C. R. Palevol 18 (2019) 619–642

Contents lists available at ScienceDirect

Comptes

Rendus Palevol

www.sci encedirect.com

General Palaeontology, Systematics, and Evolution (Vertebrate Palaeontology)

Fossil Giraffidae (Mammalia, Artiodactyla) from the early

Turolian of Kavakdere (Central Anatolia, Turkey)

Giraffidae (Mammalia, Artiodactyla) fossiles du Turolien inférieur de

Kavakdere (Anatolie centrale, Turquie)

a,∗ b c a

Alexandros Xafis , Serdar Mayda , Friðgeir Grímsson , Doris Nagel ,

d e

Tanju Kaya , Kazım Halac¸ lar

a

Department of Paleontology, Faculty of Earth Sciences, University of Vienna, Austria

b

Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, Turkey

c

Department of Botany and Biodiversity Research, University of Vienna, Austria

d

Natural History Museum, Ege University, Bornova, Izmir, Turkey

e

Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences and University of Chinese Academy of

Sciences, Beijing, China

a b s

t

r a c t

a r t i c l e i n f o

Article history: The fossiliferous site at Kavakdere is one of many important late Miocene fossil -

Received 7 February 2019 bearing localities in Anatolia. Previous taxonomic studies on its fauna have revealed a

Accepted after revision 22 April 2019

plethora of taxa. However, the fossil Giraffidae from this early Turolian locality were until

Available online 25 September 2019

now poorly documented. New comprehensive descriptions, comparisons and metric anal-

yses using all accessible Giraffidae specimens from Kavakdere suggest the co-occurrence

Handled by Lorenro Rook

of five different giraffid taxa. These include Helladotherium duvernoyi, Bramatherium peri-

mense and Palaeotragus rouenii. Two different samotheriines are also identified; the smaller

Keywords:

Samotherium boissieri and the larger Alcicephalus neumayri. The latter is only known from

Ruminantia

the Turolian of Iran and North China. The occurrence of A. neumayri at Kavakdere consti-

Helladotherium

tutes the first fossil record of this taxon from a western locality, suggesting a more dominant

Bramatherium

Palaeotragus presence of Alcicephalus in the Pikermian biome.

Alcicephalus © 2019 Academie´ des sciences. Published by Elsevier Masson SAS. This is an open access

MN11 article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.

0/).

r é s u m é

Mots clés :

Le site fossilifère de Kavakdere est l’une des nombreuses localités importantes d’Anatolie

Ruminants

contenant des mammifères fossiles du Miocène supérieur. Les études taxonomiques

Helladotherium

antérieures ont révélé une pléthore de taxa. Cependant, les Giraffidae fossiles de cette

Bramatherium

localité du Turolien inférieur ont été jusqu’à présent peu documentés. De nouvelles don-

Palaeotragus

Alcicephalus nées détaillées, des comparaisons et des analyses métriques utilisant tous les spécimens de

MN11 Giraffidae accessibles de Kavakdere suggèrent la co-occurrence de cinq différents taxons

Corresponding author.

E-mail address: alexandros.xafi[email protected] (A. Xafis).

https://doi.org/10.1016/j.crpv.2019.04.010

1631-0683/© 2019 Academie´ des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

620 A. Xafis et al. / C. R. Palevol 18 (2019) 619–642

de giraffidés. Ils incluent Helladotherium duvernoyi, Bramatherium perimense et Palaeotra-

gus rouenii. Deux différents samothériinés sont aussi identifiés; le plus petit Bramatherium

boissieri et le plus grand Palaeotragus rouenii. Ce dernier n’est connu que dans le Turolien

d’Iran et de Chine du Nord. L’occurrence d’A. neumayri à Kavakdere constitue le premier

enregistrement fossile de ce taxon dans une localité occidentale, suggérant une présence

plus dominante d’Alcicephalus dans le biome pikermien.

© 2019 Academie´ des sciences. Publie´ par Elsevier Masson SAS. Cet article est publie´ en

Open Access sous licence CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

1. Introduction the Pikermian biome. Herein we describe all dental and

postcranial material of Giraffidae found at Kavakdere, from

The fossiliferous site at Kavakdere constitutes one of the historical fossil assemblage collected by Dr. Ozansoy.

numerous late Miocene Anatolian fossil mammal-bearing The giraffid material is compared to fossil elements of the

localities and is located approximately 65 km NNW of respective taxa, found across the Greco-Iranian province,

Ankara (Fig. 1). Previous palaeontological studies have and analysed using both morphological and metrical data.

been conducted by Ozansoy (1965), Becker-Platen et al. These analyses segregate five different giraffid species from

(1975), Köhler (1987), Geraads and Gülec¸ (1999), Viranta Kavakdere. All taxa are thoroughly described and illus-

and Werdelin (2003), Sen (2017) and Koufos et al., 2018. trated herein. Furthermore, the giraffids from Kavakdere

Ozansoy (1965) compiled the first faunal list for this site, are discussed in a time-related biogeographic framework.

which was later enriched by Becker-Platen et al. (1975).

Later, Geraads and Gülec¸ (1999) presented and described 1.1. Locality and geological setting

a large skull of Bramatherium perimense Falconer (1845)

from the same locality. Their study was, in fact, the first Middle Miocene to Pleistocene fossiliferous sedimen-

comprehensive taxonomic work on the fossil tary rocks in the Sinap Tepe–Beycedere–Kavakdere area,

from Kavakdere, since previous studies listed only fos- northwest of Ankara, central Anatolia, in the vicinity of the

sil taxa without a comprehensive framework, descriptions towns Kazan and C¸ ubuk, are part of the Sinap Formation

and/or illustrations. Furthermore, Viranta and Werdelin (summarized in Lunkka et al., 2003). The Sinap Formation

(2003) and Koufos et al. (2018) described fossil Carnivora comprises seven members (Yellidoruk Mb, Lower Sinap

from Kavakdere, adding Hyaenictitherium wongii Zdansky Mb, Middle Sinap Mb, Upper Sinap Mb, Beycedere Mb,

(1924), Adcrocuta eximia Roth and Wagner (1854), Pseu- Kavakdere Mb, Igbek Mb: see Fig. 1.3 in Lunkka et al.,

daelurus cf. lorteti Gaillard (1899), and a small Carnivora 2003). The basal and oldest member is the Beycedere

indet. to the existing faunal list. Lastly, Sen (2017) described Mb. It is overlain by the Lower to Upper Sinap Members

the first record of a large hipparionine Hippotherium and the contemporaneous Igbek Mb. The upper units of

brachypus Hensel (1862), the chalicotheriid Ancylotherium the Sinap Members and the Igbek Mb overlap the lower

pentelici Gaudry and Lartet (1856), as well as a possible part of the successive Kavakdere Mb. All these members

occurrence of a new subspecies of A. eximia. Most of the are of middle to late Miocene age. The following C¸ alta

above-mentioned studies were based on collections hosted Mb is of late Miocene to Pliocene age (see Fig. 1.3 in

in the Natural History Museum of Ankara (MTA). Nonethe- Lunkka et al., 2003). Outcrops or sections in the Sinap

less, a part of the assemblage which was collected by Dr. Tepe–Beycedere–Kavakdere area are grouped according to

Ozansoy during the 1950s is hosted in the Natural History their geographic position into three subareas: 1) Sinap Tepe

museum of Ege University, Izmir, Turkey (EUNHM). (incl. the sections Yellidoruk I, Yellidoruk II, Delikayincak

The family Giraffidae constitutes a group of pecoran Tepe, and Sinap I to VI), 2) Igbek (incl. the Igbek section),

ruminants, which are characterized by the presence of and 3) Beycedere–Kavakdere (incl. the sections Beycedere,

bilobed canines, brachydont cheek teeth, as well as epiphy- Kavakdere S, Kavakdere N). Sections in the Sinap Tepe

seal cranial appendages called ossicones (Grossman and subarea are characterized by the Yellidorik and Sinap Mem-

Solounias, 2014; Harris et al., 2010; Janis, 1987; Solounias, bers, magnetostratigraphically correlated as 10.899–9.279

1988). Giraffids exhibit a wide geographic distribution Ma and of early to middle Vallesian age (Kappelman et al.,

throughout the Pikermian biome, from the early Miocene 2003: Koufos et al., 2018). The Igbek subarea is character-

with the appearance of the first ancestral forms of giraffids ized by the Igbek Mb, with an interpolated age of 9.130 Ma

(Arambourg, 1963; Harris et al., 2010; Solounias, 2007). and is of late Vallesian age (Kappelman et al., 2003: Koufos

The now extinct Pikermian biome used to extend from et al., 2018). The sections in the Beycedere–Kavakdere sub-

Spain to China and northern Africa (Danowitz et al., area are characterized by the Beycedere and Kavakdere

2016 and literature cited therein). During the Miocene, Members. These are of early Turolian age, spanning a range

giraffids were widespread across this area and, allegedly, from 8.866 to 8.121 Ma (Kappelman et al., 2003: Koufos

inhabited sclerophyllous evergreen woodlands that were et al., 2018). The giraffid collection described herein was

later replaced by dryer and more open habitats during the collected from the upper units of the Kavakdere N section

Pliocene (Danowitz et al., 2016; Solounias et al., 1999). (Kavakdere Mb, see Fig. 1.7 in Lunkka et al., 2003). This

Kavakdere, alongside numerous other Greek and Anatolian horizon is equivalent to Loc. 26 of the latest Sinap Project,

localities, is considered as part of the central region of conducted by Prof. B. Alpagut during the years 1989–1995

A. Xafis et al. / C. R. Palevol 18 (2019) 619–642 621

Fig. 1. Geographical map indicating the geographic position of the fossiliferous site Kavakdere (star) in relation to Ankara, Izmir, and Istanbul.

Fig. 1. Carte géographique indiquant la position géographique du site fossilifère de Kavakderen (étoile) en relation avec Ankara, Izmir et Istamboul.

(Kappelman et al., 2003; Sen, 2003). The sedimentary rock Institute Nakhon, Ratchasima; SMNS: Staatliches Museum

section at Kavakdere N is dominated by silicified mud- für Naturkunde Stuttgart, Germany.

stones interbedded with marly sediments in the lower part

and coarser units in the upper half (Lunkka et al., 2003). The

fossiliferous horizon was magnetostratigraphically dated 3. Systematic Palaeontology

to 8.12 Ma by Kappelman et al. (2003).

Class Mammalia Linnaeus, 1758

Order Artiodactyla Owen, 1848

2. Materials and methods Family Giraffidae Gray, 1821

Subfamily Sivatheriinae Zittel, 1893

The fossil giraffid material from AAK is stored in the Genus Helladotherium Gaudry, 1860

Natural History Museum of Ege University, Izmir, Turkey Helladotherium duvernoyi (Gaudry and Lartet, 1856)

(EUNHM). The present study focuses on fossil dental and Material: PV-156, distal part of right humerus; PV-155,

post cranial material of Giraffidae and its main goal is to left radius; PV-33, distal part of left radius; PV-154, right

update the faunal list of AAK based on this historical collec- metacarpal; PV-151, left tibia; PV-157, left astragalus; PV-

tion. All material was measured using an electronic calliper, 158, right astragalus; PV-237, right naviculocuboideum;

as well as a measuring tape, for the larger specimens. Mea- PV-152, right metatarsal; PV-159, proximal phalanx; PV-

surements are given in millimetres and presented in the 160, proximal phalanx; PV-161, proximal phalanx; PV-162,

respective tables. Width measurements of dental elements middle phalanx; PV-163, middle phalanx (Fig. 2; Table 1).

were taken on the base of the crown. Statistical analyses Descriptions: H. duvernoyi is represented only by post-

were achieved using the software PAST (Hammer et al., cranial elements of the front and hind limbs. The humerus

2001). Dental terminology follows Bärmann and Rössner (PV-156; Fig. 2A) maintains the distal condyle and most of

(2011). Anatomical terms of postcranial elements follow the diaphysis, while the proximal epiphysis is absent. Medi-

Schaller (2007), Solounias and Danowitz (2016a), and Ríos ally, the teres tuberosity, for the termination of M. teres

et al. (2016). major and M. latissimus is well pronounced, narrow and

long. The crista humeri is blunt and almost not visible.

The radial fossa is shallow but well-defined. The fossa ole-

2.1. Institutional and anatomical abbreviations crani is open and sub-rounded. The lateral epicondyle is

strong giving the lateral trochlea a quadrate shape, while

AAK: Ankara–Kavakdere; AMNH: American Museum of the medial epicondyle is weak and blunt. The distal trochlea

Natural History; EUNHM: Natural History Museum of Ege is asymmetrical with the medial condyle being notably

University, Izmir, Turkey; MTA: Natural History Museum smaller. In cranial aspect, the medial condyle is interrupted

of Ankara, Turkey; NHB: Natural History Museum of Basel; by a grove, which is positioned medio-caudally to the keel

NHMW: Natural History Museum of Vienna; RIN: Rajabhat of the trochlea.

622 A. Xafis et al. / C. R. Palevol 18 (2019) 619–642

A. Xafis et al. / C. R. Palevol 18 (2019) 619–642 623

Two incomplete specimens of radii were recovered. PV- aspect, the shaft is smooth and there is only a small groove

155 (Fig. 2B) represents a radius-ulna with the proximal noted towards the proximal end of the tibia, which would

part, as well as a large part of the diaphysis recovered, lead to the extensor groove. Caudally, the shaft is more

while PV-33 (Fig. 2C) represents only the distal part of a ornamented, with a very long popliteal line originating

left radius. In proximal aspect, the medial articular sur- from the distal epiphysis and running through the whole

face is rounded and notably smaller than the lateral one, shaft, parallel to the weak curve of the tibia. Additional long

which shows a sub-quadrate outline. Both surfaces are muscular lines can be seen towards the lateral margin of the

wide, slightly concave and well limited by an evident and shaft. The medial malleolus is strongly developed. In distal

sharp rim. The lateral protuberance is well developed, but aspect, the facets for the astragalus are parallel, with the

not as strong as the radial tuberosity. The diaphysis is sim- lateral one being slightly larger.

ple, with the medial and lateral surfaces running almost Two astragali of Helladotherium have been recovered

parallel to each other. On the distal trochlea and in cranial (PV-157, PV- 158; Fig. 2F). In dorsal aspect, the lateral ridge

aspect, the groove for the extensor carpi radialis and the of the trochlea is very strong. The medial ridge is notably

common extensor tendon is wide and shallow. This area is thinner, leading to a blunt lip on the medial margin. The

well defined by two strong crests, which run parallel to each medial bulge at the collum tali is fairly developed and

other from the medial plane of the scaphoid facet and the rounded. The head is slightly asymmetrical, with the lateral

medial plane of the lunatum facet until almost the lower trochlea being somewhat bigger than the medial trochlea.

25% of the length of the radius. The lateral styloid process The groove of the trochlea is open, following the slight

is strong and more developed than the medial one. In distal curve of the lateral ridge. The ventral articular surface is

aspect, the facet for the scaphoid is deep and rounded. The almost square in shape, with the medial margin interrupted

facet for the lunatum is also deep, with crests of the facet by a distinct medial scala. The proximal triangular fossa

being parallel only caudally. The surface for the pyramidal is deep and well defined. The distal intracephalic fossa is

is shallow and semi-circular. On PV-155, a large part of the very weak and the medial scala very prominent, a common

ulna is also present. The tuber olecrani is strong, extending feature observed in Helladotherium.

caudally. The processus anconeus is absent and the proces- The naviculocuboideum (PV-237; Fig. 2G) is large and

sus coronoideus is completely fused with the caudal plane oval shaped in proximal view. The astragalar facets are

of the head of the radius. The incisura trochlearis is long parallel, with the lateral one being notably longer. The

and wide. The proximal interosseous space between radius lateral peak is short and blunt. The calcaneal facet is

and ulna is long. The lateral and medial borders of the cor- long and extends almost behind the lateral peak, as in all

pus ulnae are not visible, due to the strong fusion with the Sivatheriinae. In distal aspect, the facet for the metatarsal

radius. is sub-triangular. The facet for the external cuneiform

The metacarpal (PV-154; Fig. 2D) is long and robust. In is almost as big as the metatarsal facet and it is sub-

palmar aspect, the medial and lateral epicondyles seem rectangular in shape. The facet for the medial cuneiform

equally developed. In dorsal and proximal aspects, how- is much smaller, oval shaped and well separated from the

ever, the medial epicondyle is more developed, due to the medial cuneiform facet by a sharp crest.

positioning of the facet for the trapezoideo-capitatum. This The metatarsal (PV-152; Fig. 2H) is long and complete,

facet is almost rectangular, while the facet for the hamatum revealing all distinctive features. In proximal view, the facet

is sub-triangular. The epicondyles are well separated by the for the naviculocuboideum is long and is sub-rectangularly

open synovial fossa, which is deep and extends towards shaped. The facet for the external cuneiform is slightly

the central trough, a common feature in members of the larger and the facet for the medial cuneiform is small and

Sivatheriinae. The latter is deep and concave on the upper rounded. In plantar view, the epicondyles are all strong and

part of the shaft and flattens gradually towards the head of well separated. The dorsal head of the lateral epicondyle is

the metacarpal. The trough is limited by two strong ridges, rounded and robust. The ventral head of the lateral epi-

with the medial ridge being notably sharper than the lateral condyle is broken, and it seems to be as developed as the

ridge. The head is flat, and the keels of the distal condyles dorsal head, but less extended laterally. The medial epi-

are strong and sharp in palmar aspect, getting progressively condyle is generally stronger and more robust. The ventral

blunter towards the dorsal side. head is very strong, leading to the blunt medial ridge of the

The tibia is represented by an almost complete speci- central trough. The pygmaios is absent. On the distal epi-

men (PV-151; Fig. 2E) with the proximal extremity being physis, the keels of the medial and the lateral condyles are

absent. The diaphysis is simple and slightly bent. In cranial strong and equally developed in plantar and dorsal aspect.

Fig. 2. Fossil post-cranial material of Helladotherium duvernoyi from Kavakdere. A: PV-156, distal part of right humerus; B: PV-155, left radius; C: PV-33,

distal part of left radius, (i) cranial view and (ii) distal view; D: PV-154, right metacarpal, (i) dorsal view and (ii) proximal view; E: PV-151, left tibia,

(i) cranial view and (ii) caudal view; F: PV-157, left astragalus, (i) dorsal view, (ii) lateral view, (iii) medial view and (iv) plantar view; G: PV-237, right

naviculocuboideum, (i) proximal view and (ii) distal view; H: PV-152, right metatarsal, (i) dorsal view, (ii) plantar view and (iii) proximal view; I: PV-159,

first phalanx, (i) dorsal view and (ii) lateral view; J: PV-162, second phalanx, (i) dorsal view and (ii) plantar view. The scale equals 20 centimetres.

Fig. 2. Matériel post-crânien fossile d’Helladotherium duvernoyi de Kavakdere. A : PV-156, partie distal d’humérus droit ; B : PV-155, radius gauche ; C : PV-

33, partie distale de radius gauche, vues crânienne (i) et distale (ii) ; D : PV-154, métacarpien droit, vues dorsale (i) et proximale (ii) ; E : PV-151, tibia gauche,

vues crânienne (i) et caudale (ii) ; F : PV-157, astragale gauche, vues dorsale (i), latérale (ii), médiale (iii) et plantaire (iv) ; G : PV-237, naviculocuboideum,

vues proximale (i) et distale (ii) ; H : PV-152, métatarse droit ; vues dorsale (i), plantaire (ii) et proximale (iii) ; I : PV-159, première phalange, vue dorsale

(i) et latérale (ii) ; J : PV-162, seconde phalange, vues dorsale (i) et plantaire (ii). Échelle = 20 cm.

624 A. Xafis et al. / C. R. Palevol 18 (2019) 619–642

Table 1

Measurements of post-cranial elements of Helladotherium duvernoyi from Kavakdere. Sin: left; Dex: right; TD: transverse diameter; APD: antero-posterior

diameter; L: length; prox: proximal; dia: diaphysis; dis: distal; d: width of the ulnar articulation surface; lat: lateral; med: medial; Hmax: maximum height;

H1: Height of the cubonavicular on the level of the medial astragalar surface; H2: Height of the cubonavicular on the level of the lateral astragalar surface.

All measurements given in millimetres.

Tableau 1

Mesures des éléments post-crâniens d’Helladotherium duvernoyi de Kavakdere. Sin : gauche ; Dex : droite ; TD : diamètre transversal ; APD : diamètre

antéro-postérieur ; L : longueur ; prox : proximal ; dia : diaphyse ; dis : distal ; d : largeur de la surface articulaire de l’ulna ; lat : latéral ; med : médial ;

Hmax : hauteur maximum ; H1 : hauteur du cubonaviculaire au niveau de la surface médiale de l’astragale ; H2 : hauteur du cubonaviculaiure au niveau

de la surface latérale de l’astragale. Toutes les mesures sont en millimètres.

Humerus

Inv. Number Taxon Sin/Dex TDdia APDdia Tddis APDdis

PV-156 Helladotherium duvernoyi dex 75.16 76.6 141.71 135.86

Radius-Ulna

Inv. Number Taxon Sin/Dex d TDprox APDprox TDdia APDdia TDdis APDdis

PV-155 Helladotherium duvernoyi sin 76.86 153.25 80.18 81.36 80.93

PV-33 Helladotherium duvernoyi sin 102.42 73.02

Metacarpus

Inv. Number Taxon Sin/Dex L TDprox APDprox TDdia APDdia Tddis APDdis

PV-154 Helladotherium duvernoyi dex 415.2 101.73 67.33 57.82 50.56 98.77 62.78

Tibia

Inv. Number Taxon Sin/Dex TDdia APDdia TDdis APDdis

PV-151 Helladotherium duvernoyi sin 70.52 53.78 110.08 80.03

Astragalus

Inv. Number Taxon Sin/Dex Llat Lmed TDprox TDdis

PV-157 Helladotherium duvernoyi sin 110.26 90.89 69.77 69.7

PV-158 Helladotherium duvernoyi dex 114.51 99.48 80.95 76.58

Naviculocuboideum

Inv. Number Taxon Sin/Dex TD APDmed APDmax Hmax H1 H2

PV-237 Helladotherium duvernoyi dex 88.66 71.62 92.3 64.07 25.18 33.26

Metatarsus

Inv. Number Taxon Sin/Dex L TDprox APDprox TDdia APDdia TDdis APDdis

PV-152 Helladotherium duvernoyi dex 432.44 78.02 76.54 42.52 48.08 79.34 48.72

Phalanx 1

Inv. Number Taxon L TDprox APDprox TDdis APDdis

PV-159 Helladotherium duvernoyi 108.32 47 50.82 45.46 36.2

PV-160 Helladotherium duvernoyi 108.54 45.36 47.36 40.11 32.34

PV-161 Helladotherium duvernoyi 107.56 48.47 52.83 42.77 33.2

Phalanx 2

Inv. Number Taxon L TDprox APDprox TDdis APDdis

PV-162 Helladotherium duvernoyi 62.23 42.73 45.82 39.44 46.82

PV-163 Helladotherium duvernoyi 58.82 42.6 45.41 39.61 46.49

The proximal phalanx (PV-159, PV-160, PV-161; Fig. 2I) phalanx is asymmetrical, with the medial trochlea being

is robust. The medial and lateral margins of the body are slightly bigger than the lateral trochlea.

almost parallel to each other, since the base and the head The middle phalanx (PV-162, PV-163; Fig. 2J) is

of the phalanx are only slightly extended mediolaterally. short, with an almost flat palmar surface and a

On the articular fovea, the medial articular facet is well strongly convex plantar margin. The palmar tubercles

separated by the larger lateral articular facet by a distinct are robust and postero-dorsally extended. The medial

trough. In lateral and medial view, the palmar tubercles and lateral keels of the distal epiphysis are sharp and

are strong and long, typical for the taxon. The head of the well-defined.

A. Xafis et al. / C. R. Palevol 18 (2019) 619–642 625

Fig. 3. Dispersion plots showing the relative size of limb bones of Helladotherium duvernoyi from Kavakdere. The light grey areas represent the Samotherium

major morphospaces. The dark grey areas represent the Helladotherium duvernoyi morphospaces. Circle points represent the Kavakdere specimens. Hu:

humerus; Mc: metacarpus; Ti: tibia; Mt: metatarsus; TD: transverse diameter; APD: antero-posterior diameter; prox: proximal; dis: distal. All measurements

given in millimetres (data from Bohlin, 1926; Geraads, 1994; Iliopoulos, 2003; Kostopoulos, 2009; personal data of AX).

Fig. 3. Diagramme des relevés montrant la taille relative des os des membres d’Helladotherium duvernoyi de Kavakdere. Les zones en gris clair représentent

les morpho-espaces de Samotherium major, les zones en gris foncé ceux d’Helladotherium duvernoyi. Les cercles noirs représentent les échantillons de

Kavakdere. HU : humérus ; Mc : métacarpien ; Mt : métatarsien ; TD ; diamètre transversal ; APD : diamètre antéro-postérieur ; prox : proximal ; dis :

distal. Toutes les mesures sont en millimètres (données d’après Bohlin, 1926 ; Geraads, 1994 ; Iliopoulos, 2003 ; Kostopoulos, 2009 ; données personnelles

de AX).

Comparisons and remarks: Helladotherium duvernoyi fore and hind-limb specimens can clearly distinct this

constitutes one of the most common large-sized Miocene taxon from other large Miocene giraffids, such as Samoth-

giraffids. The stratigraphic origin of the earliest collection erium Forsyth-Major (1888) and Bramatherium Falconer

from the type locality of Pikermi, described by Gaudry (1845). Morphological differences of post-cranial elements

(1860), is unknown. Therefore, there is no designated of H. duvernoyi, Samotherium boissieri, S. major and Bra-

holotype. However, all the sivatheres of the type locality matherium megacephalum were given by Kostopoulos

belong to the same species, and therefore, the assignment (2009), Rios et al. (2016), and Solounias and Danowitz

of a lectotype is unnecessary (Geraads et al., 2005). Hel- (2016a).

ladotherium duvernoyi is the only species assigned to the Due to the scarcity of the fossil material, there is no obvi-

genus and it appears in several localities of the Greco- ous sexual dimorphism detected within Helladotherium

Iranian province, from MN9 to MN13 (Athanassiou, 2002; from Kavakdere. However, metrical comparison with spec-

Bonis et al., 1992; Iliopoulos, 2003; Kostopoulos, 2009; imens from other fossiliferous sites reveal the relative size

Kostopoulos and Koufos, 2006; Kostopoulos and Sarac¸ , of the large sivathere from Kavakdere. Following Roussiakis

2005; Kostopoulos et al., 1996, 2003, 2009; Koufos, 1990, and Iliopoulos (2004), we compared ratios between the

2006; Koufos et al., 2009; Marinos and Symeonidis, 1974; proximal and distal epiphyses of all post-cranial long bones

Solounias, 1981a, 1981b). (radius, metacarpus, tibia and metatarsus), from various

Although in the studied collection dental remains fossiliferous localities, where the size variation is more

of H. duvernoyi are completely absent, a collection of prominent (Fig. 3). In all cases, the Kavakdere specimens

626 A. Xafis et al. / C. R. Palevol 18 (2019) 619–642

plot very close to the morphospaces of Samotherium major, comprehensively described from the locality (Geraads and

suggesting a relatively small size of H. duvernoyi. Gülec¸ , 1999). The authors of this study also included a brief

description of a humerus and a metatarsus. Later, new com-

parative studies focused on metatarsals and astragali, gave

Genus Bramatherium Falconer, 1845

a better image and understanding of the osteology of the

Bramatherium perimense (Falconer, 1845)

taxon (Rios et al., 2016; Solounias and Danowitz, 2016a),

especially in comparison to H. duvernoyi, since the two taxa

Material: PV-150, left metatarsal; PV-153, left have been considered synonymous in the past (Matthew,

metatarsal; PV-236, proximal phalanx (Fig. 4; Table 2). 1929). Nevertheless, the osteological differences between

Descriptions: The fossil material of B. perimense is lim- most post cranial skeletal elements of the different Bra-

ited to two metatarsals, as well as a proximal phalanx. The matherium species are still unclear.

metatarsus (PV-150, PV-153; Fig. 4A-B) is very long and The three species recognized are B. perimense, B. mega-

robust. Proximally, the surface for the naviculocuboideum cephalum Lydekker (1876), and B. grande Lydekker (1876),

is oval to kidney-shaped since the palmar rim of the sur- with the latter circumscription based solely on den-

face bends notably towards the synovial fossa. The surface tal material. The post cranial long bones, and especially

for the external cuneiform is long and slightly larger than the metapodials of Helladotherium and Bramatherium

the surface for the naviculocuboideum, with an almost exhibit a high metrical overlapping (Solounias, 2007;

rectangle semi-circular shape. The surface for the medial Fig. 5). Therefore, metrical comparison alone, cannot pro-

cuneiform is small, with the palmar rim being slightly bifur- vide a conclusive taxonomic interpretation. Nevertheless,

cated. Between these two surfaces, an additional small metatarsals of H. duvernoyi and B. megacephalum differ in

triangle-shaped articular surface can be noted. This surface many ways, with B. megacephalum having an additional dis-

is on the same level as the cuneiform surfaces and repre- tinct pygmaios, as well as a remainder of the lateral fifth

sents the remnant of the lateral fifth metatarsal. In plantar metapodial, which are absent in H. duvernoyi (Rios et al.,

view, the epicondyles are all strong and well-separated. The 2016).

dorsal head of the lateral epicondyle is rounded, bearing a The above-described metatarsals both exhibit the gen-

small bony protuberance proximally. The ventral head of eral sivatherine characters. However, both PV-150 and

the lateral epicondyle is long and thin, leading to the lateral PV-153 have a small but distinct pygmaios as well as a

ridge of the central trough. The medial epicondyle is gener- remnant of the lateral fifth metatarsal. A metatarsal of

ally stronger and more robust. The ventral head is blunt but Bramatherium sp. from Thailand (RIN 794; Nishioka et al.,

very strong, leading to the blunt medial ridge of the central 2014: Fig. 4) demonstrates all the above-mentioned char-

trough. Between the medial and lateral epicondyles there acters, but the pygmaios is notably more prominent than

is a weak but visible spindle-shaped pygmaios, which is in the Kavakdere specimens, putting RIN 794 closer to

slightly elevating above the surface of the basis. The cen- B. megacephalum (AMNH 19688; Rios et al., 2016: Fig. 8).

tral trough is somewhat shallow, and it flattens towards the In addition, the irregularly shaped surface for the medial

distal shaft. On the distal epiphysis, the keels of the medial cuneiform in the Kavakdere metatarsalia, as opposed to

and the lateral condyles are strong and equally developed the perfectly rounded surface of H. duvernoyi, fits closer

in plantar and dorsal aspect. to the almost heart-shaped medial cuneiform surface of

The proximal phalanx (PV-236; Fig. 4C) is very long and B. megacephalum (Rios et al., 2016). This surface is not visi-

robust. The medial and lateral margins of the corpus are ble in the Thai (RIN 794) specimens due to the attachment

only slightly concave. On the articular fovea, a deep trough of the naviculocuboideum at the basis of the metatarsal.

is separating the medial from the larger lateral articular Metrically, PV-150 comprises the longest Bramatherium

facet. The palmar tubercles are long, covering approxi- metatarsal ever recorded. It appears approximately 10%

mately the upper 40% of the phalanx. The head is strongly longer and 14% and 20% wider in the anteroposterior diam-

asymmetrical and has almost the same width as the corpus. eters of the proximal and distal epiphysis, respectively,

Comparisons and remarks: Bramatherium, including the than in PV-153. This size difference could be attributed to

synonymous genera Lydekker (1876) and sexual dimorphism, as noticed in long post cranial bones of

Vishnutherium Lydekker (1876), constitutes a widespread Helladotherium duvernoyi and Bohlinia attica, Gaudry and

upper Miocene sivatherine. The taxon has been reported Lartet (1856) (Roussiakis and Iliopoulos, 2004). Bramath-

from numerous Asian localities in Thailand, Myanmar, erium shows a wide metatarsal length fluctuation (Fig. 6A).

India, Pakistan, United Arab Emirates and Turkey (Antoine On a species level though, it becomes clear that B. peri-

et al., 2013; Bhatti et al., 2012; Bibi et al., 2013; Brunet mense is generally larger than B. megacephalum (Fig. 6B),

et al., 1981; Colbert, 1935; Gaur et al., 1985; Gentry, 2003; which can also be observed in dental measurements (Lewis,

Geraads and Gülec¸ , 1999; Khan et al., 2014; Lewis, 1939; 1939).

Lydekker, 1878; Matthew, 1929; Nishioka et al., 2014; Raza First phalanges of Bramatherium are reported and

et al., 2002; Sehgal, 2015; Sehgal and Nanda, 2002a, 2002b; illustrated by Colbert (1935) and they share the general

Welcomme et al., 1997). However, the determination of sivatherine characters, such as a very long and thick

the taxon has been almost solely based on cranial and corpus and strong palmar tubercles (Kostopoulos, 2009).

dental characters, while post cranial elements are rarely The Kavakdere specimen also possesses these characters.

described. However, the fact that PV-236 is much bigger than the

Bramatherium is no stranger to the fossiliferous hori- rest of the recovered sivatherine phalanges, and it has a

zons at Kavakdere, since it was the first taxon to be notably longer and more robust palmar tubercles than

A. Xafis et al. / C. R. Palevol 18 (2019) 619–642 627

Fig. 4. Fossil post-cranial material of Bramatherium perimense from Kavakdere. A: PV-150, left metatarsal, (i) dorsal and (ii) plantar aspect; B: PV-153, left

metatarsal, (i) dorsal and (ii) plantar aspect; C: PV-236, first phalanx, (i) dorsal and (ii) lateral aspect. The scale equals 20 centimetres.

Fig. 4. Matériel post-crânien fossile Bramatherium perimense de Kavakdere. A : PV-150, métatarsien gauche, aspects dorsal (i) et plantaire (ii) ; B : PV-153,

métatarsien gauche, aspects dorsal (i) et plantaire (ii) ; c : PV-236, première phalange, aspects dorsal (i) et lateral (ii). Échelle = 20 cm.

628 A. Xafis et al. / C. R. Palevol 18 (2019) 619–642

Table 2

Measurements of post-cranial elements of Bramatherium perimense from Kavakdere. Sin: left; Dex: right; L: length; APD: antero-posterior diameter; TD:

transverse diameter; prox: proximal; dia: diaphysis; dis: distal. All measurements given in millimetres.

Tableau 2

Mesures des éléments post-crâniens de Bramatherium perimense de Kavakdere. Sin : gauche ; Dex : droite ; L : longueur ; APD : diamètre antéro-postérieur ;

TD : diamètre transversal ; prox : proximal ; dia : diaphysis ; dis : distal. Toutes les mesures sont en millimètres.

Metatarsus

Inv. Number Taxon Sin/Dex L TDprox APDprox TDdia APDdia TDdis APDdis

PV-150 Bramatherium perimense sin 486.9 93.76 94.9 56.85 61.03 100.8 60.15

PV-153 Bramatherium perimense sin 442.83 85.67 83.04 49.04 50.12 86.19 55.76

Phalanx 1

Inv. Number Taxon L TDprox APDprox TDdis APDdis

PV-236 Bramatherium perimense 123.54 54.89 61.79 53.14 40.04

Fig. 5. Scatter diagram of the total length versus the transverse diameter of the diaphysis of the metatarsals of Bramatherium perimense from Kavakdere (dark

points). Light grey area represents the morphospace of Helladotherium. Dark grey area represents the morphospace of Bramatherium. The measurements

are given in millimetres (data from Iliopoulos, 2003; Kostopoulos, 2009; Nishioka et al., 2014; Rios et al., 2016; personal data of AX).

Fig. 5. Diagramme de dispersion de la longueur totale en fonction du diamètre transversal de la diaphyse des métatarsiens de Bramatherium perimense

de Kavakdere (points noirs). La zone en gris clair représente le morpho-espace d’Helladotherium, la zone en gris foncé celui de Bramatherium. Les mesures

sont fournies en millimètres (données d’Iliopoulos, 2003 ; Nishioka et al., 2014 ; Rios et al., 2016 ; données personnelles de AX).

in H. duvernoyi, suggest that it belongs to the larger the latter being slightly stronger. The anterolabial cristid is

B. perimense instead of the smaller H. duvernoyi. large, projecting antero-labially, creating a small crescent

surface, in occlusal aspect. The mesolingual and mesolabial

conids are the largest cusps and they are well-separated by

Subfamily Palaeotraginae Pilgrim, 1911

a transverse fossa. The mesolingual conid carries a strong

Genus Palaeotragus Gaudry, 1861

fold, which is projecting postero-lingually, within the fossa.

Palaeotragus rouenii (Gaudry, 1861)

The posterolabial and posterolingual conids are isolated

and separated from each other by a very thin and long fossa

Material: PV-176, right mandible with d3-m1; PV-244, with a posterolingual direction. Both conids are strongly

left naviculocuboideum; PV-226, proximal phalanx (Fig. 7; developed. Cingula and stylids are completely absent.

Table 3). The d4 is long with very well-defined ectostylids. All

Descriptions: Dental elements of P. rouenii from lobes are simple, getting gradually larger posteriorly. The

Kavakdere are only represented by a mandible bearing anterolabial conid is thin, with its apex being pointy labi-

deciduous dentition (PV-176; Fig. 7A). The clade is short ally. The anterior stylid is small and curved labially, being

and thin, and the second deciduous premolar is broken. The in contact with the base of the posterolabial conid of

d3 is long and strongly molarized. The anterior conid and the d3. The anterolingual conid is simple and it extends

anterior stylid are big and almost equally developed, with posteriorly with a strong external-postmetacristid-like

A. Xafis et al. / C. R. Palevol 18 (2019) 619–642 629

Fig. 6. Box plot of metatarsal length of Bramatherium. A. Relative size of Bramatherium perimense from Kavakdere in comparison with the metatarsal length

of Bramatherium individuals from various localities. B. Relative metatarsal length of Bramatherium megacephalum and Bramatherium perimense. Each box

represents 50% of the range of the premolar length, while the top and the bottom bars represent the overall range of the length. The horizontal line in the

centre of each box represents the median of the sample (data from Iliopoulos, 2003; Kostopoulos, 2009; Nishioka et al., 2014; Rios et al., 2016; personal

data of AX).

Fig. 6. Box plot de la longueur du métatarsien de Bramatherium. A. Taille relative de Bramatherium perimense de Kavakdere comparée à la longueur du

métatarsien d’individus de Bramatherium de localités variées. B. Longueur relative du métatarsien de Bramatherium megacephalum et de Bramatherium

perimense. Chaque boîte représente 50 % de la gamme de longueur de la prémolaire, tandis que les barres au sommet et à la base représentent le total de

la longueur. La ligne horizontale au centre de chaque boîte représente la médiane de l’échantillonnage (données de Iliopoulos, 2003 ; Kostopoulos, 2009 ;

Nishioka et al., 2014 ; Rios et al., 2016 ; données personnelles de AX).

enamel projection, which surrounds the mesostylid com- of the crown. The entostylid is small and isolated. The

pletely. The metaconid and protoconid are both strong hypoconid is also large and the posterior apex of the

and simple and the metastylid is small and blunt. The post-hypocristid is bifurcated, surrounding the isolated

entoconid is large, getting sturdier towards the base entostylid.

630 A. Xafis et al. / C. R. Palevol 18 (2019) 619–642

Fig. 7. Fossil dental and post-cranial material of Palaeotragus rouenii from Kavakdere. A: PV-176, right mandible with d3-m1, (i) occlusal and (ii) labial

view; B: PV-244, left naviculocuboideum, (i) proximal and (ii) distal view; C: PV-226, first phalanx (i) dorsal and (ii) palmar view. The scale equals 5 cm.

Fig. 7. Matériel dentaire et post-crânien fossile de Palaeotragus rouenni de Kavakdere. A : PV-176, mandibule droite avec d3-m1 en vues occlusale (i)

et labiale (ii). B : PV-244, naviculocoboideum en vues proximale (i) et distale (ii). C : PV-226, première phalange en vues dorsale (i) et palmaire (ii).

Échelle = 5 cm.

The m1 carries a very strong anterior cingulum, forming peak. In distal view, the facet for the metatarsal is small and

a small stylid towards the protocone, as well as a tall and semicircular. The facet for the external cuneiform is larger

sharp ectostylid. In occlusal aspect, the overall morphol- than the metatarsal facet, having a more rectangular shape.

ogy of the m1 is simple. The anterior lobe is slightly larger The facet for the medial cuneiform is small, triangular and

than the posterior lobe, due to the strong lingual projec- well separated from the external cuneiform facet by a blunt

tion of the metaconid. The anterior and posterior fossae are crest.

narrow and deep, while the labial conids exhibit no folds. The proximal phalanx (PV-226; Fig. 7C) is thin and long.

The naviculocuboideum (PV-244; Fig. 7B) has a sub- The medial and lateral margins of the body are parallel to

rectangle shape, proximally. The astragalar facets are each other. The medial and lateral articular facets on the

parallel and almost equal in size. The calcaneal facet is fovea are well separated by a deep and wide trough. In

very wide, long and it is not extending behind the lateral lateral aspect, the palmar tubercle is well-developed, but

A. Xafis et al. / C. R. Palevol 18 (2019) 619–642 631

Table 3

Measurements of dental and post-cranial elements of Palaeotragus rouenii from Kavakdere. Sin: left; Dex: right; hp: height of the mandible in front of P2;

L: length; I: width; d3: lower third deciduous premolar; d4: lower fourth deciduous premolar; m1: lower first molar; APD: antero-posterior diameter;

TD: transverse diameter; prox: proximal; dis: distal; med: medial; Hmax: maximum height; H1: Height of the cubonavicular on the level of the medial

astragalar surface; H2: Height of the cubonavicular on the level of the lateral astragalar surface. All measurements given in millimetres.

Tableau 3

Mesures des éléments post-crâniens et dentaires de Paélaeotragus rouenii de Kavakdere. Sin : gauche ; Dex : droite ; hp : hauteur de la mandibule en avant

de P2 ; L : longueur l : largeur ; d3 : troisième pré-molaire inférieure caduque ; d4 : quatrième prémolaire inférieure caduque ; m1 : première molaire

inférieure ; APD diamètre antéro-postérieur ; TD : diamètre transversal ; prox : proximal ; dis : distal ; med : médial : Hmax : hauteur maximum ; H1 :

hauteur du cubonaviculaire au niveau de la surface médiale de l’astragale ; H2 : hauteur du cubonaviculaire au niveau de la surface latérale de l’astragale.

Toutes les mesures sont en millimètres.

Lower deciduous dentition

Inv. Number Taxon Sin/Dex hp Ld3 Id3 Ld4 Id4 Lm1 lm1

PV-176 Palaeotragus rouenii dex 26.13 17.72 9.22 27.13 13.98 24.06 15.74

Naviculocuboideum

Inv. Number Taxon Sin/Dex TD APDmed APDmax Hmax H1 H2

PV-244 Palaeotragus rouenii sin 71.52 53.58 64.11 45.93 18.73 28.88

Phalanx 1

Inv. Number Taxon L TDprox APDprox TDdis APDdis

PV-226 Palaeotragus rouenii 78.92 34.28 37.42 33.93 25.54

limited on the proximal part of the phalanx. The medial with PV-176. SMNS 13281e represents a part of left

palmar tubercle is less developed than the lateral one, but mandible with the d3, d4 and the proximal lobe of the m1

it extends distally, stopping right above the distal trochlea. preserved. Although this specimen is notably more worn

Comparisons and remarks: Palaeotragus constitutes the than P. rouenii from Kavakdere, SMNS 13281e demon-

most abundant late Miocene giraffid in the Greco-Iranian strates an almost identical morphology with PV-176.

province (Gentry and Heizmann, 1996). The plethora More specifically, on the d3, both specimens share a

or dental and post-cranial fossil elements brought to strong and crescent-shaped anterolabial cristid, the large

light, separated the Palaeotragus taxa into two distinct and well-separated mesolingual and mesolabial conids

size groups: a small-sized group including P. rouenii and the well separated posterolabial and posterolingual

and Palaeotragus microdon Koken (1885) and a large- conids. On the d4 of both individuals, the anterolingual

sized group including Palaeotragus coelophrys Rodler and conid exhibits a strong external-postmetacristid-like

Weithofer (1890) and Palaeotragus quadricornis Bohlin enamel protuberance, which is better pronounced in the

(1926) (Geraads, 1986; Iliopoulos, 2003; Kostopoulos, Kavakdere specimen. Lastly, both specimens disclose an

2009; Kostopoulos and Sarac¸ , 2005; Kostopoulos et al., isolated entostylid. In contrast, the Chinese specimen

1996). (Ex. 9) demonstrates an isolated anterior conid and a

Palaeotragus rouenii comprises the most common much more developed anterior stylid and anterolabial

palaeotragine species and was originally described from cristid. Additionally, the posterolingual conid is strongly

Pikermi, Greece (Gentry and Heizmann, 1996). However, connected to the mesolingual conid.

despite the large number of findings, deciduous dentition Postcranial elements of late Miocene giraffids are

of Palaeotragus is scarce, with only a few specimens men- commonly infrequent (Kostopoulos, 2009). Withal,

tioned from China, Ukraine, Moldova, Bulgaria, and Greece, naviculocuboideum specimens are also scarce. How-

and in most cases with pictures or illustrations lacking ever, the metrics reveal that PV-244 belongs to a small

(Bakalov et al., 1962; Bohlin, 1926; Borissiak, 1914; Godina, palaeotragine. Measurements from previous studies

1979). Metrical comparison of the lower deciduous denti- show that Samotherium boissieri appears to be always

tion of P. coelophrys from China and Ukraine and P. rouenii larger than P. rouenii (Fig. 9). The transverse diameter

from Moldova and Greece, reveals a large metrical varia- (TD) of PV-244 is 71.52, slightly smaller than the mean

tion on the length of d3 and d4 (Fig. 8). In both teeth, the value of the transverse diameter of S. boissieri from

large overlapping between the two taxa is significant. Even Samos (Kostopoulos, 2009). Conclusively, based on the

though the available data is limited, it is evident that the above-listed descriptions and the further on compar-

length of the deciduous premolars falls within the varia- isons, we assign the above-mentioned specimens to

tion of P. coelophrys, while the length/width ratio of the d3 P. rouenii.

of PV-176 shows a closer resemblance to P. rouenii.

The lack of thorough descriptions and illustrations

Genus Samotherium Forsyth-Major, 1888

of deciduous lower dentition of Palaeotragus in previous

Samotherium boissieri (Forsyth-Major, 1888)

studies, limits a morphological variation study. A mandible

of Palaeotragus cf. coelophrys from China (Ex. 9; Bohlin,

1926: Plate II), as well as a mandible of P. rouenii from Material: PV-242, right calcaneus; PV-243, right astra-

Samos (SMNS 13281e), share some common characters galus (Fig. 10 ; Table 4).

632 A. Xafis et al. / C. R. Palevol 18 (2019) 619–642

Fig. 8. Box plots and scatter plots exhibiting the relative size of the deciduous dentition of Palaeotragus rouenii and Palaeotragus coelophrys. The light

grey areas represent the morphospaces of Palaeotragus rouenii. The dark grey areas represent the morphospaces of Palaeotragus coelophrys. Circle points

represent the Kavakdere specimens. Each box represents 50% of the range of the premolar length. The top and the bottom bars represent the overall range

of the length. Horizontal line in the centre of each box represents the median of the sample. Measurement given in millimetres (data from Bohlin, 1926;

Bakalov et al., 1962; Godina, 1979; personal data of AX).

Fig. 8. Box plots et nuage de points montrant la taille relative de la dentition caduque de Palaeotragus rouenni et Palaeothragus coelophrys. Les zones en

gris clair représentent les morpho-espaces de Palaeotragus rouenni, et les zones en gris foncé ceux de Palaeotragus coelophrys. Les points noirs représentent

les spécimens de Kavakdere. Chaque boîte représente 50 % de la gamme de longueur de la prémolaire. Les barres au sommet et à la base représentent le

total de la longueur. La ligne horizontale au centre de chaque boîte représente la médiane de l’échantillonnage. Les mesures sont fournies en millimètres

(données de Bohlin, 1926 ; Bakalov et al., 1962 ; Godina, 1979 ; et données personnelles de AX).

Table 4

Measurements of post-cranial elements of Samotherium boissieri from Kavakdere. Sin: left; Dex: right; L: length; APD: antero-posterior diameter; TD:

transverse diameter; prox: proximal; dis: distal; lat: lateral; med: medial; Hmax: maximum height; Hmin: distance between the sustentaculum tali and

the tuber calcanei; tuber: tuber calcanei. All measurements given in millimetres.

Tableau 4

Mesures de éléments post-crâniens de Samotherium boissieri de Kavakdere. Sin : gauche ; Dex : droite ; L : longueur ; APD : diamètre antéro-postérieur ;

TD : diamètre transversal ; prox : proximal ; dis : distal ; lat : latéral : med : médial ; Hmax : hauteur maximum ; Hmin : distance entre le sustentaculum

tali et le tuber calcanei ; tuber : tuber calcanei. Toutes les mesures sont en millimètres.

Astragalus

Inv. Number Taxon Sin/Dex Llat Lmed TDprox TDdis

PV-243 Samotherium boissieri dex 88.1 80.95 58.07 56.16

Calcaneus

Inv. Number Taxon Sin/Dex Hmax Hmin TDmax APDmax TDtuber APDtuber

PV-242 Samotherium boissieri dex 156.68 105.34 49.69 66.21 38.99 45.62

A. Xafis et al. / C. R. Palevol 18 (2019) 619–642 633

Fig. 9. Bivariate plot of the transverse diameter versus the maximum antero-posterior diameter of the naviculocuboideum of Palaeotragus rouenii. The

circle point represents the Kavakdere specimen. The light grey areas represent the morphospaces of Palaeotragus rouenii. The dark grey areas represent the

morphospaces of Samotherium boissieri. The measurements are given in millimetres (data from Kostopoulos, 2009; personal data of AX).

Fig. 9. Représentation bivariée du diamètre transversal en fonction du diamètre antéro-postérieur maximum du naviculocuboideum de Palaeotragus

rouenni. Le pont noir représente le spécimen de Kavakdere. Les zones en gris clair représentent les morpho-espaces de Palaeotragus rouenni et les zones en

gris foncé ceux de Samotherium boissieri. Les mesures sont fournies en millimètres (données de Kostopoulos, 2009 ; données personnelles de AX).

Descriptions: PV-242 represents a complete calcaneum Mahmutgazi, Kemiklitepe A/B, Akkas¸ dagı˘ and Tas¸ kinpas¸ a

(Fig. 10A). The sustentaculum tali is fairly developed and (Becker-Platen et al., 1975; Geraads, 1994; Karadenizli

equally developed laterally and medially. The groove for et al., 2005; Kostopoulos and Sarac¸ , 2005; Sarac¸ , 2003;

the tendon of M. flexor digitorum lateralis is deep and well S¸ enyürek, 1954).

defined. The articular surface for the lateral malleolus is The overall structure of the two above-described

strong and robust. The articular surface for the cubonavic- specimens from Kavakdere agree with the morphology

ular is slightly concave, with parallel margins. of a medium-sized palaeotragine (Kostopoulos, 2009;

The astragalus (PV-243; Fig. 10B) is almost symmetri- Solounias and Danowitz, 2016a). Further metrical com-

cal in dorsal aspect. The lateral ridge of the trochlea is only parison of PV-242 and PV-243 with S. boissieri and S. major

slightly larger than the medial one. The trochlear groove from various fossiliferous sites agrees with the morpho-

is wide, and the central fossa is shallow. The head is also logical conclusion (Fig. 11). Specifically, the calcaneus from

symmetrical, with the lateral trochlea being somewhat big- Kavakdere shows a small maximum height, plotting very

ger than the medial trochlea. In ventral view, the proximal close to the small S. boissieri individuals from Samos. The

triangular fossa is deep, extending into an equally deep astragalus falls almost in the middle of the morphospaces

interarticular groove. The medial and lateral ridges of the of S. boissieri. With a lateral astragalar trochlear length

ventral articular surface are parallel. There is a notable (Llat) of 88.1 mm, in addition to the small maximum cal-

medial scala. The distal intracephalic fossa appears in two caneal length, it is concluded that S. boissieri is represented

distinct areas, both positioned laterally, with the second in Kavakdere by one female individual (Kostopoulos, 2009).

one placed more distally.

Comparisons and remarks: Samotherium was first

Genus Alcicephalus Rodler and Weithofer, 1890

described by Forsyth-Major (1888) based on the remains of

Alcicephalus neumayri (Rodler and Weithofer, 1890)

a large artiodactyle from Samos, but without a designated

holotype. The two most common Samotherium species,

which were widespread across the Pikermian biome, are Material: PV-245, right trapezoideo-capitatum; PV-235,

S. boissieri and the larger S. major. Samotherium major is right astragalus; PV-238, right naviculocuboideum (Fig. 12;

a descendant of S. boissieri and replaced the latter about Table 5).

7.4 million years ago, at the transition between the MN11 Reference material: NHMW 2019/0018/0001, left astra-

and MN12 zones (Kostopoulos, 2009; Kostopoulos et al., galus; NHMW 2019/0018/0002, left astragalus; NHMW

2003). S. boissieri is reported from numerous localities 2019/0018/0003, left astragalus; NHMW 2019/0018/0004,

in Greece, Turkey, and Iraq (Becker-Platen et al., 1975; right astragalus (Table 6).

Geraads, 1974; Köhler et al., 1995; Kostopoulos, 2009 and Descriptions: The trapezoideo-capitatum (PV-245;

literature within; Solounias and Danowitz, 2016b; Thomas Fig. 12A) has a sub-quadrangular shape in cranial aspect,

et al., 1980). In Anatolia, S. boissieri was found at Gülpınar, with the transverse diameter being slightly larger than

634 A. Xafis et al. / C. R. Palevol 18 (2019) 619–642

A. Xafis et al. / C. R. Palevol 18 (2019) 619–642 635

Fig. 11. Bivariate plots for the calcaneus and astragalus of Samotherium boissieri from Kavakdere (circle points). The light-grey-highlighted areas represent

the morphospaces of Samotherium boissieri. The dark grey areas represent the morphospaces of Samotherium major. Cal: calcaneus; As: astragalus; Hmax:

maximum height of the calcaneus; TDmax: maximum transverse diameter on the level of the sustentaculum tali; Llat: length of the lateral trochlea of

the astragalus; TDdist: transverse diameter of the distal head of the astragalus. The measurements are given in millimetres (data from Iliopoulos, 2003;

Kostopoulos, 2009; personal data of AX).

Fig. 11. Représentation bivariée pour le calcanéum et l’astragale de Samotherium boissieri de Kavakdere (points noirs). Les zones en gris clair représentent

les morpho-espaces de Samotherium boissieri et les zones en gris foncé ceux de Samotherium major. Cal : calcanéum ; As : astragale ; Hmax : hauteur

maximum du calcanéum ; TDmax : diamètre transversal maximum au niveau du sustentaculum tali ; Llat : longueur de la trochlée latérale de l’astragale.

TDdist : diamètre transversal de la tête distale de l’astragale. Les mesures sont fournies en millimètres (données d’Iliopoulos, 2003 ; Kostopoulos, 2009 ;

données personnelles de AX).

the antero-posterior diameter (Table 5). The medial wall is extending laterally with a small grove towards the lateral

straight, and the medial groove is shallow and wide. The collum tali. The lateral collum tali is flat, while the medial

articular surface for the scaphoid is deep and the luna- collum tali carries a pointy bulge. In ventral view, the inter-

tum surface is highly asymmetrical and shallow. The crests articular groove is narrow, leading to a wider triangular

separating the two facets are strong but short and blunt. fossa. The ventral articular surface is irregularly shaped,

There is only one astragalus of A. neumayri found (PV- with the medial ridge carrying a weak medial scala, which

235; Fig. 12B). In dorsal aspect, the lateral ridge of the is visible on the medial ridge but not there are no defined

trochlea is significantly taller and only slightly thicker than limits on the ventral articular surface. The lateral margin

the medial ridge. However, both ridges are straight and par- gets notably concave distally. The distal intracephalic fossa

allel to each other. The central fossa is wide and shallow, is present but faint and not well confined.

Fig. 10. Fossil post-cranial material of Samotherium boissieri from Kavakdere. A: PV-242, right calcaneus (i) lateral and (ii) medial view; B: PV-243, right

astragalus, (i) dorsal and (ii) plantar view. The scale equals 5 cm.

Fig. 10. Matériel post-crânien fossile de Samotherium boissieri de Kavakdere. A : PV-242, calcanéum droit en vues latérale (i) et médiale (ii). B : PV-243,

astragale droit en vues dorsale (i) et plantaire (ii). Échelle = 5 cm.

636 A. Xafis et al. / C. R. Palevol 18 (2019) 619–642

Fig. 12. Fossil post-cranial elements of Alcicephalus neumayri from Kavakdere: A: PV-245, right trapezoideo-capitatum, (i) proximal and (ii) distal view; B:

PV-235, right astragalus, (i) dorsal and (ii) lateral view, (iii) medial view and (iv) plantar view; C: PV-238, right naviculocuboideum, (i) proximal and (ii)

distal view. The scale equals 10 cm.

Fig. 12. Éléments post-crâniens fossils d’Alcicephalus neumayri de Kavakdere. AV-245 : trapezoideo-capitatum droit en vue proximale (i) et distale (ii). B :

PV-235, astragale droit en vues dorsale (i), latéral (ii), médiale (iii) et plantaire (iv). C : PV-238, naviculocuboideum droit en vues proximal (i) et distale (ii).

Échelle = 10 cm.

Table 5

Measurements of post-cranial elements of Alcicephalus neumayri from Kavakdere. Sin: left; Dex: right; L: length; l: width; APD: antero-posterior diameter;

TD: transverse diameter; prox: proximal; dis: distal; lat: lateral; med: medial; H: maximum height of the trapezoideo-capitatum; h: height of the articular

surface for the scaphoideum; H1: Height of the cubonavicular on the level of the medial astragalar surface; H2: Height of the cubonavicular on the level of

the lateral astragalar surface. All measurements given in millimetres.

Tableau 5

Mesures des éléments post-crâniens d’Alcicephalus neumayri de Kavakdere. Sin : gauche ; Dex : droite ; L : longueur ; l : largeur ; APD : diamètre antéro-

postérieur ; TD : diamètre transversal ; prox : proximal ; dis : distal ; lat : latéral ; med : médial ; H : hauteur maximum du trapezoideo-capitatum ; h ;

hauteur de la surface articulaire pour le scaphoideum ; H1 : hauteur du cubonaviculaire au niveau de la surface médiale de l’astragale ; H2 : hauteur du

cubonaviculaire au niveau de la surface latérale de l’astragale. Toutes les mesures sont en millimètres.

Trapezoideo-capitatum

Inv. Number Taxon Sin/Dex L I H h

PV-245 Alcicephalus neumayri dex 62.22 69.2 34.32 26.25

Astragalus

Inv. Number Taxon Sin/Dex Llat Lmed TDprox TDdis

PV-235 Alcicephalus neumayri dex 100.6 85.25 67.36 65.5

Naviculocuboideum

Inv. Number Taxon Sin/Dex TD APDmed APDmax Hmax H1 H2

PV-238 Alcicephalus neumayri dex 93.93 71.02 86.03 55.98 25.62 35.94

The naviculocuboideum (PV-238; Fig. 12C) has a rectan- very prominent and has a sharp apex. The lateral pick is

gle shape in proximal view. The astragalar facets are almost more robust and higher. The calcaneal facet is wide, and it

equally developed, with the medial facet being slightly nar- is not extending behind the lateral peak, common feature of

rower that the lateral one. The medial peak is short but is samotherines. In distal aspect, the facet for the metatarsal

A. Xafis et al. / C. R. Palevol 18 (2019) 619–642 637

638 A. Xafis et al. / C. R. Palevol 18 (2019) 619–642

Table 6

Measurements of astragali of Alcicephalus neumayri from Maragha. Sin: left; Dex: right; L: length; TD: transverse diameter; prox: proximal; dis: distal; lat:

lateral; med: medial. All measurements given in millimetres.

Tableau 6

Mesures d’astragales d’Alcicephalus neumayri de Maragha. Sin ; gauche ; Dex : droite ; L : longueur ; TD : diamètre transversal ; prox : proximal ; dis : distal ;

lat : latéral ; med : médial. Toutes les mesures sont en millimètres.

Inv. Number Sin/Dex Llat Lmed TDprox TDdis

NHMW 2019/0018/0001 sin 100.95 90.26 71.49 65.04

NHMW 2019/0018/0002 sin 98.57 85.73 69.13 66.3

NHMW 2019/0018/0003 sin 105.55 93.26 64.9 68.4

NHMW 2019/0018/0004 dex 97.24 87.33 61.33 59.26

is wide and semi-circular in shape. There is a wide opening et al., 2014; Solounias and Danowitz, 2016a). The medial

on the distal part of that surface, which suggests a strong astragalar facet is blunt, protruding only slightly, which is

insertion of the tendons of the digital flexor muscles lead- responsible for the faint intracephalic fossa of the astra-

ing towards the proximal metatarsal canal. The facet for galus. Lastly, the triangular facet for the medial cuneiform,

the external cuneiform is notably smaller than the latter as well as the fossa on the distal part of the facet for

surface and sub-rectangle. The medial cuneiform facet is the metatarsal comprise unique characters on the navicu-

triangular and almost completely isolated from the facet of locuboideum of A. neumayri.

the external cuneiform. The astragalus constitutes a highly diagnostic skele-

Comparisons and remarks: Alcicephalus neumayri has tal element for Giraffidae. A recent study conducted by

been reported from its type locality, Maragheh, as well as Solounias and Danowitz (2016a) described and listed all the

from North China and it is the most frequently occurring different characters of the astragali of various giraffid taxa.

giraffid at the easternmost border of the Pikermian biome In a late study, Solounias and Danowitz (2016b) showed

(de Mecquenem, 1924-1925; Gaziry, 1987; Solounias and the coexistence of Alcicephalus neumayri and Samoth-

Danowitz, 2016b; Rodler and Weithofer, 1890). Due to erium major at Maragheh, where the astragali are well

the similarities between Alcicephalus and Samotherium, the described and the morphological differences between the

two genera we considered synonymous for a long time two taxa were briefly indicated. Further investigation of

(Hamilton, 1978; Simpson, 1945). However, a recent study the Maragheh collection hosted in NHMW, confirms the

by Hou et al. (2014) pointed out the cranial differences coexistence of two samotheriines at Maragheh. Addition-

between the two genera and re-established Alcicephalus as ally, a descent collection of astragali allowed to depict the

a valid genus. Even though A. neumayri is mostly known morphological differences between the two taxa (Fig. 14).

from dental and cranial material, recent data published by In dorsal view, the astragalus of A. neumayri exhibits

Solounias and Danowitz (2016b), as well as new analyses lateral edge which is notably taller but not much thicker

(for this study) on unpublished material from Maragheh that the medial ridge of the trochlea. In Helladotherium and

(hosted in the collections of NHMW), allowed for a detailed S. major, the lateral ridge is much thicker than the medial

comparison with the astragalus from Kavakdere. one and, in the latter taxon, the two ridges do not exhibit

Metrical comparison of the post-cranial elements such a height difference (Solounias and Danowitz, 2016a).

clearly separates the carpal and tarsal bones of A. neu- Additionally, in A. neumayri there is a large and irregularly

mayri from those of S. major and H. duvernoyi (Fig. 13). shaped central fossa, which indicatively expands laterally,

The trapezoideo-capitatum (PV-245), astragalus (PV-235) between the lateral ridge of the trochlea and the lateral col-

and naviculocuboideum (PV-238) clearly belong to a lum tali. The medial groove is very wide, bearing a robust

species smaller than Helladotherium. Morphologically, the medial bulge. The lateral collum tali is also quite broad

trapezoideo-capitatum has an almost rectangle shape and without carrying a lateral notch. Respectively, in S. major

blunt cranial crests, characters that are not only dif- the central fossa appears to be more rounded and placed

ferent from those of H. duvernoyi but also typical for centrally, at the base of the trochlear groove. The medial

samotheriines (Kostopoulos, 2009). Additionally, the nav- groove is also very open, with a much weaker medial bulge.

iculocuboideum displays a short calcanear facet, which in The lateral collum tali is narrower than in A. neumayri,

uncommon in Sivatheriinae (Kostopoulos, 2009; Nishioka while bearing a well-developed lateral notch (Solounias

Fig. 13. Dispersion plots showing the relative size of carpal and tarsal bones of Alcicephalus neumayri from Kavakdere. The light grey areas represent

the Samotherium major morphospaces. The dark grey areas represent the Helladotherium duvernoyi morphospaces. The circle points and the red dashed

line represent the Kavakdere specimens. In the boxplot, each box represents 50% of the range of the premolar length, while the top and the bottom bars

represent the overall range of the length. The horizontal line in the centre of each box represents the median of the sample. All measurements given in

millimetres (data from Gaziry, 1987; Iliopoulos, 2003; Kostopoulos, 2009; Solounias and Danowitz, 2016b; personal data of AX).

Fig. 13. Diagramme de dispersion montrant la taille relative des os carpiens et tarsiens d’Alcicephalus neumayri de Kavakdere. Les zones en gris clair

représentent les morpho-espaces de Samotherium major et les zones en gris foncé ceux d’ Helladotherium duvernoyi. Les points noirs et la ligne rouge tiretée

représentent les spécimens de Karakdere. Dans le boxplot, chaque boîte représente 50 % de la gamme de longueur de la prémolaire, tandis que les barres

en haut et en bas représentent le total de la longueur. La ligne horizontale au centre de chaque boîte représente la moyenne de l’échantillonnage. Toutes

les mesures sont en millimètres (données de Graziry, 1987 ; Iliopoulos, 2003 ; Kostopoulos, 2009 ; Solounias et Danowitz, 2016b ; données personnelles

de AX).

A. Xafis et al. / C. R. Palevol 18 (2019) 619–642 639 :

D

;

facile

NHMW

plus

D:

represented

is soit

2019/0018/0004

caractères Kavakdere

des 2019/0018/0004;

NHMW from

:

C

;

NHMW

neumayri C:

correspondance

la

que 2019/0018/0001

Alcicephalus

ce

à

2019/0018/0001;

easier.

NHMW

:

B

manière ;

NHMW

de

B: characters

PV-235

the

:

l’autre,

of A

. de PV-235;

A: l’un

major

reflet major.

un

correspondence

the

Samotherium

comme

de

make Samotherium et

to

and

order

représentés

neumayri in

sont

neumayri

B

and

mirrored,

E

Alcicephalus are d’

B

Alcicephalus

of and

cm.

E

5

=

astragales

2019/0017/0005. des astragali

Échelle of

NHMW

: rouge. plantaire

2019/0017/0005.

F aspects

; et

boîte

la

NHMW

dorsal plantar

F:

dans

and

aspects

2019/0017/0002

dorsal des

cm. of

représenté

5

NHMW est

2019/0017/0002; :

E

; equals

graphique

NHMW

scale neumayri

E: demonstration

The

box.

Démonstration Graphic 2019/0017/0001

Alcicephalus red

14. 14.

the

voir.

Fig. Fig. 2019/0017/0001; à in NHMW

640 A. Xafis et al. / C. R. Palevol 18 (2019) 619–642

and Danowitz, 2016a). In plantar aspect, the astragali of of Gülpınar and survived until the early middle Turolian

A. neumayri exhibit an irregularly-shaped ventral articular (Marra et al., 2011). The taxon finds its peak of abundance

surface. On the distal and lateral side, there is a characteris- in the MN11 where it appears as the dominant species of

tic concavity of the articular surface, while the medial scala the famous locality Old Mills Beds, Samos, Greece (Bernor

has vague limits or is hardly visible. The distal intracephalic et al., 1996; Kostopoulos et al., 2003; Koufos et al., 1997).

fossa exhibits a double depression, common character for So far, Alcicephalus neumayri has only been reported

samotherines (Solounias and Danowitz, 2016a). However, from localities at Maragheh, Iran (Bernor, 1986; Rodler

the limits of the fossae are hard to define. Correspondingly, and Weithofer, 1890), as well as China, and it is in fact

the astragali of S. major show a more regular, rectangu- the most abundant giraffid known from the eastern out-

lar shape of the ventral articular surface. The medial scala, skirts of the Pikermian biome (Solounias and Danowitz,

even though weak, is distinct with determinable limits, and 2016b). However, there is no exact indication regarding the

a characteristic and conspicuous double-sectioned distal stratigraphic origin of A. neumayri, giving the taxon a gen-

intracephalic fossa is also present (Solounias and Danowitz, eral chronostratigraphic range of lower to middle Turolian

2016a). (MN11–MN12). The presence of A. neumayri in Kavakdere

comprises the westernmost occurrence of this taxon and

4. Discussion and conclusions suggests a more dominant presence of Alcicephalus in the

Pikermian biome than previously advocated.

Up to date, few studies have been conducted on fos- Conclusively, most faunal remains of Giraffidae from

sil remains from the fossiliferous horizons at Kavakdere. Kavakdere agree with the chronostratigraphic conclusions

Ozansoy (1965) was the first to study fossil remains of previous studies. In addition, the westernmost record

from Kavakdere, recognizing Helladotherium sp. and of A. neumayri is reported. The new findings enrich the

Camelopardalis sp. as the only two giraffid taxa. Later, so-far limited fauna list of the fossiliferous site and new

Becker-Platen et al. (1975) updated the faunal list for insights on the osteology of Bramatherium and Alcicephalus

Kavakdere, adding Giraffa sp. to the previously identi- are documented.

fied giraffid taxa. However, in both studies, the basis

for their determination is unknown, since comprehen-

Acknowledgements

sive descriptions and figures of the fossil material are

missing. A study by Köhler (1987), focusing on Miocene

We thank Y. Nishioka (Waseda Institute for Advanced

bovids from Turkey also presented material of Proto-

Study) for kindly providing high-quality pictures of Bra-

ryx sp. Forsyth-Major (1891) from Kavakdere, adding yet

matherium specimens from Thailand. Special thanks to U.

another taxon to the unclear ruminant list from this local-

B. Göhlich (NHMW) for granting A.X. access to fossil mate-

ity. The first real taxonomic study on fossil Giraffidae

rial from Maragheh. M. Aiglstorfer (Staatliches Museum für

from Kavakdere was conducted by Geraads and Gülec¸

Naturkunde Stuttgart) and L. W. van den Hoek Ostende

(1999). These authors described an almost complete skull

(Naturalis Biodiversity Center) are thanked for fruitful dis-

of Bramatherium perimense, hosted in MTA. The material

cussions on the material and the content of this manuscript.

described herein clarifies the taxonomic position of giraf-

We owe thanks to the handling editor Dr. Lorenzo Rook

fid material from Kavakdere. It verifies the presence of

for his assistance in the submission and review of the

Bramatherium perimense and provides evidence for four

manuscript. We also kindly acknowledge the two anony-

additional giraffid taxa, H. duvernoyi, Palaeotragus rouenii,

mous reviewers for their comments and remarks, which

Samotherium boissieri, and Alcicephalus neumayri.

considerably helped improving this publication. S.M., T.K.,

Kavakdere was initially placed between the middle

and K.H. were supported by Ege University, Izmir (research

Vallesian and early Turolian by Ozansoy (1965) and later,

projects: TTM/001/2010, TTM/002/2011, TTM/001/2013,

ambiguously assigned to the MN11 zone by Köhler (1987).

TTM/001/2014, TTM/001/2016, TTM/002/2016). A.X. and

Based on new findings, Geraads and Gülec¸ (1999) assigned

F.G. were funded by the Austrian Science Fund (FWF,

Kavakdere to middle Turolian. Succeeding, the palaeomag-

project number P29501-B25).

netic dating established by Kappelman et al. (2003) placed

all Kavakdere localities within MN11.

References

Palaeotragus rouenii has a chronostratigraphic distribu-

tion that ranges between late Vallesian (MN10) and late

Antoine, P.-O., Métais, G., Orliac, M.J., Crochet, J.-Y., Flynn, L.J., Marivaux, L.,

Turolian (MN 13) (Gentry et al., 1999; Kostopoulos, 2009;

Rahim Rajpar, A., Roohi, G., Welcomme, J.-L., 2013. Mammalian Neo-

Koufos et al., 2009). Helladotherium duvernoyi has also a gene biostratigraphy of the Sulaiman Province, Pakistan. In: Wang, X.,

Flynn, L.J., Fortelius, M. (Eds.), Fossil Mammals of Asia. Neogene Bios-

wide distribution, which ranges from late Vallesian to late

tratigraphy and Chronology. Columbia University Press, New York, pp.

Turolian, with the first occurrence from the late Vallesian of

400–422.

Nikiti (Kostopoulos, 2009; Kostopoulos and Koufos, 2006; Arambourg, C., 1963. Continental vertebrate faunas of the Tertiary of North

Kostopoulos et al., 1996; Koufos et al., 2009). Bramatherium Africa. In: Howell, F.C., Bourlière, F. (Eds.), African ecology and human

evolution. Aldine Publication Co, Chicago, pp. 56–63.

perimense is known from both the MN10 and MN11 of Pak-

Athanassiou, A., 2002. Neogene and Quaternary mammal faunas of Thes-

istan and Turkey, as well as from the type locality of Perim

saly. Ann. geol. Pays hellen. 39 (A), 279–293.

(Piram) Island, India (Falconer, 1845; Geraads and Gülec¸ , Bakalov, P., Nikolov, I.V., Tzankov, V., 1962. Les Fossiles de Bulgarie. X.

Mammifères tertiaires. Académie des sciences de Bulgarie, Sofia (In

1999; Welcomme et al., 1997). However, the type horizon

Bulgarian with French abstract).

is unknown, and the exact age of the holotype is uncertain.

Bärmann, E.V., Rössner, G.E., 2011. Dental nomenclature in

Samotherium boissieri first appeared in the late Vallesian Ruminantia: Towards a standard terminological framework.

A. Xafis et al. / C. R. Palevol 18 (2019) 619–642 641

Mammalian Biology-Zeitschrift für Säugetierkunde 76 (6), 762–768, Mittmann, H.W. (Eds.), The evolution of Western Eurasian Neogene

http://dx.doi.org/10.1016/j.mambio.2011.07.002. mammal faunas. Columbia University Press, New York, pp. 379–391.

Becker-Platen, J.D., Sickenberg, O., Tobien, H., 1975. Vertebraten- Gentry, A.W., Rössner, G.E., Heizmann, E.P.J., 1999. Suborder Ruminan-

Lokalfaunen der Türkei und ihre Altersstellung. In: Sickenberg, O. tia. In: Rössner, G.E., Heissig, K. (Eds.), The Miocene land mammals of

(Ed.), Die Gliederung des höheren Jungtertiärs und Altquartärs in der Europe. Verlag Dr. Friedrich Pfeil, Munich, pp. 225–253.

Türkei nach Vertebraten und ihre Bedeutung für die internationale Geraads, D., 1974. Les Giraffidés du Miocène supérieur de la région de

Neogen-Stratigraphie (Känozoikum und Braunkohlen der Türkei. 17.). Thessalonique (Grèce). Unpublished PhD Thesis, University of Paris,

Geol. Jahrbuch (Regionale Geologie Ausland), Reihe B, 15, Hannover, France.

pp. 47–100. Geraads, D., 1986. Remarques sur la systématique et la phylogénie

Bernor, R.L., 1986. Mammalian biostratigraphy, geochronology, and zoo- des Giraffidae (Artiodactyla, Mammalia). Geobios 19 (4), 465–477,

geographic relationships of the Late Miocene Maragheh fauna, Iran. J. http://dx.doi.org/10.1016/s0016-6995(86)80004-3.

Vert. Paleontol. 6, 76–95. Geraads, D., 1994. Les gisements de mammifères du Miocène supérieur de

Bernor, R.L., Solounias, N., Swisher III, C.C., van Couvering, J.A., 1996. The Kemiklitepe, Turquie. VIII: Giraffidae. Bull. Mus. natl hist. nat. Section

correlation of the classical “Pikermian” mammal faunas - Maragheh, C Sci. Terre Paleontol. Geol. Mineral. 16 (1), 159–173.

Samos and Pikermi, with the European MN unit system. In: Bernor, Geraads, D., Gülec¸ , E., 1999. A Bramatherium skull (Giraffidae, Mammalia)

R.L., Fahlbusch, V., Mittmann, H.W. (Eds.), The Evolution of the West- from the late Miocene of Kavakdere (Central Turkey). Bull. Min. Res.

ern Eurasian Neogene Mammal Faunas. Columbia University Press, Explor. 121, 51–56.

New York, pp. 137–154. Geraads, D., Spassov, N., Kovachev, D., 2005. Giraffidae (Artiodactyla,

Bhatti, Z.H., Khan, M.A., Akhtar, M., 2012. Hydaspitherium (Artiodactyla: Mammalia) from the Late Miocene of Kalimantsi and Hadjidimovo,

Giraffidae) from the Dhok Pathan Formation of the Middle Siwaliks, Southwestern Bulgaria. Geol. Balc. 35 (1–2), 11–18.

Pakistan: New Collection. Pakistan J. Zool 44 (3), 799–808. Godina, A.Y., 1979. History of fossil giraffes of the genus Palaeotragus.

Bibi, F., Hill, A., Beech, M., Yasin, W., 2013. Late Miocene fossils from the Trudy, 177. Paleontological Institut Akademia Nauk USSR (In Russian).

Baynunah Formation. In: Wang, X., Flynn, L.J., Fortelius, M. (Eds.), Gray, J.E., 1821. On the natural arrangement of vertebrose . Lond.

Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. Med. Rep. 15, 297–310.

Columbia University Press, New York, pp. 583–594. Grossman, A., Solounias, N., 2014. New fossils of (Mam-

Bohlin, B., 1926. Die Familie Giraffidae mit besonderen Berucksichtgung malia: Artiodactyla) from the Lothidok Formation (Kalodirr Member,

der fossilen Formen aus China. Palaeontologia Sinica, ser C. 4. The early Miocene, West Turkana, Kenya) contribute to our under-

Geological Survey of China, Peking. standing of early giraffoid diversity. Zitteliana B 32, 63–70,

Bonis, L.D., Bouvrain, G., Geraads, D., Koufos, G.D., 1992. Diver- http://dx.doi.org/10.5282/ubm/epub.22387.

sity and paleoecology of Greek late Miocene mammalian fau- Hamilton, W.R., 1978. Fossil giraffes from the Miocene of Africa and a

nas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 91 (1–2), 99–121, revision of the phylogeny of the Giraffoidea. Phil. Trans. R. Soc. B. 283,

http://dx.doi.org/10.1016/0031-0182(92)90035-4. 165–229.

Borissiak, A., 1914. Mammifères fossiles de Sébastopol II. Mémoires du Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Palaeontological Statis-

Comité géologique, Nouvelle série. Livraison 137, Paris. tics software package for education and data analysis. Palaeontol.

Brunet, M., Heintz, E., Sen, S., 1981. Datations paléontologiques Electr. 4, 1–9 http://palaeo-electronica.org/2001 1/past/past.pdf.

et séquences biochronologiques dans le Néogène continental Harris, J., Solounias, N., Geraads, D., 2010. Giraffoidea. In: Werdelin,

d’Afghanistan. C. R. Acad. Sci. Paris, Ser. III 293, 305–308. L., Sanders, W.J. (Eds.), Cenozoic Mammals of Africa. University of

Colbert, E., 1935. Siwalik Mammals in the American Museum of Nat- California Press, Berkeley, CA, USA, pp. 797–811, http://dx.doi.org/

ural History. Trans. Am. Phil. Soc. 26, 1–401, http://dx.doi.org/ 10.1525/california/9780520257214.003.0039.

10.2307/1005467. Hensel, R., 1862. Über die Reste einiger Säugethierarten von Pikermi in

Danowitz, M., Sukuan, H., Mihlbachler, M., Hastings, V., Solounias, N., der Münchener Sammlung. Mber. K. Preuss. Akad. Wiss. 27, 560–569.

2016. A combined-mesowear analysis of late Miocene giraffids from Hou, S., Danowitz, M., Sammis, J., Solounias, N., 2014. Dead ossicones,

North Chinese and Greek localities of the Pikermian Biome. Palaeo- and other characters describing Palaeotraginae (Giraffidae; Mam-

geogr. Palaeoclimatol. Palaeoecol. 449, 194–204, http://dx.doi.org/10. malia) based on new material from Gansu, Central China. Zitteliana

1016/j.palaeo.2016.02.026. 32, 91–98.

De Mecquenem, R., 1924-1925. Contribution à l’étude des fossiles de Iliopoulos, G., 2003. The Giraffidae (Mammalia, Artiodactyla) and the

Maragha. Ann. Paleontol. 13–14, 135–160. study of the histology and chemistry of fossil mammal bone from the

Falconer, H., 1845. Description of some fossil remains of Dinotherium, late Miocene of Kerassia (Euboea Island, Greece), Unpublished PhD

and other Mammalia, from the Gulf of Cambay, Western Coast Thesis, University of Leicester, UK. http://hdl.handle.net/2381/35044.

of India. Quart. J. Geol. Soc. Lond. I, 356–372. Janis, C.M., 1987. Grades and clades in hornless ruminant evolu-

Forsyth-Major, C.J., 1888. Sur un gisement d’ossements fossiles tion: the reality of the Gelocidae and the systematic position of

dans l’île de Samos contemporains de l’âge de Pikermi. C. r. Lophiomeryx and Bachitherium. J. Vert. Paleontol. 7 (2), 200–216,

hebd. Séances Soc. geol. France 107, 1178–1181, http://dx.doi.org/ http://dx.doi.org/10.1080/02724634.1987.10011653.

10.1017/S0016756800189356. Kappelman, J., Duncan, A., Feseha, M., Lunkka, J.-P., Ekhardt, D., McDow-

Forsyth-Major, C.J., 1891. Considérations nouvelles sur la faune de ell, F., Ryan, T.M., Swisher, C.C., 2003. Chronology. In: Fortelius, M.,

vertébrés du Miocène supérieur dans l’île de Samos. C. r. hebd. Séances Kappelman, J., Sen, S., Bernor, R.L. (Eds.), Geology and Paleontology

Soc. geol. France 113, 608–610. of the Miocene Sinap Formation, Turkey. Columbia University Press,

Gaillard, C., 1899. Mammifères miocènes de la Grive-Saint-Alban (Isère). New York, pp. 41–66.

Arch. Mus. Hist. Nat. Lyon. 7, 1–41. Karadenizli, L., Seyitoglu,˘ G., Sen, S., Arnaud, N., Kazancı, N., Sarac¸ , G.,

Gaudry, A., 1860. Résultats des fouilles executées en Grèce sous les aus- Alc¸ ic¸ ek, C., 2005. Mammal Bearing Late Miocene Tuffs of the Akkasdagi

pices de l’Academie. C. r. hebd. séances Acad. sci. 51, 802–804. Region; Distribution, Age, Petrographical and Geochemical Charac-

Gaudry, A., 1861. Note sur la giraffe et l’Helladotherium trouvées à Pikermi teristics. In: Sen, S. (Ed.), Geology, Mammals and Environments at

e

(Grèce). Bull. Soc. geol. France, 2 Ser. 5, 587–597. Akkas¸ dagı,˘ Late Miocene of Central Anatolia, 27. Geodiversitas, pp.

Gaudry, A., Lartet, E., 1856. Résultats des recherches paléontologiques 553–566.

entreprises dans l’Attique sous les auspices de l’Académie. C. r. hebd. Khan, M.A., Akhtar, M., Irum, A., 2014. Bramatherium (Artiodactyla,

séances Acad. sci. 43, 271–274. Ruminantia, Giraffidae) from the Middle Siwaliks of Hasnot, Pak-

Gaur, R., Vasishat, R.N., Chopra, S.R.K., 1985. New and some additional istan: biostratigraphy and palaeoecology. Turkish J. Earth Sci. 23 (3),

fossil mammals from the Siwaliks exposed at Nurpur, Kangra District 308–320.

(H.P.), India, with remarks on Siwalik giraffids. J. Palaeontol. Soc. India Köhler, M., 1987. Boviden des türkischen Miozäns (Känozoikum und

30, 42–48. Bräunkohlen der Türkei). Paleontologia i Evolucio 21, 133–246.

Gaziry, A.W., 1987. Fossile Giraffen-Extremitäten aus Maragheh/Iran. Köhler, M., Moya-Sola, S., Morales, J., 1995. The vertebrate locality

Mitteilungen aus dem geologisch-paläontologischen Institut der Uni- Maramena (Macedonia, Greece) at the Turolian-Ruscinian bound-

versität Hamburg 63, 185–199. ary (Neogene), 15. Bovidae and Giraffidae (Artiodactyla, Mammalia).

Gentry, A.W., 2003. Ruminantia (Artiodactyla). In: Fortelius, M., Kappel- Münch. geowiss. Abh. A Geol. Paläontol. 28, 167–180.

man, J., Sen, S., Bernor, R.L. (Eds.), Geology and Paleontology of the Koken, E., 1885. Über fossile Säugethiere aus China. Palaeontol. Abh. 3,

Miocene Sinap Formation, Turkey. Columbia University Press, New 31–113.

York, pp. 332–379. Kostopoulos, D.S., Koufos, G.D., 2006. The late Miocene vertebrate local-

Gentry, A.W., Heizmann, E.P.J., 1996. Miocene Ruminants of the Central ity of Perivolaki, Thessaly, Greece. 8. Giraffidae. Palaeontographica

and Eastern Tethys and Paratethys. In: Bernor, R.L., Fahlbusch, V., Abteilung A 276 (1–6), 135–149.

642 A. Xafis et al. / C. R. Palevol 18 (2019) 619–642

Kostopoulos, D.S., Sarac¸ , G., 2005. Giraffidae (Mammalia, Artiodactyla) Rodler, A., Weithofer, K.A., 1890. Die Wiederkäuer der Fauna von Maragha.

from the late Miocene of Akkas¸ dagı,˘ Turkey. In: Sen, S. (Ed.), Geology, Denkschr. Kaiserl. Akad. Wiss. Wien 57, 753–772.

mammals and environments at Akkas¸ dagı,˘ late Miocene of Central Roth, J., Wagner, A., 1854. Die fossilen Knochenüberreste von Pikermi in

Anatolia, 27. Geodiversitas, pp. 735–745. Griechenland. Abh. Bayer. Akad. Wiss., Math.-phys. Kl. 7, 371–464.

Kostopoulos, D.S., Koufos, G.D., Sylvestrou, I.A., Syrides, G.E., Tsompachi- Roussiakis, S., Iliopoulos, G., 2004. Preliminary observations on the met-

dou, E., 2009. 2. Lithostratigraphy and Fossiliferous Sites. In: Koufos, rical variation of Helladotherium duvernoyi and Bohlinia attica , In: 5th

G.D., Nagel, D. (Eds.), The Late Miocene Mammal Faunas of the International Symposium on Eastern Mediterranean Geology, Thessa-

Mytilinii Basin, Samos Island, Greece: new Collection. Beitr. Palaeon- loniki, pp. 343–346.

tol., 31. Vienna, Austria, pp. 13–26. Sarac¸ , G., 2003. Turkiye omurgali fosil yataklari. Mineral Res. Expl. Direct.

Kostopoulos, D.S., Koliadimou, K.K., Koufos, G.D., 1996. The giraffids Turkey (MTA). Scientific Report No: 10609, Ankara, Turkey (in Turk-

(Mammalia, Artiodactyla) from the late Miocene mammalian local- ish).

ities of Nikiti (Macedonia, Greece). Palaeontogr. Abt. A 239 (1–3), Schaller, O., 2007. Illustrated Veterinary Anatomical Nomenclature,

61–88. 2nd ed. Enke Verlag, Stuttgart, Germany, http://dx.doi.org/10.

Kostopoulos, D.S., Sen, S., Koufos, G.D., 2003. Magnetostratigraphy 1024/0036-7281.149.9.417c.

and revised chronology of the late Miocene mammal local- Sehgal, R.K., 2015. Mammalian faunas from the Siwalik sediments exposed

ities of Samos. Greece. Int. J. Earth Sci. 92 (5), 779–794, around Nurpur, District Kangra (HP): age and palaeobiogeographic

http://dx.doi.org/10.1007/s00531-003-0353-8. implications. Himalayan Geol. 36 (1), 9–22.

Kostopoulos, D.S., 2009. 13. Giraffidae. In: Koufos, G.D., Nagel, D. (Eds.), Sehgal, R.K., Nanda, A.C., 2002a. Palaeoenvironment and palaeoecology of

The late Miocene mammal faunas of the Mytilinii Basin, Samos Island, the Lower and middle Siwalik Subgroups of a part of Northwestern

Greece: new collection, Beitr. Palaeontol., 31. Vienna, Austria, pp. Himalaya. J. Geol. Soc. India 59 (6), 517–529.

299–343. Sehgal, R.K., Nanda, A.C., 2002b. Age of the fossiliferous Siwalik sediments

Koufos, G.D., 1990. The hipparions of the lower Axios valley (Mace- exposed in the vicinity of Nurpur, District Kangra. Himachal Pradesh.

donia, Greece). Implications for the Neogene stratigraphy and the Curr. Sci. 82 (4), 392–395.

evolution of hipparions. In: Lindsay, E.H., Fahlbusch, V., Mein, P. Sen, S., 2003. History of Paleontologic Research in Neogene Deposits of the

(Eds.), European Neogene Mammal Chronology. NATO ASI Series Sinap Formation, Ankara, Turkey. In: Fortelius, M., Kappelman, J., Sen,

(Series A: Life Sciences), Springer, Boston, MA, USA, 180, pp. 321–338, S., Bernor, R.L. (Eds.), Geology and Paleontology of the Miocene Sinap

http://dx.doi.org/10.1007/978-1-4899-2513-8 19. Formation, Turkey. Columbia University Press, New York, pp. 1–22.

Koufos, G.D., 2006. The Neogene mammal localities of Greece: faunas, Sen, S., 2017. What Kavakdere (Ankara) Late Miocene Mammals Bring to

chronology and biostratigraphy. Hellenic J. Geosci. 41 (1), 183–214. the Knowledge of Mammalian Evolution in Anatolia? , 15th Congress

Koufos, G.D., Kostopoulos, D.S., Vlachou, T.D., 2009. 16. Biochronology. of the RCMNS, Exploring a “physical laboratory”: The Mediterranean

In: Koufos, G.D., Nagel, D. (Eds.), The late Miocene mammal faunas Basin, Athens, Book of Abstracts, p. 145.

of the Mytilinii basin, Samos Island, Greece: new collection. Beitr. S¸ enyürek, M.S., 1954. A study of the remains of Samotherium found at

Palaeontol., 31. Vienna, Austria, pp. 397–408. Taskınpasa, Ankara Universitesi Dil ve Tahir-Cografya. Fakültesi Der-

Koufos, G.D., Syrides, G., Kostopoulos, D.S., Koliadimou, K.K., Sylvestrou, gisi. 12 (1–2), 1–32, http://dx.doi.org/10.1501/dtcfder 0000001064.

I., Stefanides, G., Vlachou, D., 1997. New excavations in the Neogene Simpson, G.G., 1945. The principles of classification and a classification of

mammalian localities of Mytilinii, Samos island, Greece. Geodiversitas mammals. Bull. Am. Mus. Nat. Hist. 85, 1–350.

19 (4), 877–885. Solounias, N., 1981a. The Turolian fauna from the island of Samos, Greece,

Koufos, G.D., Mayda, S., Kaya, T., 2018. New carnivoran remains from the with special emphasis on the hyaenids and the bovids. Contrib. Ver-

late Miocene of Turkey. Palaeontol. Z. 92 (1), 131–162. tebr. Evol. 6, 1–232, http://dx.doi.org/10.1017/s0016756800026388.

Lewis, G.E., 1939. A new Bramatherium skull. Am. J. Sci. 237 (4), 275–280. Solounias, N., 1981b. Mammalian fossils of Samos and Pikermi. Part 2.

Linnaeus, C., 1758. Systema Naturae, 1., 10 ed. Engelman, Leipzig. Resurrection of a classic Turolian fauna. Ann. Carnegie Museum. 50,

Lunkka, J.-P., Kappelman, J., Ekart, D., Crabaugh, J., Gibbard, P., 2003. Geol- 231–270.

ogy. In: Fortelius, M., Kappelman, J., Sen, S., Bernor, R.L. (Eds.), Geology Solounias, N., 1988. Prevalence of ossicones in Giraffidae (Artio-

and Paleontology of the Miocene Sinap Formation, Turkey. Columbia dactyla, Mammalia). J. Mammal. 69 (4), 845–848, http://dx.doi.org/

University Press, New York, pp. 25–40. 10.2307/1381645.

Lydekker, R., 1876. Indian Tertiary and Post-Tertiary Vertebrata. Descrip- Solounias, N., 2007. Family Giraffidae. In: Prothero, D.R., Foss, S.E. (Eds.),

tions of the molar teeth and other remains of Mammalia. Mem. Geol. The evolution of artiodactyls,. The Johns Hopkins University Press,

Surv. India. 1, 19–83. Baltimore, MD, USA, pp. 257–291.

Lydekker, R., 1878. Crania of Ruminants from the Indian Tertiaries. Solounias, N., Danowitz, M., 2016a. Astragalar Morphology of

Palaeontol. Indica 10, 88–171. Selected Giraffidae. Plos One 11 (3), e0151310, http://dx.doi.org/

Marinos, G., Symeonidis, N., 1974. Neue Funde aus Pikermi (Attika, 10.1371/journal.pone.0151310.

Griechenland) und eine allgemeine geologische Übersicht dieses Solounias, N., Danowitz, M., 2016b. The Giraffidae of Maragheh and

paläontologischen Raumes. Ann. Geol. Pays hellen. 26, 1–20. the identification of a new species of Honanotherium. In: Mirzaie

Marra, A.C., Solounias, N., Carone, G., Rook, L., 2011. Palaeogeographic Ataabadi, M., Fortelius, M. (Eds.), The late Miocene Maragheh

significance of the giraffid remains (Mammalia, Arctiodactyla) from mammal fauna; results of recent multidisciplinary research. Pale-

Cessaniti (Late Miocene, Southern Italy). Geobios 44 (2–3), 189–197. obiodivers. Paleoenviron. 96(3). , pp. 489–506, http://dx.doi.org/10.

Matthew, W.D., 1929. Critical observations upon Siwalik mammals. Bull. 1007/s12549-016-0230-7.

Am. Mus. Nat. Hist. 56, 437–560. Solounias, N., Plavcan, J.M., Quade, J., Witmer, L., 1999. The paleoecology

Nishioka, Y., Hanta, R., Jintasakul, P., 2014. Note on giraffe remains from of the Pikermian biome and the savanna myth. In: Agustí, J., Rook, L.,

the Miocene of continental Southeast Asia. J. Sci. Technol. MSU. 33 (4), Andrews, P. (Eds.), The Evolution of Neogene Terrestrial Ecosystems

365–377. in Europe. , pp. 436–453.

Owen, R., 1848. Description of teeth and portions of jaws of two extinct Thomas, H., Sen, S., Ligabue, G., 1980. La faune miocene de la formation

anthracotherioid quadrupeds (Hyopotamus vectianus and Hyop. bov- Agha Jari du Jebel Hamrin. Irak. Proc. K. Ned. Akad. Wet. 83, 269–287.

inus) discovered by the Marchioness of Hastings in the Eocene Viranta, S., Werdelin, L., 2003. Carnivora. In: Fortelius, M., Kappelman, J.,

deposits on the N.W. coast of the Isle of Wight: with an attempt Sen, S., Bernor, R.L. (Eds.), Geology and paleontology of the Miocene

to develop Cuvier’s idea of the classification of pachyderms by Sinap Formation. Columbia University Press, New York, pp. 178–193.

the number of their toes. Quart. J. Geol. Soc. London 4, 103–141, Welcomme, J.L., Antoine, P.O., Duranthon, F., Mein, P., Ginsburg, L., 1997.

http://dx.doi.org/10.1144/gsl.jgs.1848.004.01-02.21. Nouvelles découvertes de Vertébrés miocènes dans le synclinal de

Ozansoy, F., 1965. Étude des gisements continentaux et des mammifères Dera Bugti (Balouchistan, Pakistan). C.R. Acad. Sci. Paris, Ser. IIa 325

du Cénozoïque de Turquie. Mem. Soc. geol. France 102, 1–93. (7), 531–536.

Pilgrim, G.E., 1911. The Fossil Giraffidae of India. Mem. Geol. Surv. India. Zdansky, O., 1924. Jungtertiäre Carnivoren chinas. Paleontol. Sin. C 2,

4, 1–29. 38–45.

Raza, S.M., Cheema, I.U., Downs, W.R., Rajpar, A.R., Ward, S.C., 2002. Zittel, K.A., 1893. Handbuch der Paläontologie. Vertebrata (Mammalia),

Miocene stratigraphy and mammal fauna from the Sulaiman Vol. 4. R. Oldenbourg, Munich and Leipzig, Germany.

Range, Southwestern Himalayas, Pakistan. Paleogeogr. Palaeoclima-

tol. Palaeoecol. 186 (3–4), 185–197.

Ríos, M., Danowitz, M., Solounias, N., 2016. First comprehensive morpho-

logical analysis on the metapodials of Giraffidae. Palaeontol. Electr. 19

(3), 1–39.