615.19 WIL 12Th

Total Page:16

File Type:pdf, Size:1020Kb

615.19 WIL 12Th INDEX AId Aid AId AId thosefollowed'i~Y Aid Note: Page numbers followed by "I" indicate figures; Aid generic name. Ale Ale Ale Ale A percent ionization, 14-16, 15f-16f a-Adrenergic antagonists, 641 Alf AAS. See Androgen(s) reactions, 12, 131 Adrenergic-blocking agents, 519 AU Abacavir, 345 strength of, 12, 14, 141 Adrenergic drugs, 558 AU Abarelix acetate, 6991, 700--70I, 700f AcipHex. See Rabeprazole sodium centrally active, 641--642 Alf Abbokinase. See Urokinase Acitretin, half-life of, 6 Adrenergic neurotransmitters, 519-524, 5201 Ali, Abciximab, 149,629 Aclovate. See Alclometasone dipropionate biosynthesis of, 519, 521j, 522 Ali Abilify. See Aripiprazole Acquired immunity, 1591, 161-165 drugs affecting, 528-531 Ali Abitrexate. See Methotrexate innate vs., 159, 1591 metabolism of, 523-524, 5231, 524f All< Abmoclorin. See Chlorambucil Acrivastine, 7411, 756-757 storage and release of, 522 All< Absolute ethanol, 182 ACT-D. See Dactinomycin-D structure and physicochemical propenies of, Absolute specificity, 885 ACTH. See Adrenoconicotropic honnone; 519,520f Al1< Absorption, distribution, metabolism, and elimination Conicotropin uptake of, 522-523 All (ADME) models, for computer-aided drug Acthar. See Conicotropin injection Adrenergic receptors, 524-528 All design, 25 Acthar Gel. See Repository conicotropin injection a, 525-526, 5251-5261, 527f Acarbose, 662--663, 687--688, 687f--688f Acthrel. See Conicorelin antagonists, 545-555 All Accuretic. See Quinapril hydrochloride Actidil. See Triprolidine hydrochloride {3, 5251, 526-527, 5261, 528f-529f ACE. See Angiotensin-convening enzyme Actinomycin, 2601, 384, 384j, 388 subtypes of, 524-525, 5251-5261 Acebutolol, 552-553, 553f-554f Actinomycin-D. See Dactinomycin-D Adrenergic stimulants, 519 Acetaldehyde, in alcohol metabolism, 182 Actinospectocin. See Spectinomycin hydrochloride Adrenergic system inhibitors, 639 Acetaminophen Action potentials, neuronal membrane penneability Adrenoconicotropic honnone (ACTH), 810, 855, as antipyretic, 803-806, 804f-806f during, 719-720 891,8921 conjugation of, 89-90, 92, 97, 99 Actiq. See Fentanyl Adrenoconicotropic honnone injection, metabolism of, 8, 73-74 Activase. See Alteplase; Alteplase, recombinant 891,8921 toxicity in, 805-806, 806f Activella, 8461 Adria. See Doxorubicin hydrochloride Acetanilide, 803-804 Active-site-directed irreversible inhibition, 25 Adriamycin. See Doxorubicin hydrochloride Acetohexamide, 660, 671j, 6731, 676, 677j, 680 Actonel. See Risedronate sodium Adrucil. See 5-Fluorouracil metabolism of, 59, 61, 80, 82 Actoplus Met. See Metfonnin; Pioglitazone Adsorbed diphtheria and tetanus toxoid, 173 AU Acetophenone, metabolism of, 80--82 Actos. See Pioglitazone Adsorbed tetanus and diphtheria toxoid for (+)-Irans-(IS,2S)-acetoxycyclopropyltrimethylammo­ Actron. See Ketoprofen adults, 174 nium, 565, 5661 Acute gouty mhritis, 810--811, 810f Adsorbed tetanus toxoid, 173 AU Acetoxyethyl onium salts, 5671 Acute pain, 776-777 Adsorption, of virus, 333 All 2-Acetylaminofluorene, metabolism of, 73-74 Acute phase factors; 160, 1601 Advil. See Ibuprofen All Acetylation, 97-102 Acyclovir, 341 AeroBid. See Flunisolide Acetylation polymorphism, 101 metabolism of, 7-8 Aerosporin. See Polymyxin B sulfate Acetylcholine (ACh), 24, 558 Acylases, penicillin resistance and, 266 AF-DX 116,567, 568f confonnational flexibility of, 29-30, 29f AD 32. See Valrubicin Aflatoxin B.. metabolism of, 54, 56 confonnation of, 564-565, 565f Adalat. See Nifedipine African sleeping sickness, 221 ganglionic stimulation by, 596-597, 597f Adamantanamines, 336 Afrin. See Oxymetazoline hydrolysis of, 570--571, 572f Adapin. See Doxepin hydrochloride Afrinol. See L-( +)-Pseudoephedrine neuromuscular junction transmission and, 599--600 Adaptogen, 970 Aftate. See Tolnaftate as neurotransmitter, 558-559, 563-564, 563f-564j, Addison disease, 857, 859-860 Age, drug metabolism and, 104 596-597, 597f Adefovir dipivoxil, 340--341 Agenerase. See Amprenavir nicotinic effect of, 597-598 Adenine arabinoside, 40, 40j, 340, 378 Agglutination, immunological, 164 pharmaceutical, 568 Adenosine monophosphate (AMP), 561-563 Aggregation, of recombinant proteins, 134 release of, 563-564, 563f in platelet aggregation, 657, 657f Aggrenox. See Dipyridamole storage of, 563, 563f in smooth muscle relaxation, 618--619, 619f Aging, of cholinesterases, 578, 578f structure-activity relationships of, 566-567, Adenosine monophosphate-activated protein kinase a-Agonists, 534-535, 540 566f-567j, 5671 (AMPK), metforrnin activation by, 686 al-Agonists, 525, 5251-5261 structure of, 558 Adenylate cyclase, 562-563, 562f a,-Agonists, 525, 5251-5261 synthesis of, 563-564, 563f-564f gastric acid secretion and, 760, 761f {3-Agonists, 540--543 Acetylcholine chloride, 568 ADH. See Vasopressin {3,-Agonists, 525, 5251-5261 Acetylcholine receptors, 559-563 Adjuvants, vaccines and, 176-177 {3,-Agonists, 543 activation of, 562-563, 562f ADM. See Doxorubicin hydrochloride Akineton. See Biperiden muscarinic, 560--563, 56If-562j, 566-567, 566f ADME models. See Absorption, distribution, Akineton hydrochloride. See Biperiden nicotinic, 559-560, 559f-56Oj, 5591 metabolism, and elimination hydrochloride Acetylcholinesterase (AChE), 558, 563-564, 563f ADR. See Doxorubicin hydrochloride Alamast. See Pemirolast potassium ophthalmic A action of, 570--572, 572f Adrenal conex honnones, 853-864, 854f-857j, 8581, solution A inhibition of, 570--572, 5711-5721, 572f 86Of,864f Albamycin. See Novobiocin sodium A phosphorylation of, 577-578, 577f-578f biological activities of, 855-856 Albendazole, 226 A reactivation of, 577-578, 577f biosynthesis of, 854-855, 854f Albiglutide, 690j, 691 Acetylcholinesterase inhibitors, 570--572, 5711-5721, endogenous, 853-854 Albuminoids, 8831 572f metabolism of, 855, 855f Albumins, 8831 A irreversible, 5721, 577-581, 577f-578j, 580f mineraloconicoid receptor antagonists, Albuterol. See Salbutamol A reversible, 572-576, 5721, 573f 615,864 Alclometasone, 861 A Acetyl-CoA, 563-564, 563f-564f structural classes of, 856-859, 856f-857j, 8581 Alclometasone dipropionate, 857f A Acetylmethadol (LAAM), 788j, 789 therapeutic uses of, 859-860 Alcofenac, metabolism of, 53 A Acetylsalicylic acid. See Aspirin Adrenalin. See Epinephrine Alcohol(s) A ACh. See Acetylcholine Adrenergic agents, 519-555, 5201 as anti-infective agents, 181-182 AChE. See Acetylcholinesterase adrenergic receptor antagonists, 545-555 metabolism of, 181-182 p Acidosis, antiarrhythmic activity and, 632 neurotransmitters, 519-524 as sedative-hypnotics, 455-456 p Acids, 12-17 drugs affecting, 528-531 Alcohol intolerance, cephalosporins and, 285 p conjugate, 12, 131 receptors, 524-528 Aldactone. See Spironolactone p definition of, 12 sympathomimetic agents, 531-545 Aldehyde oxidase, 78 p 984 Index 985 Aldehydes Amenorrhea, progestins for, 839 danazo!. 849I, 851 as anti-infective agents, 182-183 Amerge, See Naratriptan endogenous, 847 as sedative-hypnotics, 456-457 Amfenac, 799I, 800 metabolism of, 847, 848f Aldesleukin, 141, 909t, 911 Amigesic. See Salsalate 5a-reductase inhibitors, 852, 852f-853f Aldomet. See Methyldopa Amikacin, 294, 299-300 SARMs, 853, 853f Aldomet ester hydrochloride. See Methyldopate inactivation of, 296 in sports, 849-850 hydrochloride Amikin. See Amikacin structural classes of, 847-848, 848t, 849f Aldosterone, 821I, 853-857, 854I, 856I, 858t 7-Arnino-5-nitroindazole, conjugation of, 90-91 therapeutic uses of, 848-849 Aldosterone antagonists, 615, 864 Amino acid solutions, 881 Androgen receptors (ARs), 825 Aleglitazar, 682, 683f Aminoalcohols, 592-594 Androlone decanoate, 849f Alemtuzumab, 148 Aminoalcohol esters, 588-591 Androstenedione, 821I, 823I, 847, 848f Alendronate sodium, 707t, 708 Aminoalcohol ethers, 591-592 Anectine. See Succinylcholine chloride Aleve. See Naproxen Aminoalkyl ethers, See Ethanolamine antihistamines Anesthesia, general, stages of, 711 Alfenta. See Alfentanil Amino amide local anesthetics, 726--729, 727f-728f Anesthesiophoric agents, 588 Alfentanil, 787I, 788 Aminoamides, 594-595 Anesthetics, 711-730 Alferon N. See Interferon alfa-n3 p-Aminobenzoic acid (PABA), 217 inhaled general anesthetics, 711-716, 712t, 714f-716f Alfuzosin, 548 acetylation of, 97, 100 injectable general anesthetics, 716--718, 717f-718f Alidase. See Hyaluronidase for injection in allergic reactions to local anesthetics, 724-726 local, 718-730, 718f-719I, 72lf-722I, 724f, Alimta. See Pemetrexed Aminoglutethimide, 835I, 836 727f-728f Aliskiren, 614-615 Aminoglycosides, 26Ot, 294-301 Anger camera, 417-418, 417f Alkalosis, antiarrhythmic activity and, 632 chemistry of, 294-295 Angina pectoris, 617 Alkane anesthetics, structure-activity relationships of, discovery of, 294 Angiotensin, 607-609, 608f-609f 712-713,712f mechanism of action of, 295 Angiotensin amide, 905 Alkanol anesthetics, 713 microbial resistance to, 295-296 Angiotensin antagonists, 612-614 Alkeran. See Melphalan spectrum of activity of, 295 Angiotensin-converting enzyme (ACE), 607-609, 609f Alkylamine antihistamines. See Propylamine structure-activity relationships of, 296--297 Angiotensin-converting enzyme inhibitors, antihistamines types of, 297-301 609-61O,6IOf Alkylating agents, 358-372 f3-AminokelOnes, 467-468 prodrugs, 610-612, 61 If, 612t busulfan, 362, 364I, 369-370 4-Aminoquinolines, 246t-247t, 248-250, 249f Angiotensin II, 607-609, 608f-609I, 614 dacarbazine, 366--367, 367f-368I, 371 8-Arninoquinolines, 246t-247t, 250-251, 250f Angiotensin II blockers, 612-614 individual agents, 368-372 Aminosalicylate sodium, 217 Angiotensinogen, 607, 608I, 614 mechanism
Recommended publications
  • Doxacurium Chloride Injection Abbott Laboratories
    NUROMAX - doxacurium chloride injection Abbott Laboratories ---------- NUROMAX® (doxacurium chloride) Injection This drug should be administered only by adequately trained individuals familiar with its actions, characteristics, and hazards. NOT FOR USE IN NEONATES CONTAINS BENZYL ALCOHOL DESCRIPTION NUROMAX (doxacurium chloride) is a long-acting, nondepolarizing skeletal muscle relaxant for intravenous administration. Doxacurium chloride is [1α,2β(1'S*,2'R*)]-2,2' -[(1,4-dioxo-1,4- butanediyl)bis(oxy-3,1-propanediyl)]bis[1,2,3,4-tetrahydro-6,7,8-trimethoxy-2- methyl-1-[(3,4,5- trimethoxyphenyl)methyl]isoquinolinium] dichloride (meso form). The molecular formula is C56H78CI2N2O16 and the molecular weight is 1106.14. The compound does not partition into the 1- octanol phase of a distilled water/ 1-octanol system, i.e., the n-octanol:water partition coefficient is 0. Doxacurium chloride is a mixture of three trans, trans stereoisomers, a dl pair [(1R,1'R ,2S,2'S ) and (1S,1'S ,2R,2'R )] and a meso form (1R,1'S,2S,2'R). The meso form is illustrated below: NUROMAX Injection is a sterile, nonpyrogenic aqueous solution (pH 3.9 to 5.0) containing doxacurium chloride equivalent to 1 mg/mL doxacurium in Water for Injection. Hydrochloric acid may have been added to adjust pH. NUROMAX Injection contains 0.9% w/v benzyl alcohol. Reference ID: 2867706 CLINICAL PHARMACOLOGY NUROMAX binds competitively to cholinergic receptors on the motor end-plate to antagonize the action of acetylcholine, resulting in a block of neuromuscular transmission. This action is antagonized by acetylcholinesterase inhibitors, such as neostigmine. Pharmacodynamics NUROMAX is approximately 2.5 to 3 times more potent than pancuronium and 10 to 12 times more potent than metocurine.
    [Show full text]
  • Part I Biopharmaceuticals
    1 Part I Biopharmaceuticals Translational Medicine: Molecular Pharmacology and Drug Discovery First Edition. Edited by Robert A. Meyers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. 3 1 Analogs and Antagonists of Male Sex Hormones Robert W. Brueggemeier The Ohio State University, Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Columbus, Ohio 43210, USA 1Introduction6 2 Historical 6 3 Endogenous Male Sex Hormones 7 3.1 Occurrence and Physiological Roles 7 3.2 Biosynthesis 8 3.3 Absorption and Distribution 12 3.4 Metabolism 13 3.4.1 Reductive Metabolism 14 3.4.2 Oxidative Metabolism 17 3.5 Mechanism of Action 19 4 Synthetic Androgens 24 4.1 Current Drugs on the Market 24 4.2 Therapeutic Uses and Bioassays 25 4.3 Structure–Activity Relationships for Steroidal Androgens 26 4.3.1 Early Modifications 26 4.3.2 Methylated Derivatives 26 4.3.3 Ester Derivatives 27 4.3.4 Halo Derivatives 27 4.3.5 Other Androgen Derivatives 28 4.3.6 Summary of Structure–Activity Relationships of Steroidal Androgens 28 4.4 Nonsteroidal Androgens, Selective Androgen Receptor Modulators (SARMs) 30 4.5 Absorption, Distribution, and Metabolism 31 4.6 Toxicities 32 Translational Medicine: Molecular Pharmacology and Drug Discovery First Edition. Edited by Robert A. Meyers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. 4 Analogs and Antagonists of Male Sex Hormones 5 Anabolic Agents 32 5.1 Current Drugs on the Market 32 5.2 Therapeutic Uses and Bioassays
    [Show full text]
  • Complete Dissertation
    VU Research Portal Histamine H-receptor agonists and antagonists ter Laak, A.M. 1995 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) ter Laak, A. M. (1995). Histamine H-receptor agonists and antagonists: molecular modeling and drug design. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 06. Oct. 2021 Histamine H1~receptor Agonists and Antagonists Molecular Modeling and Drug Design , Ton tel' Laak Histamine HI-receptor Agonists and Antagonists Molecular Modeling and Drug Design VRIJE UNIVERSlTEIT Histamine HI-receptor Agonists and Antagonists Molecular Modeling and Drug Design ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Vrije Universiteit te Amsterdam, op gezag van de rector magnificus prof.dr E. Boeker, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der scheikunde op maandag 16 oktober 1995 te 13.45 uur in het hoofdgebouw van de universiteit, De Boelelaan 1105 door Antonius Marinus ter Laak geboren te Delft Promotor prof.dr H.
    [Show full text]
  • Diapositiva 1
    Characterization of the 5-HT7 receptor as a new therapeutic target for the treatment of pain Àlex Brenchat Barberà ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos.
    [Show full text]
  • Properties of Chemically Oxidized Kininogens*
    Vol. 50 No. 3/2003 753–763 QUARTERLY Properties of chemically oxidized kininogens*. Magdalena Nizio³ek, Marcin Kot, Krzysztof Pyka, Pawe³ Mak and Andrzej Kozik½ Faculty of Biotechnology, Jagiellonian University, Kraków, Poland Received: 30 May, 2003; revised: 01 August, 2003; accepted: 11 August, 2003 Key words: bradykinin, N-chlorosuccinimide, chloramine-T, kallidin, kallikrein, reactive oxygen species Kininogens are multifunctional proteins involved in a variety of regulatory pro- cesses including the kinin-formation cascade, blood coagulation, fibrynolysis, inhibi- tion of cysteine proteinases etc. A working hypothesis of this work was that the prop- erties of kininogens may be altered by oxidation of their methionine residues by reac- tive oxygen species that are released at the inflammatory foci during phagocytosis of pathogen particles by recruited neutrophil cells. Two methionine-specific oxidizing reagents, N-chlorosuccinimide (NCS) and chloramine-T (CT), were used to oxidize the high molecular mass (HK) and low molecular mass (LK) forms of human kininogen. A nearly complete conversion of methionine residues to methionine sulfoxide residues in the modified proteins was determined by amino acid analysis. Production of kinins from oxidized kininogens by plasma and tissue kallikreins was significantly lower (by at least 70%) than that from native kininogens. This quenching effect on kinin release could primarily be assigned to the modification of the critical Met-361 residue adja- cent to the internal kinin sequence in kininogen. However, virtually no kinin could be formed by human plasma kallikrein from NCS-modified HK. This observation sug- gests involvement of other structural effects detrimental for kinin production. In- deed, NCS-oxidized HK was unable to bind (pre)kallikrein, probably due to the modifi- cation of methionine and/or tryptophan residues at the region on the kininogen mole- cule responsible for the (pro)enzyme binding.
    [Show full text]
  • Paediatric Drug Development: an Opportunity for Academia to Close the Gap
    Paediatric drug development: an opportunity for academia to close the gap Pauline De Bruyne Promotor: Prof. dr. J. Vande Walle Copromotor: Prof. dr. M. Van Winckel Ghent University Faculty of Medicine and Health Sciences Department of Paediatrics and Medical Genetics Paediatric drug development: an opportunity for academia to close the gap Pauline De Bruyne This thesis is submitted as fulfillment of the requirements for the degree of Doctor in Health Sciences. Academic year 2015 – 2016 Promotors: Prof. dr. Johan Vande Walle Prof. dr. Myriam Van Winckel Promotors: Prof. dr. Johan Vande Walle Prof. dr. Myriam Van Winckel Members of the Supervisory Board: Prof. dr. Dirk Matthys dr. Lieve Nuytinck Prof. dr. Luc Van Bortel Members of the Examination Committee: Prof. dr. Johan Van de Voorde (chair) Prof. dr. Karel Allegaert Prof. dr. ir. Sofie Bekaert Prof. dr. Daniel Brasseur Prof. dr. Sylvie Rottey Prof. dr. Jan Van Bocxlaer Prof. dr. John van den Anker The research reported in this thesis was supported by a doctoral grant for Strategic Basic Research (IWT SB-111279) awarded to Pauline De Bruyne, and a grant for Strategic Basic Research (IWT SBO-130033) awarded to the SAFE-PEDRUG project; both of the Agency for Innovation by Science and Technology in Flanders. Voor Sara, Emile en Julie Table of contents TABLE OF CONTENTS Table of contents ............................................................................................................ 1 List of abbreviations ......................................................................................................
    [Show full text]
  • Sized Neuropeptides
    M ETHODS IN MOLECULAR BIOLOGY™ Series Editor John M. Walker School of Life Sciences University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK For further volumes: http://www.springer.com/series/7651 Neuropeptides Methods and Protocols Edited by Adalberto Merighi Dipartimento di Morfofisiologia Veterinaria, Università degli Studi di Torino, Grugliasco, TO, Italy; Istituto Nazionale di Neuroscienze (INN), Università degli Studi di Torino, Grugliasco, TO, Italy Editor Adalberto Merighi Dipartimento di Morfofisiologia Veterinaria Università degli Studi di Torino and Istituto Nazionale di Neuroscienze (INN) Università degli Studi di Torino Grugliasco, TO, Italy [email protected] Please note that additional material for this book can be downloaded from http://extras.springer.com ISSN 1064-3745 e-ISSN 1940-6029 ISBN 978-1-61779-309-7 e-ISBN 978-1-61779-310-3 DOI 10.1007/978-1-61779-310-3 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011936011 © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Humana Press, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
    [Show full text]
  • S1 Table. List of Medications Analyzed in Present Study Drug
    S1 Table. List of medications analyzed in present study Drug class Drugs Propofol, ketamine, etomidate, Barbiturate (1) (thiopental) Benzodiazepines (28) (midazolam, lorazepam, clonazepam, diazepam, chlordiazepoxide, oxazepam, potassium Sedatives clorazepate, bromazepam, clobazam, alprazolam, pinazepam, (32 drugs) nordazepam, fludiazepam, ethyl loflazepate, etizolam, clotiazepam, tofisopam, flurazepam, flunitrazepam, estazolam, triazolam, lormetazepam, temazepam, brotizolam, quazepam, loprazolam, zopiclone, zolpidem) Fentanyl, alfentanil, sufentanil, remifentanil, morphine, Opioid analgesics hydromorphone, nicomorphine, oxycodone, tramadol, (10 drugs) pethidine Acetaminophen, Non-steroidal anti-inflammatory drugs (36) (celecoxib, polmacoxib, etoricoxib, nimesulide, aceclofenac, acemetacin, amfenac, cinnoxicam, dexibuprofen, diclofenac, emorfazone, Non-opioid analgesics etodolac, fenoprofen, flufenamic acid, flurbiprofen, ibuprofen, (44 drugs) ketoprofen, ketorolac, lornoxicam, loxoprofen, mefenamiate, meloxicam, nabumetone, naproxen, oxaprozin, piroxicam, pranoprofen, proglumetacin, sulindac, talniflumate, tenoxicam, tiaprofenic acid, zaltoprofen, morniflumate, pelubiprofen, indomethacin), Anticonvulsants (7) (gabapentin, pregabalin, lamotrigine, levetiracetam, carbamazepine, valproic acid, lacosamide) Vecuronium, rocuronium bromide, cisatracurium, atracurium, Neuromuscular hexafluronium, pipecuronium bromide, doxacurium chloride, blocking agents fazadinium bromide, mivacurium chloride, (12 drugs) pancuronium, gallamine, succinylcholine
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • The New Neuromuscular Blocking Agents: Do They Offer Any Advantages?
    British Journal of Anaesthesia 87 (6): 912±25 (2001) REVIEW ARTICLE The new neuromuscular blocking agents: do they offer any advantages? E. W. Moore* and J. M. Hunter² University Department of Anaesthesia, University Clinical Department, The Duncan Building, Daulby Street, Liverpool L69 3GA, UK *Corresponding author Br J Anaesth 2001; 87: 912±25 Keywords: neuromuscular block, aminosteroids; neuromuscular block, benzylisoquinoliniums; neuromuscular block, tropinyl diesters; neuromuscular block, tetrahydroisoquinolinium chlorofumarates The introduction of neuromuscular blocking drugs in 1942 animal and human studies. The bis-quaternary ammonium marked a new era in anaesthetic and surgical practice. The salt of bistropinyl diester G-1-64 is the most studied of the anaesthetist was enabled to provide respiratory support tropinyl diester group51 although investigations in humans during long and complex surgery whilst the surgeon was have yet to be reported (Fig. 3). allowed access to body cavities without voluntary or re¯ex muscle movement. In recent years, a generation of anaesthetists trained since atracurium and vecuronium GW280430A became available in 1982, have taken for granted the The structure of this mixed-tetrahydroisoquinolinium speed of onset, shorter and more predictable duration of chlorofumarate is given in Figure 2. The similarity in action, and lack of cardiovascular side-effects that these structure to mivacurium is demonstrated. The presence of drugs have in comparison with their predecessors.56 58 59 three methyl groups between the quaternary nitrogen and The latest generation of neuromuscular blocking drugs aims oxygen atom at each end of the carbon chain suggests that, to provide even greater advantages: as rapid an onset and similar to mivacurium, this compound will not undergo offset as succinylcholine; disposition independent of organ Hofmann degradation.
    [Show full text]
  • A New Highly Specific and Robust Yeast Androgen Bioassay for the Detection of Agonists and Antagonists
    Anal Bioanal Chem (2007) 389:1549–1558 DOI 10.1007/s00216-007-1559-6 ORIGINAL PAPER A new highly specific and robust yeast androgen bioassay for the detection of agonists and antagonists Toine F. H. Bovee & Richard J. R. Helsdingen & Astrid R. M. Hamers & Majorie B. M. van Duursen & Michel W. F. Nielen & Ron L. A. P. Hoogenboom Received: 27 April 2007 /Revised: 3 July 2007 /Accepted: 15 August 2007 / Published online: 12 September 2007 # Springer-Verlag 2007 Abstract Public concern about the presence of natural and very specific and also suited to detect compounds that have anthropogenic compounds which affect human health by an antiandrogenic mode of action. modulating normal endocrine functions is continuously growing. Fast and simple high-throughput screening methods Keywords Antagonists . Brominated flame retardants . for the detection of hormone activities are thus indispens- Crosstalk . Metabolism . Receptor . Saccharomyces able. During the last two decades, a panel of different in vitro cerevisiae assays has been developed, mainly for compounds with an estrogenic mode of action. Here we describe the develop- ment of an androgen transcription activation assay that is Introduction easy to use in routine screening. Recombinant yeast cells were constructed that express the human androgen receptor There is concern that chemicals in our food, water, and and yeast enhanced green fluorescent protein (yEGFP), the environment affect human health by disrupting normal latter in response to androgens. Compared with other endocrine function, possibly leading to reproductive failure reporters, the yEGFP reporter protein is very convenient in humans and tumors in sensitive tissues [1, 2]. This because it is directly measurable in intact living cells, i.e., relates to chemicals with previously unknown hormonal cell wall disruption and the addition of a substrate are not properties, like certain pesticides and plasticizers, but also needed.
    [Show full text]