implementation, and evaluation of the MoRoMi system. MoRoMi stands for Mobile Robotic MultI-sink. It is intended to support autonomous mobile robots that interact with embedded sensor swarms engaged in activities such as cooperative target observation, collective map building, and ant foraging. These activities benefit if the swarm can dynamically interact with embedded sensing and actuator systems that provide both local environmental or positional information and an ad-hoc communication system. Our paper quantifies the performance levels that can be expected using current swarm and LLN technologies.
    [Show full text]
  • Robot Based Home Automation
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8, Issue-1S4, June 2019 Robot based Home Automation L. Nikhil Manikanta, M. Pushpavalli, P. Saikumar, P. Sivagami, M. Vikram Reddy, P. Abirami Abstract--- Robot Based Home Automation, nowadays in the information for the security outside the home for potential society we cannot trust anyone compared to systems and robots. threats and smart control of things like main gates, garage By trusting robots and the internet of things is much more than and also scanning the person through facial recognition human beings. When it comes to our home, the concept is to outside the home [4]. The setup also contains the solar make it smarter, safer and automatic and with the security of a robot. This project looks on building smart wireless and robotic panels for lighting purpose in the garden at the night. There security system which sends second to second information to is a waterproof fire sensor for when the fire appears owners and that too stored in the cloud by using the internet of accidental in the home automatically it detects and sprinkler things in case of any raises an alarm. Home automation by will on and water will appear inside the home. Gas sensor making some set of sensors. Internet of things is growing more by also used in the kitchen due to detection of leakage of day by day. Internet of Things is a system that uses computers cooking gas and it gives the alarm. For old age people, the and mobile devices to control home functions through the internet from anywhere in the world.
    [Show full text]
  • A Literature Review on New Robotics: Automation from Love to War
    A literature review on new robotics : automation from love to war Citation for published version (APA): Royakkers, L. M. M., & Est, van, Q. C. (2015). A literature review on new robotics : automation from love to war. International Journal of Social Robotics, 7(5), 549-570. https://doi.org/10.1007/s12369-015-0295-x DOI: 10.1007/s12369-015-0295-x Document status and date: Published: 01/11/2015 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Android Based Home Automation and Energy
    INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS SPECIAL ISSUE, SEPTEMBER 2017 ANDROID BASED HOME AUTOMATION AND ENERGY CONSERVATION 1*M.Anto Bennet, 2B.Thamilvalluvan,2C.A.Hema Priya,2 B.Bhavani,2M.Shalini 1 Faculty of Electronics and Communication Department, vel tech, Chennai, India. 2 UG Students of Electronics and Communication Department, vel tech , Chennai, India. Email:[email protected] Submitted: May 27, 2017 Accepted: June 15, 2017 Published: Sep 1, 2017 Abstract- Wireless Sensor Network (WSN) consists of three main components: nodes, gateways, and software. The spatially distributed measurement nodes interface with sensors to monitor assets or their environment. In a WSN network the devices are connected to WSN nodes wherein the entire nodes uses Zigbee network to transfer the status of connected applications to a controller which controls the whole applications but the main drawback of Wireless sensor networks is its high interference, low coverage area and ability to control only low power devices. In order to overcome these drawbacks Android equipped devices are used to control the applications over GPRS network. Android equipped devices allow the user to control various applications over wireless networks. Being an open sourced platform it allows the user to design a custom module which controls the home applications by connecting the android equipped device and its corresponding home applications to an MCU wherein it uses relay circuits to connect the entire applications using GPRS network to connect the application controller and the android device. These devices can be used to control industrial applications, home applications like light, fan etc., and thereby conserving electricity.
    [Show full text]
  • Development of a 3D Digitisation System for Hostile Sites Mohammed Tamali, Tamali Mohammed, Tamali Abderrahmane, Mekhfi Soumia
    Development of a 3D digitisation system for hostile sites Mohammed Tamali, Tamali Mohammed, Tamali Abderrahmane, Mekhfi Soumia To cite this version: Mohammed Tamali, Tamali Mohammed, Tamali Abderrahmane, Mekhfi Soumia. Development ofa 3D digitisation system for hostile sites. 2019. hal-02192541 HAL Id: hal-02192541 https://hal.archives-ouvertes.fr/hal-02192541 Preprint submitted on 23 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Development of a 3D digitisation system for hostile sites TAMALI Mohammed1 and TAMALI Abderrahmane2 and MEKHFI Soumia2 Abstract— Our project represents a contribution to the so- the stability of the environment, the degrees of freedom, and called hostile site management solution such as historic ruins, other parameters. We consider them so that we can ask the oil pipelines, earthquake-affected buildings, unexploited mines, robot well-adapted characteristics and compatible, as much sewage pipelines, sites infected by radioactivity. These places have a significant characteristic, the difficulty of access, which as possible, with the desired medium as tasks for robots makes human intervention very expensive and dangerous. Our in hostile environments. Also in sanitary and wastewater approach is to design a robotised autonomous and remote- circulation systems where their function is to discover the controlled [1] vehicle [2], [3] on which a mounted remote blocking points of and maintain excellent continuity, In sensing device LiDAR perform investigative and survey work.
    [Show full text]
  • Home Automation Planning Guide for Individuals with Autism
    HOME AUTOMATION PLANNING GUIDE FOR INDIVIDUALS WITH AUTISM WRITTEN BY A.J. PARON-WILDES WHY HOME AUTOMATION? When caring for an individual with autism, many needs must be addressed, and even the best caregiver can miss something or not see an incident coming. Home automation can offer protective solutions that support and elevate human care. The most important thing to remember when designing for individuals with autism is that they do not experience the designed environment in the same way others do. They can have increased sensitivities that evoke strong reactions to environmental stimuli. Color, lighting, sounds, and smells all can trigger extreme responses. Having an understanding that many people with autism have either hypo or hyper sensory issues will help you design an environment that can foster increased independence and confidence. Below I outline four main areas of consideration when starting a new design project or retrofitting a home to aid a person with autism. SAFETY The number-one priority for families with an autistic child is safety. Many of us do not understand the inherit dangers of our built environment and the impact it can have on those with autism. Daily challenges can range from possible elopement—kids walking out the front door—to an inadequate understanding of systems and appliances—how does the stove turn on and off? Then, as children get older, safety concerns shift. Instead of preventing the child from leaving the house, you monitor if and when they get in: Did they get off the bus and make it in the house independently? Can you see if a stranger is at the front door? Many children with autism have a hard time with speech, or have no speech, so communicating on the phone is not effective.
    [Show full text]