Reflections on the Current State of Infusion Therapy

Total Page:16

File Type:pdf, Size:1020Kb

Reflections on the Current State of Infusion Therapy © Copyright AAMI 2016. Single user license only. Copying, networking, and distribution prohibited. Features AAMI Foundation is very grateful to its premiere industry Reflections on the Current partners and wishes to thank them for making the work of the foundation possible: National Coalition for Alarm State of Infusion Therapy Management Safety; National Coalition to Promote the Continuous Monitoring of Patients on Opioids; and the Matthew B. Weinger and Andrew Kline National Coalition for Infusion Therapy Safety. Diamond Sponsors: This article reviews the current state of A Brief History of Infusion Therapy About the Authors intravenous (IV) infusion technology and IV infusion therapy has a long and remarkable Matthew B. delineates aspects that would benefit from history. The first recorded attempt to give an Weinger, MD, improved design and development. It infusion was in 1492,4 when physicians tried to is professor and provides context for the current landscape of transfuse Pope Innocent VIII via vein-to-vein vice chair of infusion technology by briefly describing the anastomosis from three young boys—both the anesthesiology history of infusion therapy and highlighting Pope and his donors died. The first working and professor of biomedical key events and innovations that have shaped infusion device was created in 1658 by Sir informatics and medical education modern infusion. Building on previous Christopher Wren who attached a quill to a at the Vanderbilt University School reports that focused on medication errors pig’s bladder to instill a mixture of alcohol and of Medicine in Nashville, TN; director and patient safety,1,2 the current work concen- morphine into the veins of sick dogs.5 Learning of the Center for Research and trates on the limitations of existing of Wren’s success, Richard Lower, a London Innovation in Systems Safety at the Vanderbilt University Medical Center technology and related workflows that cardiologist, infused a man named Arthur Coga and staff physician in the Geriatric constrain clinical efficiency and overall value. with sheep blood to calm him, inciting a Research Education and Clinical Platinum Sponsors: Future innovations that could advance “benign form of insanity.”6 Dr. Lower used Center at the VA Tennessee Valley infusion system safety, efficacy, usability, primitive versions of the same elements of Healthcare System in Nashville, TN. efficiency, and overall value to clinicians and modern-day syringes, needles, and catheters. Email: [email protected] the healthcare system also are discussed. Of As experimentation continued, the proliferation Andrew Kline, note, this article focuses on volumetric of adverse events led both the British Royal BA, is program infusion pumps used in clinical settings. Society and the Vatican to ban transfusions in coordinator in Beyond reducing medication errors, an the late 1660s, and infusion science was put on the Center for important potential benefit of optimal design hold for more than a century.6 Research and Innovation in of infusion technology is the prospect of In 1795, the American physician Philip Syng Systems Safety considerable cost savings. Each preventable Physick once again advocated for human-to- at Vanderbilt University Medical adverse drug event (ADE) has been reported human blood transfusions. However, it was Center in Nashville, TN. Email: Gold Sponsors: to cost nearly $9,000.3 Through built-in not until the 1820s that James Blundell, an [email protected] designs and adherence to the “five rights of English physician and obstetrician, performed medication administration,” smart pumps can the first documented successful transfusion.4 help decrease the incidence of ADEs. Indeed, Blundell also developed two mechanical not only is avoidable patient harm wrong, it infusion devices: the gravitator, which used also has proven to be expensive. Moreover, gravity to deliver fluids in a regulated stream, care process inefficiencies add increased costs and the impellor, which infused fluids under to a healthcare system that is already far too pressure. These devices sound eerily similar costly for the quality of care offered. to current technologies. Biomedical Instrumentation & Technology July/August 2016 253 © Copyright AAMI 2016. Single user license only. Copying, networking, and distribution prohibited. Features Infusion science accelerated in the 1830s pump also included an early version of dose during London’s cholera epidemic. Dr. error reduction software (DERS) that alerted William O’Shaughnessy reported in The the user to potential problems with their Lancet in 1832 that cholera victims lost a high on-pump programming. Mike Cohen and concentration of their saline and alkali.6 In Tim Vanderveen were the first to describe the response, Dr. Thomas Latta performed the smart pump in a 2002 issue of the Institute first nonblood IV infusions of sodium for Safe Medication Practices newsletter.8 In chloride and bicarbonate and was able to save 2010, Sims noted that “since infusion pumps eight of the 25 victims he treated.6 In the are used in so many settings in almost every mid- to late 1800s, numerous clinicians hospital bed, many changes will no doubt be initiated and advocated for IV medication forthcoming in the next few months or administration. The most common IV years.”3 Smart pumps can now be found in medications were narcotic substances, most major hospitals worldwide and have including opium and cocaine. undoubtedly prevented many serious infusion IV medication administration, as well as errors. However, as currently implemented, fluid and transfusion therapy, became part of they only prevent a portion of all infusion- routine military medicine during the Second related harm, leaving many unresolved safety World War.5 The first civilian infusion service and quality issues with IV therapy. may have occurred in 1940 at Massachusetts General Hospital (MGH), where one nurse Cost of Drug Errors served as the infusion “operator.” Clinicians The Society for Actuaries suggested that the returning to civilian practice helped to financial cost of medical errors was nearly $1 proliferate modern IV therapy. While trillion per year when including both the mechanical peristaltic pumps (e.g., for direct and the indirect (e.g., morbidity, cardiopulmonary bypass and dialysis applica- decreased patient quality of life) costs.9 tions) were introduced earlier, and the first Considering the impact of the Institute of ambulatory pump was marketed in the late Medicine’s likely conservative 2001 estimate 1950s, the first modern electromechanical of nearly 100,000 medical error–related infusion pumps became commercially deaths annually, researchers and policy available in the 1960s. An important early experts have called these errors “America’s innovation was the use of an electronic drip most important public health issue.”10 What detector that allowed feedback control to a might seem like a small error can snowball, microprocessor to improve flow accuracy. As producing exponential effects on patients and the market matured, competitors introduced their cost of treatment. Without a systemwide further innovations, including the first focus on quality of care, the moral and “volumetric” infusion pump, whereby the financial burden of avoidable injury and volume being pumped was directly measured death will continue to plague healthcare and recorded (within constraints to be systems worldwide. Technology has a role in discussed later); “air-in-line” and downstream reducing injury and cost, but only if it is (distal) occlusion alarms; and the use of a designed and implemented correctly. Ample proprietary disposable. opportunities exist for infusion technology to So-called “smart” pumps were first con- improve substantially the overall value of ceived by Dr. Nathaniel Sims and his team at healthcare processes. MGH in 1992, then implemented in 1997.7 The first permutation of the team’s fully Drug Library Creation operational smart pump showed the promise and Maintenance of interoperability by connecting the pump to A key finding of a recent survey was that a computer library of infusion medications. hospitals using smart pumps typically Their most important innovation was the adopted this technology due to “inventory age incorporation of a hospital-proctored drug and failure” rather than as part of an over- library into the pump’s software, thereby arching “safety strategy.”11 Moreover, these allowing the user to select specific drugs, hospitals were unable to integrate their new concentrations, doses, and rates. The MGH pumps with other medication management 254 Biomedical Instrumentation & Technology July/August 2016 © Copyright AAMI 2016. Single user license only. Copying, networking, and distribution prohibited. Features technologies (i.e., computerized provider infusions.2,13 Redesigned infusion technolo- order entry, bar-coded medication adminis- gies must consider and address these tration), thereby limiting the ability of their inefficiencies. Given the high cost of nursing pumps to fully address the “five rights.” As care in most facilities, efforts to reduce these one indication of the limitations of DERS, low-value tasks will improve nurses’ job only about one-half of the hospitals surveyed satisfaction and yield substantial cost savings implemented hard limits on their pumps. for the organization. Below, we discuss Further, a major reason for DERS noncom- specific opportunities for improvements in pliance was incomplete or outdated
Recommended publications
  • Intravenous Therapy Procedure Manual
    INTRAVENOUS THERAPY PROCEDURE MANUAL - 1 - LETTER OF ACCEPTANCE __________________________________________ hereby approves (Facility) the attached Reference Manual as of _____________________. (Date) The Intravenous Therapy Procedure Manual will be reviewed at least annually or more often when deemed appropriate. Revisions will be reviewed as they occur. Current copies of the Intravenous Therapy Procedure Manual shall be maintained at each appropriate nursing station. I have reviewed this manual and agree to its approval. __________________________ (Administrator) __________________________ (Director of Nursing) __________________________ (Medical Director) - 2 - TABLE OF CONTENTS TABLE OF CONTENTS INTRODUCTION A. Purpose 1 B. Local Standard of Practice 1 RESPONSIBILITIES A. Responsibilities: M Chest Pharmacy 1 B. Responsibilities: Administrator 1 C. Responsibilities: Director of Nursing Services (DON/DNS) 1 D. Skills Validation 2 AMENDMENTS GUIDELINES A. Resident Candidacy for IV Therapy 1 B. Excluded IV Medications and Therapies 1 C. Processing the IV Order 1 D. IV Solutions/Medications: Storage 2 E. IV Solutions/Medications: Handling 3 F. IV Solutions and Supplies: Destroying and Returning 4 G. IV Tubing 5 H. Peripheral IV Catheters and Needles 6 I. Central Venous Devices 7 J. Documentation and Monitoring 8 K. IV Medication Administration Times 9 L. Emergency IV Supplies 10 I TABLE OF CONTENTS PROTOCOLS A. IV Antibiotic 1 1. Purpose 2. Guidelines 3. Nursing Responsibilities B. IV Push 2 1. Purpose 2. Guidelines C. Anaphylaxis Allergic Reaction 4 1. Purpose 2. Guidelines 3. Nursing Responsibilities and Interventions 4. Signs and Symptoms of Anaphylaxis 5. Drugs Used to Treat Anaphylaxis 6. Physician Protocol PRACTICE GUIDELINES A. Purpose 1 B. Personnel 1 C. Competencies 1 D.
    [Show full text]
  • Attachment 3
    CURRICULUM CLINICAL BASE / CA-1 / CA-2 / CA-3 ANESTHESIOLOGY RESIDENCY PROGRAM GOALS AND OBJECTIVES AND CORE COMPETENCIES Department of Anesthesiology University of Missouri at Kansas City School of Medicine Saint Luke’s Hospital Truman Medical Center Children’s Mercy Hospital Revised 2011 Table of Contents Pages Introduction – Statement of Curriculum ................................................................................................................... 3 I. Rendering Patient Insensible to Pain ............................................................................................................. 4-10 II. Support of Life Functions ............................................................................................................................. 11-16 III. Clinical Base Year A. Cardiology ................................................................................................................................................. 17-32 B. Emergency Medicine ................................................................................................................................. 33-44 C. General Medicine ....................................................................................................................................... 45-49 D. Infectious Disease ...................................................................................................................................... 50-59 E. Nephrology ..............................................................................................................................................
    [Show full text]
  • Nicotine Patches Appear Safe for CAD Patients
    May 1, 2007 • www.internalmedicinenews.com Cardiovascular Medicine 37 Nicotine Patches Appear Safe for CAD Patients BY BRUCE JANCIN 30%, but many physicians have been re- induced myocardial defect on single-photon ment arm jumped from 10.9 to 25.2 Denver Bureau luctant to recommend it for their patients emission computed tomography (SPECT) ng/mL, Dr. Leja said. After 1 week, patients with coronary artery disease (CAD) be- to receive either 21-mg nicotine patches or were encouraged to quit smoking while N EW O RLEANS — Nicotine patches cause nicotine is known to increase heart placebo in addition to continuing their usu- continuing to use their assigned patches. are safe for use in smokers with known rate and blood pressure, and can induce al amount of cigarette smoking. The pri- Upon SPECT imaging at week 4, the coronary artery disease and stress-induced vasoconstriction as well, Dr. Monika J. Leja mary end point of the study was change in size of the perfusion defects in the nico- myocardial ischemia, according to the re- reported at the annual scientific session of total perfusion defect size upon repeat stress tine patch group remained unchanged sults of the first-ever randomized, place- the American College of Cardiology. SPECT imaging performed at 1 week. from baseline, although their plasma nico- bo-controlled, multicenter clinical trial to Dr. Leja and her coinvestigators at the There was no change in the total or is- tine levels remained as high as at week 1. examine this issue. Methodist DeBakey Heart Center in Hous- chemic perfusion defect size, compared The trial was supported by Glaxo- Nicotine replacement therapy doubles ton randomized 55 heavy smokers with with baseline, in either group even though SmithKline Consumer Healthcare.
    [Show full text]
  • Intravenous Infusion Drug Administration: Flushing Guidance
    Intravenous Infusion Drug Administration: Flushing Guidance April 2019 Acknowledgements: Andrew Barton – Author/reviewer NIVAS Chair Advanced Nurse Practitioner, IV Therapy and Vascular Access Frimley Health NHS Foundation Trust Tim Jackson – Reviewer/contributor, NIVAS Board Deputy Chair Consultant in Anesthesia & Intensive Care Medicine Calderdale & Huddersfield NHS Foundation Trust Gemma Oliver - Reviewer/contributor NIVAS Board Nurse Consultant, Integrated IV Care East Kent Hospitals NHS Foundation Trust Nicola York - Reviewer/contributor NIVAS Board Clinical Nurse Manager Vascular Access and Nutrition support Oxford University Hospitals NHS Foundation Trust Matt Jones - Reviewer/contributor NIVAS Board Consultant Anaesthetist East Kent Hospitals NHS Foundation Trust Steve Hill - Reviewer/contributor NIVAS Board Procedural Team Manger The Christie NHS Foundation Trust Marie Woodley - Reviewer/contributor NIVAS Board Clinical Nurse Specialist IV therapy/OPAT Lead Buckinghamshire Healthcare Trust Contents: Introduction………………………………………………………………………… Page 1 Methods of administering intravenous therapy………………………………… Page 2 Intravenous bolus injection…………………………………………….… Page 2 Continuous, variable dose syringe driver injection……………………. Page 2 Intravenous infusion…………………………………………………….… Page 3 Option 1: Discarding the infusion set………………………………….… Page 3 Option 2: Flushing the Infusion set manually…………………………... Page 4 Option 3: Flushing the infusion set with a closed system…………….. Page 4 General Guidance…………………………………………………………………. Page 5 Conclusion………………………………………………………………………….
    [Show full text]
  • Intravenous Therapytherapy
    IntravenousIntravenous TherapyTherapy Department of EMS Professions Temple College IVIV TherapyTherapy OverviewOverview I DefinitionsDefinitions && IndicationsIndications I FluidFluid ResuscitationResuscitation I EquipmentEquipment andand SuppliesSupplies I ChoosingChoosing FluidsFluids andand CathetersCatheters I ProcedureProcedure andand TechniqueTechnique TipsTips – Peripheral Venipuncture – Intraosseous Access I PotentialPotential ComplicationsComplications DefinitionsDefinitions I IVIV // VenipunctureVenipuncture I CrystalloidsCrystalloids I PeripheralPeripheral // CentralCentral I ColloidsColloids I IntraosseousIntraosseous AccessAccess I HypertonicHypertonic I FluidFluid ResuscitationResuscitation I IsotonicIsotonic I MedicationMedication AccessAccess I DripDrip RatesRates I KVOKVO // TKOTKO IndicationsIndications forfor VenipunctureVenipuncture I VolumeVolume I VenousVenous AccessAccess toto – Dehydration CirculationCirculation I Water – Blood collection I Electrolytes I Labs – Blood Loss I Field Chemistry I Colloids – Medication I Crystalloids Administration FluidFluid ResuscitationResuscitation I DehydrationDehydration andand I ShockShock VolumeVolume LossLoss ManagementManagement – Replace Lost Fluid or – Controversial Blood – Definitive therapy = – Often requires 2 -3 Surgery and blood times the amount replacement lost (2:1 rule) – EMS → judicious replacement – Improve end organ perfusion (BP at 90 - 100 mm Hg) EquipmentEquipment andand SuppliesSupplies I FluidsFluids I SuppliesSupplies – Normal Saline – IV Catheters (0.9%
    [Show full text]
  • Intravenous Medicine Administration Self-Directed Learning Package
    Acute Services Division Practice Development Department Intravenous Medicine Administration Self-directed Learning Package Margaret A. Connolly Katherine Hill Lynne Robertson Debbie Thompson Pinky Virhia First published August 2007 Revised July 2014 For review July 2016 Contribution by Christina Ronyane © Practice Development Department, NHS Greater Glasgow and Clyde 2014. All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying,recording or otherwise without the prior permission of Practice Development Department, NHS GG&C. Acknowledgement of sources of illustrations Figure 1 – page 7 Yellow Card Reproduced with the kind permission of the MHRA. Figure 2 – page 9 Peripheral venous access. Reproduced with the kind permission of Smith and Nephew. Figure 3 – page 10 Midline. Images provided by Vygon (UK) Ltd – © Vygon (UK) Ltd 2012. Figure 4 – page 10 Peripherally inserted central catheter. Provided by Vygon (UK) Ltd - © Vygon (UK) Ltd 2012. Figure 5 – page 10 Non Skin Tunnelled Central Line. Reproduced with the kind permission of Smith and Nephew. Figure 6 – page 11 Skin Tunnelled central venous access. Provided by Vygon (UK) Ltd - © Vygon (UK) Ltd 2012. Figure 7 – page 11 Indwelling Central Venous Access Device. Provided by Vygon (UK) Ltd - © Vygon (UK) Ltd 2012. Figure 10 – page 19 Anaphylaxis algorithm - Reproduced with the kind permission of the Resuscitation Council (UK). Contents Prerequisites for undertaking the IV
    [Show full text]
  • Improvement of Biodistribution with Pegylated Liposomes Containing
    ANTICANCER RESEARCH 31: 153-160 (2011) Improvement of Biodistribution with PEGylated Liposomes Containing Docetaxel with Degradable Starch Microspheres for Hepatic Arterial Infusion in the Treatment of Liver Metastases: A Study in CC-531 Liver Tumor-bearing WAG RIJ Rats U. POHLEN, H.J. BUHR and G. BERGER Department of Surgery, Charité Universitaetsmedizin Berlin, Benjamin Franklin Campus, Berlin, Germany Abstract. Aim: To improve the drug concentration in liver metastatic breast cancer develop liver metastases and have a metastases, docetaxel was encapsulated in polyethyleneglycol- poor prognosis, with a median survival of 1-2 years and a 5- liposomes and administered regionally with degradable starch year survival rate of approximately 20% (6, 7). microspheres (DSM). Materials and Methods: A rodent model The most frequently applied chemotherapeutic agent for of solitary metastasis (CC-531 adenocarcinoma) was studied. advanced breast cancer, ovarian cancer and gastric cancer is The animals were randomized into six groups and treated with docetaxel (8-10). 15 ng/kg docetaxel: I: intravenous (i.v.). II: PEG-liposomes Docetaxel inhibits cell proliferation by inducing a i.v.; III: intraartial (i.a.) via the hepatica artery; IV: i.a.) + sustained mitotic block at the metaphase/anaphase anticancer DSM; V: PEG-liposomes i.a.; and VI: PEG-liposomes i.a. + agents in this class promote the polymerization of stable DSM. The docetaxel concentration in the serum, liver and liver microtubules, inhibit their disassembly and profoundly affect tumor at defined times (5, 15, 30, 60,120 240 min and 24 h) a number of key cellular functions that depend on the was measured using HPLC.
    [Show full text]
  • Improving Intravenous Therapy: Opportunities for Designing the Next Generation Infusion System Part 3 – Workflow Efficiency & Cost-Effectiveness
    IMPROVING INTRAVENOUS THERAPY: OPPORTUNITIES FOR DESIGNING THE NEXT GENERATION INFUSION SYSTEM PART 3 – WORKFLOW EFFICIENCY & COST-EFFECTIVENESS AUTHORED BY: Matthew B. Weinger, MD, MS Andrew Kline, BA Department of Anesthesiology, Vanderbilt University School of Medicine INTRODUCTION In this three-part series, we strive to provide an overview of the current status and apparent effectiveness from the user’s point- of-view of infusion pump design. We acknowledge the advances in the field while highlighting opportunities for future improvements. In focusing on some of the usability issues of current pump interfaces and insufficient interoperability, we highlight some of the existing pitfalls and offer human factors-based guidance for next-generation designs. Here, we define infusion pump usability as the relationship We focus on issues related to the between the technology and clinicians’ ability to use that technology general usability, process efficiency and to attain their work goals effectively, safely, efficiently, and with both clinician and patient satisfaction. cost effectiveness of infusion pump use. In this, the third part of the series, we focus on issues related to the general usability, process efficiency and cost effectiveness of infusion pump use. We also address current shortcomings of the integration of infusion pump technology with medication management software. 1 Workflow Efficiency and Cost Effectiveness An important added benefit of optimal pump designs is the prospect of significant cost savings. Each preventable ADE has been reported to cost nearly $9,000,[1] and smart pumps could, through built-in designs to adhere to the “Rights,” decrease the incidence of ADEs (see Part 1 of this series for more information on this topic).
    [Show full text]
  • Intravenous Therapy
    Intravenous therapy What is an intravenous? An intravenous is a thin, plastic tube called a catheter that is put into a vein to give you fluid. The catheter is attached to a solution bag hanging on a pole. This is all called an IV. The type of solution you have depends on your special needs. The IV needs to go into a vein so the blood can carry the fluid around your body. Most often, the IV is put in your hand or forearm. An IV can be put in a foot, upper arm or inner elbow. You may have an IV lock called a saline lock. This means that the catheter is attached to a very short tube with a cap. When it is time for fluid or medication, the cap is taken off and the catheter is attached to a longer tube and solution. This is most often done if you need an IV for medications but do not need extra fluid. Why do I need an IV? There are many reasons for having an IV. Here are some reasons: to give fluids to give medication to give blood or blood products please turn over Intravenous therapy What is an IV pump? Your IV may be connected to an IV pump. The nurses program the pump to deliver the right amount of medications and fluids. It will beep or alarm for different reasons. What activities can I do with an IV? After the IV is put in, there is no needle left in your vein. The tube is held in your vein with tape.
    [Show full text]
  • (Not for IV Bolus Injection) RX ONLY ERAXIS™ (Anidulafungin
    NDA 21-632/S-010 Page 6 [INTRAVENOUS INFUSION, DILUTED WITH STERILE WATER FOR INJECTION] (not for IV Bolus Injection) RX ONLY ERAXIS™ (anidulafungin) FOR INJECTION DESCRIPTION ERAXIS for Injection is a sterile, lyophilized product for intravenous (IV) infusion that contains anidulafungin. ERAXIS (anidulafungin) is a semi-synthetic lipopeptide synthesized from a fermentation product of Aspergillus nidulans. Anidulafungin is an echinocandin, a class of antifungal drugs that inhibits the synthesis of 1,3-β-D-glucan, an essential component of fungal cell walls. ERAXIS (anidulafungin) is 1-[(4R,5R)-4,5-Dihydroxy-N2-[[4"-(pentyloxy)[1,1':4',1"-terphenyl]-4­ yl]carbonyl]-L-ornithine]echinocandin B. Anidulafungin is a white to off-white powder that is practically insoluble in water and slightly soluble in ethanol. In addition to the active ingredient, anidulafungin, ERAXIS for Injection contains the following inactive ingredients: 50 mg/vial - fructose (50 mg), mannitol (250 mg), polysorbate 80 (125 mg), tartaric acid (5.6 mg), and sodium hydroxide and/or hydrochloric acid for pH adjustment. 100 mg/vial - fructose (100 mg), mannitol (500 mg), polysorbate 80 (250 mg), tartaric acid (11.2 mg), and sodium hydroxide and/or hydrochloric acid for pH adjustment. The empirical formula of anidulafungin is C58H73N7O17 and the formula weight is 1140.3. The structural formula is: H H OH O HO OC5H11 H O NH HO NH O H C H 3 HN CH N 3 H O H HO O H OH H NH N H3C H H OH HO N O H H H O OH H H OH Prior to administration, ERAXIS for Injection requires reconstitution with sterile Water for Injection and subsequent dilution with either 5% Dextrose Injection, USP or 0.9% Sodium Chloride Injection, USP (normal saline).
    [Show full text]
  • IV Infusion Therapy Forms
    Intravenous (IV) Infusion Therapy Checklist of what to bring: Your completed Intravenous (IV) Therapy Intake Form A copy of your most recent bloodwork (including G6PD) is helpful Your signed Consent Form Make sure that you are well hydrated prior to your visit; we suggest drinking one to two 16oz. bottles of water. Dehydration can make it difficult to insert an IV. Make sure you eat something prior to you visit; we suggest a high protein snack, such as nuts, seeds, a protein bar, cheese, yogurt, or eggs. Low blood sugar can make you feel weak, light-headed, or dizzy. During your first visit for IV Therapy infusions: During the first visit, the healthcare practitioner will discuss your symptoms and desired outcomes. Based on this assessment, your IV infusion will be customized to address your needs. If you have any complex medical conditions, the healthcare practitioner may request that you obtain blood work and/or your PCP’s approval prior to administering any IV infusions. What to eXpect: The IVs used during your Intravenous (IV) infusion therapy are eXactly the same that you would find in a hospital. Instead of a clinical eXperience though, our IV infusions are given in a peaceful spa setting and leave you feeling calm, relaXed, and refreshed. Depending on your customized IV cocktail, the infusion can be finished in as little as 20- 30 minutes. Our friendly and attentive staff will keep you calm, cared for, and comfortable during your infusion. Patients find the eXperience tranquil and healing. Patients leave feeling vibrant, energized, and refreshed. Flatiron Functional Medicine 400 S.
    [Show full text]
  • Home Health Care (For Nebraska Only) – Community Plan Coverage
    UnitedHealthcare® Community Plan Coverage Determination Guideline Home Health Care (for Nebraska Only) Guideline Number: CS137NE.O Effective Date: July 1, 2021 Instructions for Use Table of Contents Page Related Community Plan Policies Application ..................................................................................... 1 • Home Hemodialysis (for Nebraska Only) Coverage Rationale ....................................................................... 1 • Private Duty Nursing (PDN) Services (for Nebraska Definitions ...................................................................................... 2 Only) Applicable Codes .......................................................................... 3 • Skilled Care and Custodial Care Services (for References ................................................................................... 11 Nebraska Only) Guideline History/Revision Information ..................................... 11 Instructions for Use ..................................................................... 11 Commercial Policy • Home Health Care Medicare Advantage Coverage Summary • Home Health Services and Home Health Visits Application This Coverage Determination Guideline only applies to the state of Nebraska. Coverage Rationale Indications for Coverage The services being requested must meet all of the following criteria: A written treatment plan must be submitted with the request for specific services and supplies. Periodic review of the written treatment plan may be required for continued Skilled
    [Show full text]