APPPHYS217 Tuesday 25 May 2010
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Approximating Stable and Unstable Manifolds in Experiments
PHYSICAL REVIEW E 67, 037201 ͑2003͒ Approximating stable and unstable manifolds in experiments Ioana Triandaf,1 Erik M. Bollt,2 and Ira B. Schwartz1 1Code 6792, Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 2Department of Mathematics and Computer Science, Clarkson University, P.O. Box 5815, Potsdam, New York 13699 ͑Received 5 August 2002; revised manuscript received 23 December 2002; published 12 March 2003͒ We introduce a procedure to reveal invariant stable and unstable manifolds, given only experimental data. We assume a model is not available and show how coordinate delay embedding coupled with invariant phase space regions can be used to construct stable and unstable manifolds of an embedded saddle. We show that the method is able to capture the fine structure of the manifold, is independent of dimension, and is efficient relative to previous techniques. DOI: 10.1103/PhysRevE.67.037201 PACS number͑s͒: 05.45.Ac, 42.60.Mi Many nonlinear phenomena can be explained by under- We consider a basin saddle of Eq. ͑1͒ which lies on the standing the behavior of the unstable dynamical objects basin boundary between a chaotic attractor and a period-four present in the dynamics. Dynamical mechanisms underlying periodic attractor. The chosen parameters are in a region in chaos may be described by examining the stable and unstable which the chaotic attractor disappears and only a periodic invariant manifolds corresponding to unstable objects, such attractor persists along with chaotic transients due to inter- as saddles ͓1͔. Applications of the manifold topology have secting stable and unstable manifolds of the basin saddle. -
Chapter 2 Structural Stability
Chapter 2 Structural stability 2.1 Denitions and one-dimensional examples A very important notion, both from a theoretical point of view and for applications, is that of stability: the qualitative behavior should not change under small perturbations. Denition 2.1.1: A Cr map f is Cm structurally stable (with 1 m r ∞) if there exists a neighbour- hood U of f in the Cm topology such that every g ∈ U is topologically conjugated to f. Remark 2.1.1. The reason that for structural stability we just ask the existence of a topological conju- gacy with close maps is because we are interested only in the qualitative properties of the dynamics. For 1 1 R instance, the maps f(x)= 2xand g(x)= 3xhave the same qualitative dynamics over (and indeed are topologically conjugated; see below) but they cannot be C1-conjugated. Indeed, assume there is a C1- dieomorphism h: R → R such that h g = f h. Then we must have h(0) = 0 (because the origin is the unique xed point of both f and g) and 1 1 h0(0) = h0 g(0) g0(0)=(hg)0(0)=(fh)0(0) = f 0 h(0) h0(0) = h0(0); 3 2 but this implies h0(0) = 0, which is impossible. Let us begin with examples of non-structurally stable maps. 2 Example 2.1.1. For ε ∈ R let Fε: R → R given by Fε(x)=xx +ε. We have kFε F0kr = |ε| for r all r 0, and hence Fε → F0 in the C topology. -
Hartman-Grobman and Stable Manifold Theorem
THE HARTMAN-GROBMAN AND STABLE MANIFOLD THEOREM SLOBODAN N. SIMIC´ This is a summary of some basic results in dynamical systems we discussed in class. Recall that there are two kinds of dynamical systems: discrete and continuous. A discrete dynamical system is map f : M → M of some space M.A continuous dynamical system (or flow) is a collection of maps φt : M → M, with t ∈ R, satisfying φ0(x) = x and φs+t(x) = φs(φt(x)), for all x ∈ M and s, t ∈ R. We call M the phase space. It is usually either a subset of a Euclidean space, a metric space or a smooth manifold (think of surfaces in 3-space). Similarly, f or φt are usually nice maps, e.g., continuous or differentiable. We will focus on smooth (i.e., differentiable any number of times) discrete dynamical systems. Let f : M → M be one such system. Definition 1. The positive or forward orbit of p ∈ M is the set 2 O+(p) = {p, f(p), f (p),...}. If f is invertible, we define the (full) orbit of p by k O(p) = {f (p): k ∈ Z}. We can interpret a point p ∈ M as the state of some physical system at time t = 0 and f k(p) as its state at time t = k. The phase space M is the set of all possible states of the system. The goal of the theory of dynamical systems is to understand the long-term behavior of “most” orbits. That is, what happens to f k(p), as k → ∞, for most initial conditions p ∈ M? The first step towards this goal is to understand orbits which have the simplest possible behavior, namely fixed and periodic ones. -
Chapter 3 Hyperbolicity
Chapter 3 Hyperbolicity 3.1 The stable manifold theorem In this section we shall mix two typical ideas of hyperbolic dynamical systems: the use of a linear approxi- mation to understand the behavior of nonlinear systems, and the examination of the behavior of the system along a reference orbit. The latter idea is embodied in the notion of stable set. Denition 3.1.1: Let (X, f) be a dynamical system on a metric space X. The stable set of a point x ∈ X is s ∈ k k Wf (x)= y X lim d f (y),f (x) =0 . k→∞ ∈ s In other words, y Wf (x) if and only if the orbit of y is asymptotic to the orbit of x. If no confusion will arise, we drop the index f and write just W s(x) for the stable set of x. Clearly, two stable sets either coincide or are disjoint; therefore X is the disjoint union of its stable sets. Furthermore, f W s(x) W s f(x) for any x ∈ X. The twin notion of unstable set for homeomorphisms is dened in a similar way: Denition 3.1.2: Let f: X → X be a homeomorphism of a metric space X. Then the unstable set of a ∈ point x X is u ∈ k k Wf (x)= y X lim d f (y),f (x) =0 . k→∞ u s In other words, Wf (x)=Wf1(x). Again, unstable sets of homeomorphisms give a partition of the space. On the other hand, stable sets and unstable sets (even of the same point) might intersect, giving rise to interesting dynamical phenomena. -
Writing the History of Dynamical Systems and Chaos
Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as -
Invariant Manifolds and Their Interactions
Understanding the Geometry of Dynamics: Invariant Manifolds and their Interactions Hinke M. Osinga Department of Mathematics, University of Auckland, Auckland, New Zealand Abstract Dynamical systems theory studies the behaviour of time-dependent processes. For example, simulation of a weather model, starting from weather conditions known today, gives information about the weather tomorrow or a few days in advance. Dynamical sys- tems theory helps to explain the uncertainties in those predictions, or why it is pretty much impossible to forecast the weather more than a week ahead. In fact, dynamical sys- tems theory is a geometric subject: it seeks to identify critical boundaries and appropriate parameter ranges for which certain behaviour can be observed. The beauty of the theory lies in the fact that one can determine and prove many characteristics of such bound- aries called invariant manifolds. These are objects that typically do not have explicit mathematical expressions and must be found with advanced numerical techniques. This paper reviews recent developments and illustrates how numerical methods for dynamical systems can stimulate novel theoretical advances in the field. 1 Introduction Mathematical models in the form of systems of ordinary differential equations arise in numer- ous areas of science and engineering|including laser physics, chemical reaction dynamics, cell modelling and control engineering, to name but a few; see, for example, [12, 14, 35] as en- try points into the extensive literature. Such models are used to help understand how different types of behaviour arise under a variety of external or intrinsic influences, and also when system parameters are changed; examples include finding the bursting threshold for neurons, determin- ing the structural stability limit of a building in an earthquake, or characterising the onset of synchronisation for a pair of coupled lasers. -
Dynamical Systems Theory
Dynamical Systems Theory Bjorn¨ Birnir Center for Complex and Nonlinear Dynamics and Department of Mathematics University of California Santa Barbara1 1 c 2008, Bjorn¨ Birnir. All rights reserved. 2 Contents 1 Introduction 9 1.1 The 3 Body Problem . .9 1.2 Nonlinear Dynamical Systems Theory . 11 1.3 The Nonlinear Pendulum . 11 1.4 The Homoclinic Tangle . 18 2 Existence, Uniqueness and Invariance 25 2.1 The Picard Existence Theorem . 25 2.2 Global Solutions . 35 2.3 Lyapunov Stability . 39 2.4 Absorbing Sets, Omega-Limit Sets and Attractors . 42 3 The Geometry of Flows 51 3.1 Vector Fields and Flows . 51 3.2 The Tangent Space . 58 3.3 Flow Equivalance . 60 4 Invariant Manifolds 65 5 Chaotic Dynamics 75 5.1 Maps and Diffeomorphisms . 75 5.2 Classification of Flows and Maps . 81 5.3 Horseshoe Maps and Symbolic Dynamics . 84 5.4 The Smale-Birkhoff Homoclinic Theorem . 95 5.5 The Melnikov Method . 96 5.6 Transient Dynamics . 99 6 Center Manifolds 103 3 4 CONTENTS 7 Bifurcation Theory 109 7.1 Codimension One Bifurcations . 110 7.1.1 The Saddle-Node Bifurcation . 111 7.1.2 A Transcritical Bifurcation . 113 7.1.3 A Pitchfork Bifurcation . 115 7.2 The Poincare´ Map . 118 7.3 The Period Doubling Bifurcation . 119 7.4 The Hopf Bifurcation . 121 8 The Period Doubling Cascade 123 8.1 The Quadradic Map . 123 8.2 Scaling Behaviour . 130 8.2.1 The Singularly Supported Strange Attractor . 138 A The Homoclinic Orbits of the Pendulum 141 List of Figures 1.1 The rotation of the Sun and Jupiter in a plane around a common center of mass and the motion of a comet perpendicular to the plane. -
Structural Stability of Piecewise Smooth Systems
STRUCTURAL STABILITY OF PIECEWISE SMOOTH SYSTEMS MIREILLE E. BROUCKE, CHARLES C. PUGH, AND SLOBODAN N. SIMIC´ † Abstract A.F. Filippov has developed a theory of dynamical systems that are governed by piecewise smooth vector fields [2]. It is mainly a local theory. In this article we concentrate on some of its global and generic aspects. We establish a generic structural stability theorem for Filip- pov systems on surfaces, which is a natural generalization of Mauricio Peixoto’s classic result [12]. We show that the generic Filippov system can be obtained from a smooth system by a process called pinching. Lastly, we give examples. Our work has precursors in an announcement by V.S. Kozlova [6] about structural stability for the case of planar Fil- ippov systems, and also the papers of Jorge Sotomayor and Jaume Llibre [8] and Marco Antonio Teixiera [17], [18]. Partially supported by NASA grant NAG-2-1039 and EPRI grant EPRI-35352- 6089.† STRUCTURAL STABILITY OF PIECEWISE SMOOTH SYSTEMS 1 1. Introduction Imagine two independently defined smooth vector fields on the 2- sphere, say X+ and X−. While a point p is in the Northern hemisphere let it move under the influence of X+, and while it is in the Southern hemisphere, let it move under the influence of X−. At the equator, make some intelligent decision about the motion of p. See Figure 1. This will give an orbit portrait on the sphere. What can it look like? Figure 1. A piecewise smooth vector field on the 2-sphere. How do perturbations affect it? How does it differ from the standard vector field case in which X+ = X−? These topics will be put in proper context and addressed in Sections 2-7. -
Computation of Stable and Unstable Manifolds of Hyperbolic Trajectories in Two-Dimensional, Aperiodically Time-Dependent Vector fields Ana M
Physica D 182 (2003) 188–222 Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields Ana M. Mancho a, Des Small a, Stephen Wiggins a,∗, Kayo Ide b a School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, UK b Department of Atmospheric Sciences, and Institute of Geophysics and Planetary Physics, UCLA, Los Angeles, CA 90095-1565, USA Received 14 October 2002; received in revised form 29 January 2003; accepted 31 March 2003 Communicated by E. Kostelich Abstract In this paper, we develop two accurate and fast algorithms for the computation of the stable and unstable manifolds of hyperbolic trajectories of two-dimensional, aperiodically time-dependent vector fields. First we develop a benchmark method in which all the trajectories composing the manifold are integrated from the neighborhood of the hyperbolic trajectory. This choice, although very accurate, is not fast and has limited usage. A faster and more powerful algorithm requires the insertion of new points in the manifold as it evolves in time. Its numerical implementation requires a criterion for determining when to insert those points in the manifold, and an interpolation method for determining where to insert them. We compare four different point insertion criteria and four different interpolation methods. We discuss the computational requirements of all of these methods. We find two of the four point insertion criteria to be accurate and robust. One is a variant of a criterion originally proposed by Hobson. The other is a slight variant of a method due to Dritschel and Ambaum arising from their studies of contour dynamics. -
Stability and Explanatory Significance of Some Simple Evolutionary Models
Stability and Explanatory Significance of Some Simple Evolutionary Models Brian Skyrms University of California, Irvine 1. Introduction. The explanatory value of equilibrium depends on the underlying dynamics. First there are questions of dynamical stability of the equilibrium that are internal to the dynamical system in question. Is the equilibrium locally stable, so that states near to it stay near to it, or better, asymptotically stable, so that states near to it are carried to it by the dynamics? If not, we should not expect to see this equilibrium. But even if an equilibrium is asymptotically stable, that is no guarantee that the system will reach that equilibrium unless we know that the system's initial state is sufficiently close to the equilibrium. Global stability of an equilibrium, when we have it, gives the equilibrium a much more powerful explanatory role. An equilibrium is globally asymptotically stable if the dynamics carries every possible initial state in the interior of the state space to that equilibrium. If an equilibrium is globally stable, it can have explanatory value even when we are completely uncertain about the initial state of the system. Once questions of dynamical stability are answered with respect to the dynamical system in question, there is the further question of structural stability of that system itself. That is to say, are dynamical systems close to the one in question (in a sense to be made 1 precise) topologically equivalent to that system? If not, a slight mispecification of the model may make predictions that are drastically wrong. Structural stability is defined in terms of small changes in the model. -
Stability and Bifurcation of Dynamical Systems
STABILITY AND BIFURCATION OF DYNAMICAL SYSTEMS Scope: • To remind basic notions of Dynamical Systems and Stability Theory; • To introduce fundaments of Bifurcation Theory, and establish a link with Stability Theory; • To give an outline of the Center Manifold Method and Normal Form theory. 1 Outline: 1. General definitions 2. Fundaments of Stability Theory 3. Fundaments of Bifurcation Theory 4. Multiple bifurcations from a known path 5. The Center Manifold Method (CMM) 6. The Normal Form Theory (NFT) 2 1. GENERAL DEFINITIONS We give general definitions for a N-dimensional autonomous systems. ••• Equations of motion: x(t )= Fx ( ( t )), x ∈ »N where x are state-variables , { x} the state-space , and F the vector field . ••• Orbits: Let xS (t ) be the solution to equations which satisfies prescribed initial conditions: x S(t )= F ( x S ( t )) 0 xS (0) = x The set of all the values assumed by xS (t ) for t > 0is called an orbit of the dynamical system. Geometrically, an orbit is a curve in the phase-space, originating from x0. The set of all orbits is the phase-portrait or phase-flow . 3 ••• Classifications of orbits: Orbits are classified according to their time-behavior. Equilibrium (or fixed -) point : it is an orbit xS (t ) =: xE independent of time (represented by a point in the phase-space); Periodic orbit : it is an orbit xS (t ) =:xP (t ) such that xP(t+ T ) = x P () t , with T the period (it is a closed curve, called cycle ); Quasi-periodic orbit : it is an orbit xS (t ) =:xQ (t ) such that, given an arbitrary small ε > 0 , there exists a time τ for which xQ(t+τ ) − x Q () t ≤ ε holds for any t; (it is a curve that densely fills a ‘tubular’ space); Non-periodic orbit : orbit xS (t ) with no special properties. -
Bifurcations, Center Manifolds, and Periodic Solutions
Bifurcations, Center Manifolds, and Periodic Solutions David E. Gilsinn National Institute of Standards and Technology 100 Bureau Drive, Stop 8910 Gaithersburg, MD 20899-8910 [email protected] Summary. Nonlinear time delay differential equations are well known to have arisen in models in physiology, biology and population dynamics. These delay differ- ential equations usually have parameters in their formulation. How the nature of the solutions change as the parameters vary is crucial to understanding the underlying physical processes. When the delay differential equation is reduced, at an equilibrium point, to leading linear terms and the remaining nonlinear terms, the eigenvalues of the leading coefficients indicate the nature of the solutions in the neighborhood of the equilibrium point. If there are any eigenvalues with zero real parts, periodic so- lutions can arise. One way in which this can happen is through a bifurcation process called a Hopf bifurcation in which a parameter passes through a critical value and the solutions change from equilibrium solutions to periodic solutions. This chap- ter describes a method of decomposing the delay differential equation into a form that isolates the study of the periodic solutions arising from a Hopf bifurcation to the study of a reduced size differential equation on a surface, called a center man- ifold. The method will be illustrated by a Hopf bifurcation that arises in machine tool dynamics, which leads to a machining instability called regenerative chatter. Keywords: Center manifolds, delay differential equations, exponential polynomi- als, Hopf bifurcation, limit cycle, machine tool chatter, normal form, semigroup of operators, subcritical bifurcation. 1 Background With the advent of new technologies for measurement instrumentation, it has become possible to detect time delays in feedback signals that affect a physical system’s performance.