STABILITY AND CONTROL ISSUES ASSOCIATED WITH LIGHTLY LOADED ROTORS AUTOROTATING IN HIGH ADVANCE RATIO ADissertation Presentedto TheAcademicFaculty by JamesMichaelRigsby InPartialFulfillment OftheRequirementsfortheDegree DoctorofPhilosophyinthe SchoolofAerospaceEngineering GeorgiaInstituteofTechnology December2008 STABILITY AND CONTROL ISSUES ASSOCIATED WITH LIGHTLY LOADED ROTORS AUTOROTATING IN HIGH ADVANCE RATIO FLIGHT

Approvedby: ProfessorJ.V.R.Prasad,Advisor ProfessorDeweyH.Hodges SchoolofAerospace SchoolofAerospace Engineering Engineering GeorgiaInstituteofTechnology GeorgiaInstituteofTechnology ProfessorDanielP.Schrage ProfessorL.N.Sankar SchoolofAerospace SchoolofAerospace Engineering Engineering GeorgiaInstituteofTechnology GeorgiaInstituteofTechnology ProfessorDavidA.Peters DateApproved:October14,2008 DepartmentofMechanical,Aerospace andStructuralEngineering WashingtonUniversity,St.Louis ACKNOWLEDGEMENTS

IwouldliketoacknowledgemysincerestappreciationtoProfessorJ.V.R.Prasadforhis mentorship,incrediblepatience,andguidanceduringmytimeattheGeorgiaInstituteof

Technology.IwouldalsoliketothankProfessorDanielSchrageandProfessorLakshmi

Sankaraswell.ItwaswithinthiscircleofinfluencethatIdevelopedmyappreciationfor engineering, undoubtedly one of the most interesting, challenging, and multidisciplinary fields in all of aerospace engineering. In addition, I thank Professor

Dewey Hodges and Professor David Petersfortheirguidance and participation in the reviewandevaluationofthiswork.

I also thank the students who were finishing as I was just beginning: Chen

Chang,GeoffreyJeram,SurajUnnikrishnan,IllkayYavrucuk,andmanyothers.Special thankstoManujDhingra,whosefriendship,assistance,andpatienceopenedmyeyesto thewiderworldofcomputingandwhowasalwaystheretoresolvemymajorcomputing criseswithafewmagicallinesofcode.

I thank all of my friends at Georgia Tech for their help and support. Those friends include, but are not limited to: Mandy Goltsch, B.Y. Min, Alex Moodie, Kyle

Collins,TroySchank,andJongkiMoon,ErselOlcer,andSureshKannon.Also,Ioffera specialthankstoDr.HongXin,forfriendshipandfantasticsoftwaresupport.

Finally, I thank my family, without whose love and support, none of this would have been possible. My wife Xiaohong, my parents, my sister and brotherinlaw, all encouragedmeandprovidedsteadfastsupport.Idedicatethisworktothem.

iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ...... iii

LIST OF TABLES ...... vi

LIST OF FIGURES...... vii

LIST OF SYMBOLS AND ABBREVIATIONS ...... xii

SUMMARY...... xv

CHAPTER 1: INTRODUCTION...... 1

1.1Overview ...... 1

1.2LiteratureReview...... 2

1.2.1TheFaireyRotodyne...... 3

1.2.2TheMcDonnellXV1 ...... 5

1.2.3HighAdvanceRatioWindTunnelExperiments ...... 6

1.2.4AnalyticalInvestigations ...... 9

1.2.5...... 11

1.2.6Compound...... 12

1.2.7AdditionalWorks ...... 14

1.3PresentWork...... 14

1.4OrganizationofDissertation...... 18

CHAPTER 2: MODELING AND SIMULATION ENVIRONMENT ...... 21

2.1RotorModelFormulation ...... 21

2.2RotorSpeedDegreeofFreedomModel ...... 29

2.3AirframeModel ...... 31

2.4OperationalEnvelopeandTestConditions...... 32

2.5AnalysisSelectionandMethodologyOverview...... 33

iv CHAPTER 3: ISOLATED ROTOR ANALYSIS ...... 37

3.1AutorotatingRotorTrimandPerformanceTrends...... 37

3.2RotorStability ...... 50

3.3SteadyStateControlHubMomentsandCrossCoupling ...... 60

3.4RotorSteadyStateGustSensitivity...... 75

3.5RotorTransientResponseandSlowedRotorDynamics ...... 78

3.6RotorSpeedResponsetoSwashplateControls ...... 87

3.7CruiseConditionRotorPerformanceandMultipleTrimSolutions...... 91

3.8SourceofRotorSpeedNonlinearResponsetoControlInputs ...... 96

3.9PreferredRotorOperatingPointSelectionCriteria...... 103

3.10EffectofBladeTwistattheCruiseCondition ...... 107

3.11RotorPerformanceOutofMomentTrim ...... 110

3.12ChapterSummary...... 112

CHAPTER 4: COUPLED ROTOR-AIRFRAME ANALYSIS ...... 114

4.1RotorControlinQuasiSteadyManeuvers...... 115

4.1.1CommandedRotorSpeedTransitionManeuver...... 115

4.1.2FlightPathTransitionManeuver...... 123

4.3CoupledRotorandAirframeFlightDynamicsCharacteristics...... 125

4.4RotorSpeedandLongitudinalModeCoupling...... 133

4.5ChapterSummary...... 135

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS ...... 136

5.1Conclusions...... 136

5.2RecommendationsforFutureWork ...... 142

APPENDIX...... 145

REFERENCES...... 146

v LIST OF TABLES

Page Table1:FixedBaselineRotorParameters ...... 26

Table2:RotorMassPropertiesforParametricAnalysis...... 26

Table3:ParametricBaselineRotorProperties ...... 29

Table4:AirframeModelProperties ...... 31

Table5:Eigenvaluesfrom13StateLinearModel–LongitudinalModes...... 126

Table6:SystemIDandLinearAnalysisResults–CoupledPitchMotion ...... 129

Table7:Eigenvaluesfrom13StateLinearModel–Lateral/DirectionalModes ...... 131

Table8:SystemIDandLinearAnalysisResults–CoupledRollMotion...... 132

vi LIST OF FIGURES

Page Figure1:TheFaireyRotodyne,fromref[4] ...... 4

Figure2:TheMcDonnellAircraftXV1Convertiplane,fromreference[5]...... 5

Figure3:CenterSpringApproximationRotorModelfromRef.[52] ...... 24

Figure4:ArticulatedRotorModelHingeSequencefromRef.[54]...... 25

Figure5:FanPlotsforParametricRotorModels ...... 28

Figure6:FlapFrequenciesatReducedRotorSpeed...... 28

Figure7:RotorDrivetrainResponseatSeaLevelHover...... 30

Figure8:TestConditionsEnvelope...... 32

Figure9:BaselineRotorThrustCoefficientvs.AdvanceRatio...... 38

Figure10:BaselineRotortoRatiovs.AdvanceRatio ...... 39

Figure11:BaselineRotorShaftIncidencevs.AdvanceRatio ...... 40

Figure12:BaselineRotorLongitudinalCyclicvs.AdvanceRatio ...... 40

Figure13:BaselineRotorLateralCyclicvs.AdvanceRatio ...... 41

Figure14:ThrustCoefficientSensitivitytoRotorParameters...... 42

Figure15:LifttoDragRatioSensitivitytoRotorParameters...... 42

Figure16:ShaftIncidenceSensitivitytoRotorParameters ...... 43

Figure17:LongitudinalCyclicTrimSensitivitytoRotorParameters ...... 43

Figure18:LateralCyclicTrimSensitivitytoRotorParameters ...... 44

Figure19:ThrustCoefficientSensitivitytoCollectivePitch...... 45

Figure20:LifttoDragSensitivitytoCollectivePitch...... 46

Figure21:ShaftIncidenceSensitivitytoCollectivePitch...... 47

Figure22:LongitudinalCyclicTrimSensitivitytoCollectivePitch...... 47

vii Figure23:LateralCyclicTrimSensitivitytoCollectivePitch...... 48

Figure24:BaselineRotorAerodynamicContoursat=0.33 ...... 49

Figure25:BaselineRotorAerodynamicContours,=2.29 ...... 50

Figure26:TypicalRootLocusfromFloquetAnalysis ...... 52

Figure27:BaselineRotorStabilityfromFloquetAnalysis...... 54

Figure28:RotorStabilitySensitivitytoFlappingStiffness ...... 55

Figure29:RotorStabilitySensitivitytoLockNumber ...... 55

Figure30:RotorSpeedModeEigenvalueSensitivity ...... 56

Figure31:EigenvalueDampingvs.AdvanceRatioIncludingLeadLagMotion...... 57

Figure32:NonlinearRotorSpeedResponsewithLeadlagMotion...... 59

Figure33:LeadLagModeSensitivitytoDampingParameter ...... 59

Figure34:RotorPitchMomentTransientResponsetoLongitudinalCyclicStep...... 61

Figure35:RotorSpeedResponsetoLongitudinalCyclicStep–ShortTimeScale...... 61

Figure36:LongTimeScaleHubMomentResponsetoCyclicStep...... 62

Figure37:LongTimeScaleRotorSpeedResponsetoCyclicStep ...... 62

Figure38:SteadyStatePitchMomentResponsetoLongitudinalCyclicStep...... 64

Figure39:SteadyStateRollMomentfromLongitudinalCyclic...... 64

Figure40:SteadyStateHubMomentPhaseResponsetoLongitudinalCyclic...... 65

Figure41:SteadyStateRollMomentResponsetoLateralCyclicStep...... 66

Figure42:SteadyStateHubMomentPhaseResponsetoLateralCyclic...... 66

Figure43:SteadyStatePitchMomentfromLateralCyclic ...... 67

Figure44:SteadyStatePitchingMomentResponsetoCollectiveStep ...... 68

Figure45:SteadyStateRollingMomentResponsetoCollectiveStep ...... 69

Figure46:SteadyStatePitchingMomentResponseSensitivitytoFlapFrequency ...... 69

Figure47:LongitudinalPhaseAngleSensitivitytoRotorFlapFrequency ...... 70

Figure48:SteadyStateRollingMomentSensitivitytoFlappingFrequency ...... 71

viii Figure49:LateralPhaseAngleSensitivitytoRotorFlapFrequency ...... 71

Figure50:SteadyStatePitchingMomentSensitivitytoLockNumber...... 72

Figure51:LongitudinalPhaseAngleSensitivitytoLockNumber ...... 73

Figure52:SteadyStateRollingMomentfromLateralCyclic ...... 73

Figure53:LateralPhaseAngleSensitivitytoLockNumber...... 74

Figure54:BaselineRotorPitchMomentSensitivitytoVerticalGusts...... 76

Figure55:BaselineRotorPitchMomentSensitivitytoHorizontalGusts...... 76

Figure56:BaselineRotorSensitivitytoSideGusts...... 77

Figure57:ExperimentalFrequencyResponse–AdvanceRatioSensitivity ...... 80

Figure58:HubPitchingMomentFrequencyResponsetoShaftIncidenceAngle...... 81

Figure59:AdvanceRatioEffectonSlowedRotorTransientResponse ...... 83

Figure60:ExperimentalFrequencyResponse–FlapStiffnessSensitivity...... 84

Figure61:FrequencyResponseSensitivitytoFlappingStiffness...... 84

Figure62:RotorFlappingStiffnessEffectonSlowedRotorTransientResponse...... 85

Figure63:ExperimentalFrequencyResponse–LockNumberSensitivity ...... 86

Figure64:IdentifiedHubPitchingMomentFrequencyResponsetoShaftIncidence ....86

Figure65:LockNumberEffectonSlowedRotorTransientResponse ...... 87

Figure66:RotorSpeedResponsetoSmallandLargeLongitudinalCyclicSteps ...... 89

Figure67:AdvanceRatioEffectonRotorSpeedResponsetoLongitudinalCyclic ...... 89

Figure68:AdvanceRatioEffectonRotorSpeedResponsetoLateralCyclic...... 90

Figure69:AdvanceRatioEffectonRotorSpeedResponsetoCollective ...... 90

Figure70:TrimmedRotorCurves–CruiseCondition ...... 92

Figure71:RotorTrimContoursCruiseCondition...... 93

Figure72:CyclicControlPositionsonTrimContour–CruiseCondition...... 93

Figure73:RotorAccelerationSensitivitytoLongitudinalCyclicStepMagnitude ...... 95

Figure74:RotorAccelerationSensitivitytoLateralCyclicStepMagnitude ...... 95

ix Figure75:RotorAccelerationSensitivitytoCollectiveStepMagnitude ...... 96

Figure76:SensitivitytoRotorInflowModelBaselineRotor...... 97

Figure77:RotorAccelerationSensitivitytoRotorFlappingStiffness...... 98

Figure78:RotorAccelerationSensitivitytoLockNumber ...... 99

Figure79:BladeRootTorquevs.Azimuth ...... 100

Figure80:IndividualBladeTorqueMomentfor1 oSteadyStateCyclicPerturbation ...101

Figure81:IndividualBladeTorqueMomentfor2 oSteadyStateCyclicPerturbation ...102

Figure82:SteadyStateandPerturbedTorqueMomentsfromallFourBlades ...... 103

Figure83:RotorNonRotatingDegreesofFreedominTrimatCruiseCondition...... 105

Figure84:AdvanceRatioEffectonAzimuthThrustDistributioninTrim ...... 106

Figure85:MaximumCyclicFlappingAngleinTrim–CruiseCondition ...... 107

Figure86:AerodynamicContoursinwithBladeTwist ...... 108

Figure87:CruiseConditionTrimContourwithTwistedBlades ...... 109

Figure88:BladeFlappingonTrimContourwithBladeTwist...... 110

Figure89:BaselineRotorPerformanceOutofMomentTrim ...... 111

Figure90:BaselineRotorOutofTrimHubMomentCoefficients...... 111

Figure91:TransitionConditionAutorotationContour–OutofMomentTrim...... 116

Figure92:TransitionManeuverOutofMomentTrim...... 117

Figure93:ResidualHubMomentsandBladeFlapping–TransitionManeuver ...... 118

Figure94:TransitionConditionTrimContours ...... 119

Figure95:MaximumFlappingAngleinTrimatTransitionCondition ...... 120

Figure96:QuasiSteadyControlTrajectoriesforRotorSpeedTransitionManeuver ...122

Figure97:ConstantThrottleTransitionManeuverRotorLift ...... 122

Figure98:FlightPathTransitionManeuverControlTrajectories ...... 123

Figure99:FlightPathTransitionManeuverRotorLoadandBladeFlapping ...... 124

Figure100:LinearModelandNonlinearSimulationDoubletResponse ...... 127

x Figure101:IdentifiedPitchRateFrequencyResponsefromElevatorInput ...... 128

Figure102:CoupledRegressingFlapModeRootLocus–LongitudinalModels ...... 130

Figure103:CoupledShortPeriodModeRootLocus–LongitudinalModels ...... 130

Figure104.RollRatefromAileronIdentifiedFrequencyResponse...... 132

Figure105:RegressingFlapModeRootLocusfromLateralLinearModes...... 133

Figure106:RotorSpeedCouplingwithLongitudinalModes...... 134

Figure107.RotorBladeLiftandDragCoefficientData ...... 145

xi LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

Cς Leadlagdamperconstant[ftlbfs/rad]

* Cς Nondimensionalleadlagdampingparameter, Cς /I b

Ib Bladesecondmomentofinertiawithrespecttoflaporlaghinge

Kβ Rotorbladeflaphingespringconstant

L,M,N Bodyframeroll,pitch,andyawmoments

Mx,M y Rollingandpitchinghubmoments

Q RotorTorque

X,Y,Z Bodyframeaxes is Rotorshaftincidencetofreestreamvelocity p,q,r Angularvelocitycomponentsinbodyaxissystem u,v,w Velocitycomponentsinthebodyaxissystem

Incrementorchange

Rotorangularvelocity

β Rotorbladeflapangle

βss Rotorbladeflapangleinsteadystate

δ[] Pilotcontrolinputs

γ Locknumber

Advanceratio

φ θ ψ Eulerangles

ν Nondimensionalflappingfrequency

ς Nondimensionalleadlagfrequency

xii

Subscripts a aileron el elevator coll Collectivecontrol lat Lateralcontrol lon Longitudinalcontrol max Maximum pedals Yawcontrol p,q,r Partialderivativeswithrespecttoangularvelocitycomponents u,v,w Partialderivativeswithrespecttovelocitycomponents x,y Rollingandpitchingaxes

Partialderivativewithrespecttorotorspeed

0 Initialconditionorrotorconingmode

1c Firstharmoniccosinecomponent

1s Firstharmonicsinecomponent

Abbreviations

ACP Aerodynamiccomputationpoints

BEM Bladeelementmodel

CCTD CarterCopterTechnologyDemonstrator

CFD Computationalfluiddynamics

CSD Computationalstructuraldynamics

FTM Floquettransitionmatrix

MFT MatrixFloquettheory

NACA NationalAdvisoryCommitteeforAeronautics

xiii NASA NationalAeronauticalandSpaceAdministration

Rev Rotorrevolution

RIA Runwayindependentaircraft

RVR Reversevelocityrotor

SCP Structuralcomputationpoints

SystemID Systemidentificationanalysis

VTOL/STOL Verticaltakeoffandlanding/shorttakeoffandlanding

xiv SUMMARY

Interest in high speed rotorcraft has directed attention toward the slowedrotor, high advance ratio compound concept as evidenced by the current DARPA

Heliplane project. The behavior of partially unloaded rotors, autorotating at high advanceratioisnotwellunderstoodandnumeroustechnicalissuesmustberesolved before the can be realized. Autorotation in helicopters usually indicates an emergencylossofpower.Fortheconceptvehicleautorotationisthenormalworking state of the rotor. The necessity for a reduction in rotor speed with increasing flight speed results in high advance ratio operation where the retreating side of the rotor is dominatedbythereverseflowregion.Further,rotorspeedchangesalsoaffecttherotor dynamicsandtheassociatedhubmomentsgeneratedbycyclicflapping.Theresultis rotorcharacteristicsthatvarywidelydependingonadvanceratio.Inthepresentwork, rotor behavior is characterized in terms of issues relevant to the control system conceptual design and the rotor impact on the intrinsic vehicle flight dynamics characteristics. A series of trim, stability, and control analyses, based on features inherentintheconceptvehicle,areperformed.Trendsareidentifiedthroughparametric variation of rotor operating conditions, augmented by inclusion of the sensitivities to blademassandbladestiffnessproperties.

Inthisresearch,nonlinearmodels,includingtherotorspeeddegreeoffreedom, were created and analyzed with FLIGHTLAB TM rotorcraft modeling software.

Performance analysis for rotors trimmed to autorotate with zero average hub pitching and rolling moments indicates reduced rotor thrust is achieved primarily through rotor speed reduction at lower shaft incidence angle, and imposing hub moment trim constraintsresultsinathrustincrementsignreversalwithcollectivepitchangleabove

xv advanceratio ~ 0.1 .Swashplatecontrolperturbationsfromtrimindicateanincrease

in control sensitivities with advance ratio, and advance ratio dependent control cross

coupling.Hubmomentresponsetorotordisturbancesresultsintransientswhererotor

dampingisreducedduetolowLocknumberbladesandreducedrotorangularvelocity.

Experimentallyidentifiedfrequencyresponseshowsdominantlowfrequencymodeswith

advance ratio dependent damping and the frequencies are on the order of typical

airframe modes. Rotor speed response to swashplate control perturbations from trim

results in nonlinear behavior that is advance ratio dependent, and which stems from

cyclicflappingbehaviorathighadvanceratio.Rotorcontrolstrategiesweredeveloped

including the use of variable shaft incidence to achieve rotor speed control with hub

moment suppression achieved through cyclic control. Flight dynamics characteristics

resulting from the coupling of the rotor and airframe were predicted in flight using a

baseline airframe with conventional fixed controls, representative of the current

interest in the concept vehicle. Results predicted by linearization of the nonlinear

modelswerecomparedwithsystemidentificationresultsusingthenonlinearsimulation

assurrogateflighttestdata.Lowfrequencyrotorresponseisshowntocouplewiththe

vehiclemotionforshortperiodandrollmoderesponsetoairframecontrolinputs.The

rotorspeedmodeisshowntocouplewithshortperiodandlongperiodvehiclemodesas

therotortorquebalanceissensitivetovehiclespeedandattitudechanges.

xvi CHAPTER 1

INTRODUCTION

1.1 Overview

Increased speed and altitude capability are desirable for the survivability of military andthecostefficiencyofcivilianaircraft[1].Theslowedrotor,highadvance ratio compound autogyro has received attention as a potential configuration to meet these needs while retaining the equally desirable V/STOL capability. Several current researcheffortsareevidenceofthecurrentinterest.TheDARPAsponsoredHeliplane

DemonstratorAircraft(HDA),beingdevelopedbyGroenBrothersAviationofSaltLake

City,Utahisonesuchproject.Thepublicallystatedprogramobjectivesaretoachievea

400mphcruisespeedwithanunrefueledrangeof1,000miles[2].Thisspeedobjective is considerably beyond the capabilities of current helicopters, and the range objective suggests high altitude capability for efficient turbine operation.Carter Aviation

Technologies of Wichita Falls, Texas is also engaged in the development of high advanceratiorotorcraft,claimingtobethe“firstandonlyaircrafttoachieve = 0.1 ”,

whileduringaflighttestoftheCarterCopterTechnologyDemonstratortherotorspeed

wasreducedto107rpmataflightspeedof170mphfor1.5seconds[3].

Beforeasafe,practicalhighspeeddesign(~400mph)canberealizedhowever

many technical issues must be resolved. The behavior of partially unloaded rotors,

autorotatingathighadvanceratioisnotwellunderstoodandnumeroustechnicalissues

mustberesolvedbeforethevehiclecanberealized.Theinherentfeaturescontainedin

theconceptdescriptionalludetothemostcriticaltechnicalissues.Autorotationitselfis

wellunderstoodsincethepredecessorstohelicopterswereautogyros,butthefeatures

1 ofhighadvanceratio,reducedandvariablerotorspeed,andcompoundingintroducea multitudeofcomplexities.Inhighadvanceratiooperationtheretreatingsideoftherotor isdominatedbythereverseflowregion,whichisacomplexaerodynamicenvironment.

Theeffectofthereverseflowregionisoftenneglectedinanalyticalwork,but likelyrepresentsasignificantconsiderationfortheconceptvehicle.Further,alongwith an increase in flight speed, a reduction in rotor speed is required to avoid sonic conditionsontheadvancingbladewhichwouldleadtoincreaseddrag,structuralloads, vibration,etc.Theserotorspeedchangesaffecttherotordynamicsandtheassociated hubmomentsgeneratedbycyclicflapping.Compoundingresultsfromtheadditionof redundant lifting and thrusting devices such as and auxiliary propulsion. The additionofawingallowsthetaskofliftgenerationtobetransferredfromtherotortothe more aerodynamically efficient wing. The rotor will still produce some lift however in ordertoremaininautorotation.Theadditionofauxiliarypropulsionassumesthetaskof thrustgenerationforforwardpropulsion,withtherotoraddingtothevehicledragwhen the thrust vector is pointed aft. When these aspects are considered collectively, the implicationsforcontrollingthelightlyloadedrotorautorotatinginhighadvanceratioflight and the impact of the rotor on the intrinsic vehicle flight dynamics characteristics are obfuscated.

1.2 Literature Review

Previous research efforts were surveyed to ascertain the extent to which the existing knowledgebasecouldbeutilizedtoclarifytherotorbehavioranditsimpactonvehicle flight dynamics. A review of the relevant literature shows that it generally falls into several broad categories related to certain aspects of the concept vehicle. The characteristics of autogyros and autorotating rotors are well documented as the

2 predecessors to modern helicopters. A large amount of the early research related to rotorbehaviorwasbasedonautogyrosandthisworkcontributestotheunderstandingof autorotating rotors, albeit at relatively low flight speeds. Compound helicopters have been analyzed and built by many of the major helicopter manufacturers as research vehicles,butnonearecurrentlyinproduction.Theresearchdoeshowevercontributeto understanding of the lift sharing between the rotor and wing, which relates to the inherentconceptvehiclefeatureofpartiallyunloadingtherotor.Rotorsoperatingathigh advance ratio have been investigated in a variety of windtunnel experiments and analyticalstudies.Thisworkhighlightsthesignificanceofthereverseflowregionathigh advanceratioaswellasslowedrotordynamics,althoughautorotationalconstraintsare notaprominentfeature.Severalexperimentalvehicleshavebeenbuiltandtwoofthe mostnotablecompoundautogyrosweretheFaireyRotodyneandtheMcDonnellAircraft

XV1Convertiplane.

1.2.1 The

The Fairey Aviation Company Limited was a British aircraft manufacturer that demonstrated,withitsFaireyRotodyne,acompoundautogyrocapableofcruisingat160 knots[4].TheRotodyneflewasareactiondrivehelicopterfortakeoffandlanding,and then transitioned to an autogyro flight mode by reducing rotor power and increasing pitch for forward propulsion. At around 110 knots, reaction drive fuel was turnedoff,andtheauxiliarycompressorsweredeclutched.Atthispointthecollective was set to about 3 degrees and the rotor settled into autorotation. Figure 1 from reference[4]showstheRotodynenearhover.

3 Figure 1: The Fairey Rotodyne, from ref [4]

TheRotodynemadeitsfirstflightonNovember6 th ,1957,andmadeitsfirstfulltransition toautogyroflightApril10 th ,1958.Politicalandfinancialconstraintseventuallyledtothe programcancellationin1962.Theprojectdidhoweverdemonstratethemanagement ofapartiallyunloadedautorotatingrotoruptoanadvanceratioof ~ 6.0 [4].

TheRotodynecontrolsweresimilartoahelicopteratlowspeed,exceptwithyaw controlprovidebydifferentialpropellerthrust.Inautogyroflight,cycliccontrolprovided pitching and rolling moments, with the rudder providing yaw moments. Propulsion controlwasprobablythemostuniqueaspect,withtheneedtoswitchbetweenpowered, and unpowered rotor. Reference [4] provides an overview of the propulsion control scheme.Vehiclestabilityandcontrolassessmentsarementionedinreference[4]as“so farbeingmademainlybythepilots”,withnootherreferenceorexplanation.

4 1.2.2 The McDonnell Aircraft XV-1 Convertiplane

TheMcDonnellAircraftXV1ConvertiplanewasaU.S.ArmyandAirForcesponsored researchprojectinthe1950’s[5].TheXV1,showninFigure2,flewinthreedistinct flightmodes:helicoptermode,autogyromode,andmode[5].

Figure 2: The McDonnell Aircraft XV-1 Convertiplane, from reference [5].

Duringtransitiontoautogyromodethecollectivewassettoafixedvalueofaboutsix degrees while the tip jet fuel was turned off and the propeller clutched in. Finally in transitiontoairplanemode(125knotsandhigher)thepilotusedamanuallevertolock therotorgimbaltothecontrolstemanddisengagethepilotlongitudinalstickfromthe rotor.Simultaneouslythecollectivewasloweredtozerodegrees.Atthispointtherotor speedwascontrolledbyaflyballgovernorthatadjustedthecontrolstemforeandaftas needed [5]. During flight testing the XV1 achieved a maximum flight speed of 174 knotsandadvanceratioinexcessof0.9.TheXV1rotorhubwasauniquedesignby

Kurt Hohenemser, who was the Chief Engineer at the McDonnell Aircraft, Helicopter

Divisionatthetime.Thedesignisexplainedindetailinreferences[5]and[6].That

5 design allowed the rotor to retain the desirable speed stability and pitch damping characteristics, but also provide positive angle of attack static stability using a large delta3arrangementwithpitchconinghinges[6].

ThelongitudinalstabilityandcontrolcharacteristicsoftheXV1wereinvestigated intheAmes40by80footwindtunnel,andreportedbyHickeyin1956[7].Thetests wereconductedfortheautogyroandairplaneflightmodes,coveringspeedsfrom75to

150knots[7].Thetestsincludeddeterminationofthestaticspeedstability,staticangle of attack stability, and to a lesser degree, the longitudinal dynamic stability. The full scaletestsincludedrotoronandrotoroffconfigurations,andpoweredandunpowered propeller configurations. The tests were conducted at the most rearward center of gravity position, and concluded that the XV1 exhibited positive speed stability throughouttherangetestedandnegativeangleofattackstabilityinautogyromodeat therearwardcenterofgravityposition.Otherimportantresultsincludedaninvestigation of the downwash at the horizontal tail and interference effects between the hub and pylon[7].

1.2.3 High Advance Ratio Wind-Tunnel Experiments

Rotors operating at high advance ratio have been investigated by a number of researchers. Jenkins and Sweet [8] [9] investigated a 15foot diameter, twobladed teeteringrotorintheLangleyfullscaletunnelfortipspeedratiosfrom0.65to1.45.This data was used to compare with theoretical calculations to indicate thepredictability of theresults[9].Thetestprocedurecalledfortrimmingthetippathplanenormaltothe shaft for each test point. The results of the test reveal an interesting point. Jenkins noted that near an advance ratio of 1.0, there was a control reversal, in that a

“combinationofcollectiveandcyclicpitchwhichproducesapositivethrustincrementat

6 conventionaltipspeedratiosnowproducesanegativethrustincrement”[9].Jenkins further suggested that this “reversal could be quite disconcerting to a pilot … with manualcontroloftherotor”.Thisreversalisthecombinedresultofretrimmingtherotor to maintain constant rotor attitude, which is “desired to maintain rotorfuselage clearance”[9].

In1968,McCloud,Biggers,andStroub[10]investigatedfivefullscalerotorsin the 40 by 80foot wind tunnel at the NASA Ames Research Center. They testedtwo articulated rotors and three teetering rotors. The two articulated rotors were identical exceptfortwist,0degreesand8degreeslineartwistrespectively.Theteeteringrotors consisted of one 48 ft and 34 ft diameter rotor, along with a 48 ft diameter rotor with taperedthickness blades. The results were presented without discussion, but were meant to provide design guidance for high speed rotorcraft. Data was presented for advanceratiosupto1.05.

Fairchild Republic Company, under contract with the Naval Air Systems

Command, performed a series of tests at NASA’s Ames Research Center on a 1/7 th scale model of the Reverse Velocity Rotor (RVR) concept [11]. The RVR rotor was designed to operate at high advance ratio by using reversible capable of producingliftinthereverseflowregion.Twoperrevcontrolwasalsoafeatureofthe

RVR concept, but substantial results were presented with the twoperrev control disengagedforcomparisonpurposes.TheRVRrotorwasafourbladedarticulatedrotor withcoincidentflapandlaghingesat6.5percentofthebladeradiusandadelta3hinge angleof26.5degrees[11].Resultswereobtainedforadvanceratiosfrom0.3to2.4.

Thetestprocedurewastoadjustthelongitudinalandlateralcycliccontrolsateachtest pointtoachievezeroflapping.Aprimarypurposeofthetestwasthedeterminationof the structural loads, however a series of control inputs were made to examine the dynamicstabilityoftherotor.Norigorousflappingstabilityanalysiswasperformed,but

7 the time histories of flapping behavior after the control inputs showed a damped response up to an advance ratio of at least 2.0. The tests results showed the same apparentcontrolreversalasJenkinsobserved,butwentontoverifythattherewereno control reversals, instead the “trim requirements of decreasing longitudinal cyclic with increasingcollectivepitch,morethanoffsettheincreaseinthrustwithcollectiveathigh advanceratio”.Thisreportalsohighlightsthepresenceofrotorcontrolcrosscouplingat highadvanceratio.Pitchingandrollingmomentsweremeasuredforlongitudinaland lateral cyclic inputs. The resultsshowed a substantial offaxis response, and thatthe effectswerenotorthogonal,indicating“thatmomentuncouplingcannotbeachievedwith a single phase angle choice” [11]. The RVR project was largely concerned with increasing rotor effective lift to drag instead of unloading the rotor however, and autorotationwasnotamajorconcernfortheproposedpoweredrotorconfiguration.

KuczynskiandSissingh[12]investigatedhingelessrotorresponsecharacteristics at high advance ratio as part of a program with the United States Army Aeronautical

ResearchLaboratory(USAARL).Thetests,conductedatAmesResearchCenterand reported in 1971, investigated a rotor model that could be configured with a range of

Locknumbersandnondimensionalflapfrequencies.TheLocknumberwasvariedby theadditionoftipweights,andthenondimensionalflapfrequencieswereadjustedby theadditionofflexibleflappingrestraintsandvariationofrotorangularvelocity[12].The resultsincludetherotorresponsederivativeswithrespecttocontrolinputsasafunction of advance ratio, and illustrate the rotor response coupling. The rotor steady state responsederivativeswerealsocomparedtomathmodelpredictions.Themathmodel considered centrally hinged rigid blades, and used the Lock number and non dimensionalflapfrequencyastheprimarydescriptionoftheblades[12].Theinteresting result was the better correlation for the tests with the softer flapping restraint. The authors explain the differences by consideration of the mode shapes of the actual

8 blades. The math model provides a better description of the soft flexure, and they suggestanadequatemathmodelmayrequireahingeoffsetparameter,orafirstflap mode shape parameter [12]. The report concludes with a theoretical prediction of stabilityusingMatrixFloquetTheory(MFT).Theresultspredictaflappinginstabilityfor the configurations tested, but at advance ratios beyond the conditions tested. The highestadvanceratioconsideredinthisreportwas ~ .1 75 .

1.2.4 Analytical Investigations

Sissingh investigated the dynamics of rotors operating at high advance ratio [13] by solving the flapping equation through electronic analog simulation, and presented the results in 1967. Stability boundaries and response characteristics of “restrained and unrestrained blades at advance ratios from approximately 0.8 to 2.4” were reported.

Reversefloweffectswereincludedbyportioningtherotorazimuthintoregionsforthe calculationoftheforcingterms.Bramwelletal.[14]usedasimilarapproachtosolvethe flappingequationforarticulatedandteeteringrotorswitharangeofspringanddamper restraints. Flapping stability limit predictions were presented with the teetering rotor exhibitingstabilityuptoatleast ~ 0.5 .Perisho[15]analyzedthestabilityofoneblade

withtorsionalandbendingdegreesoffreedom,andpredictedthebladeinstabilitywitha

onehalfperrevolutionmotionashadbeenobservedinmodelwindtunneltestsduring

the development of the McDonnell Aircraft XV1 [15]. Peters and Hohensemser [16]

investigatedrotorstabilityforliftingrotorsincludingcaseswithDelta3feedbackandtilt

moment feedback using Floquet analysis. Stability boundaries are presented as

functions of advance ratio and Lock number and results are compared to the results

from Sissingh [13]. Features common to theses investigations are the study of

essentiallylowfrequencyphenomena,whichjustifiestheuseofquasistaticairloads.

9 Floros and Johnson [17] [18] analytically investigated theflapping stability of a slowedrotor compound helicopter. They used rigid flapping equations, based on

Sissingh’sequations,appliedtoavarietyofhubtypestoassessthesuitabilityforhigh advance ratio operation. The results include damping contours for a range of Lock numbersandadvanceratiosforthedifferenthubtypes.Alsopresentedwereresultsfor arotorandwingmodelbasedontheCarterCopterTechnologyDemonstrator(CCTD).

They modeled a teetering rotor with rigid and elastic blades in the comprehensive analysiscodeCAMRADII,andinvestigatedanydifferencesthatwouldbeintroducedby a more sophisticated representation of aerodynamics and blade motion. The results fromtherigidflappingequationsindicatedthatateeteringrotorwasagoodcandidatefor a high advance ratio rotor [17]. The CAMRAD II results showed that inclusion of the bladeelasticitydrasticallyreducedtheflappingstabilityboundarycomparedtotherigid blade model. All stability predictions were made using Floquet theory, and only the dampingoftheleaststablerootwaspresented.Thetrimcontrolsusedwerethetiltof the wing and rotor shaft, but no cyclic pitch was used, so the trim conditions are not representativeofthefullvehicle[17].

Berquist and Tanner [19] analyzed the effect of blade twist on a theoretical compound helicopter. Primary considerations were rotor performance and vibratory stresslevels.Resultssuggestlowrotorloadingandlowtwistvaluesproducethebest performance and acceptable stress levels. However for the theoretical Sikorskytype rotor to autorotate at the sea level conditions investigated, positive twist might be required[19],whichrepresentsahoverandlowspeedperformancepenalty.

Ashbyetal.[20]furtherconsideredthereversevelocityrotorconceptinresponse toNASA’sinterestinRunwayIndependentAircraft(RIA)andtheimpactontheNational

Air Transportation System. Data from the Fairchild’s windtunnel investigation were used as a validation of several of Sikorsky’s proprietary codes. Sikorsky’s concept

10 proposedarotorslowedusingacombinationofatwospeedtransmissionandengine rpm control, utilizing thrust compounding, but not lift compounding, nor requiring the rotortoautorotate[20].

Shank[21]investigatedconstrainedoptimizationoftheaeroelastictrimprocess forhighspeedcompoundrotorcraftwithnonuniquetrimsolutions.Therotorspeedwas incorporateddirectlyintothevehicletrimalgorithm,andanartificialneuralnetworkwas used as a surrogate for blade stress and strain calculations, which served as the constraint on the trim process. Fixed rotor shaft and variable rotor shaft cases were considered, with the optimality objective being the total vehicle lifttodrag. Results presentedindicatetheincreaseinlifttodragwiththeabilitytotilttherotorshaft,which effectivelyallowstherotortooperatealowerspeed.

1.2.5 Autogyros

Numerous researchers, including Glauert [22], Lock [23], Bailey [24][25][26] Wheatley

[27][28][29][30][31][32], Schrenk [33], and Hohenemser [34] contributed to the early literatureonmanyaspectsofrotatingwingsystems,includingperformancepredictions, and mathematical descriptions as functions of the design parameters. The intense interestinautogyrosledtoextensivewindtunnelexperiments,flighttests,andanalytical analysesregardingnearlyeveryaspectofautogyrooperationinthe1930s.Authorssuch as Bennett [35] and Breguet [36] analyzed the high speed potential of autogyros and madecomparisonswithfixedwingvehiclestopromotetheconcept.

More recently, flight dynamics of rotorcraft during autorotation has been investigated by Houston [37][38] using a generic simulation model that has been validatedwithflighttestdata.Thecouplingoftherotorspeeddegreeoffreedomwith thephugoidmodewasdemonstrated,alongwithadiscussionofseveraloftheimportant

11 stabilityderivativesthataffecttherotorspeedmodeandphugoidmode.Houstonnoted thatoutofthenewstabilityderivativesaddedwiththerotorspeeddegreeoffreedom,

M , plays a key role especially for rotorcraft with large pitching moments due to

collective,suchaswithrotorswithalargeflaphingeoffset[39].Houstonusedanalytical

expressions derived by applying the theory of weakly coupled systems in order to

partitionthelongitudinaldynamicsintotwosets.Theshortperiodmodeformedoneset,

withthephugoidandrotorspeedformingthesecond.Thispartitioningallowedclosed

formexpressionstobedevelopedtoprovideinsightintothesourceoftheplacementof

thelongitudinalroots.AdditionalworkbyHouston[39][40]appliedsystemidentification

techniquestoidentifythelongitudinalandlateraldynamicsofanautogyrofromflighttest

data.Thetestarticlewasarecreationalclassvehiclewithflightspeedsbelow100mph,

butstillprovidesvalidatedresultsforcomparisonregardingstabilityderivativesandroot

placement.Houstonalsoemphasizesseveralissuesthatarerelevanttoallautogyros,

namely the coupling of the rotor speed degree of freedom with the conventional rigid

bodydegreesoffreedom,andtheimportanceoftheverticalcenterofmasspositionwith

respecttothethrustline.

1.2.6 Compound Helicopters

Helicopters compounded with auxiliary lift and propulsive devices (compound helicopters) have been investigated as a means to increasethespeedand maneuver capabilities of rotorcraft. Several compound helicopter research programs have providedinsightintotheissuesassociatedwithliftsharingintheconceptvehicle,andto someextentautorotationinacompoundedconfiguration.

DealandJenkins[41][42]investigatedahingelessrotorcompoundhelicopterto determine the speed stability, maneuver stability, and rotorwing lift sharing in

12 maneuvering flight. The flight test revealed collective pitch settings for the maximum range of airspeeds the vehicle could be flown without adjusting the collective, and highlighted the relationship between collective pitch setting and aircraft attitude, especiallyatlowerairspeeds[42].Additionally,resultswerepresentedforrotorspeed variation with load factor. These results are applicable to rotor overspeed considerationsaswellasrotorautorotation.Thetestswereconductedinadescending, bankedturnatconstantairspeedandjetthrust,withtherotorpoweratflightidle.The rotor RPM was allowed to decrease to 90 percent of design speed to establish the minimumloadfactortopreventunderspeed.Theloadfactorwasthenincreaseduntil therotorincreasedto110percentofdesignspeed.Thisestablishedamaximumload factor to prevent rotor overspeed. Tests were repeated at different collective pitch settingandwingspoilersettings.Increasingthecollectivepitchincreasedthemaneuver overspeed boundary, while the spoilers could be used to decrease the autorotation underspeed boundary. The changes indicated that appropriate pilot action could be usedtoshifttheboundaries,butwouldrequirethepilottomonitortherotorspeed[42], potentiallyaddingcomplexitytothepilotingstrategy.

VanWyckhousereportedontheflighttestsoftheBellUH1compoundhelicopter maneuver flight test program in 1966 [43]. Wing and rotor lift contributions were reportedinsteadylevelflightandduringmaneuvers.Exampleresultsindicatedthatthe rotor,whilecarryingonlyabout30percentoftheliftinsteadylevelflight,providedthe majorityoftheloadfactorincrementinmaneuvers,withthewingcontributinglittletothe load factor increment [43]. Based on rotor structural load and vibration limits, these resultshighlightedtheneedformoreeffectiveuseoftheairframeliftingsurfaces,while restricting rotor loads during maneuvers [43]. Van Wyckhouse suggests in the conclusionthatfor“acompoundhelicopterusingfullairplanecontrol,caremustbetaken to prevent inadvertently overloading the rotor during a maneuver”. Blackburn [44]

13 investigated load factor feedback to collective as a means to unload the rotor during accelerated flight, as demonstrated during tests of the Kaman UH2 compound helicopter. Results indicated that the load factor feedback to collective was effective during symmetric pullup maneuvers, and the test pilots reported and improvement in handlingqualities[44],whichwasattributedtoareducedsensitivityofthelongitudinal cyclic[44]belowthatpreviouslyexhibitedinhighspeedflightwithoutfeedback.Orchard and Newman [45] suggest wing flaps as a means to increase wing loading during maneuvers,andindicatethepotentialbenefitsofflapsinhoverforreducingdownload, andspoilingliftforautorotationallandings[45]whilerecognizingthatunconventionalor morecomplexpilotingstrategiesmayresult.

1.2.7 Additional Works

Severalauthorshavecontributedtotheliteraturebyprovidingsummariesorhistorical perspectives.Leishman[46]providedanoverviewofthedevelopmentoftheautogyro, highlightingthetechnicalchallengesthatwereovercome,andadetaileddescriptionof thephysicalmechanismofautorotation.Hohenemser[47]describedtheflightdynamics ofhingelessrotorcraftwithnumerousexamplesfromexistingvehicles,andhighlightsthe potentialfor coupling between the rotor regressingflap mode and some body modes.

Thespecialproblemsassociatedwithhingelessrotorcraftaresummarized,aswellasa discussionofthedesignparametersthateffectflightdynamics.

1.3 Present Work

Allthepreviousworkcitedintheliteraturereviewcontributestothebasicknowledgethat

is relevant to the concept vehicle, however the inherently key aspects of the concept

vehicle have mainly been considered as ancillary. These key aspects: reduced rotor

14 speedoperation,reducedrotorthrust(unloading)andliftsharing,autorotation,andhigh advance ratio operation have appeared individually throughout the literature, but have not been studied collectively so as to thoroughly understand the combined characteristicsuniquetotheconceptvehicle.Anotableexceptistherecentanalytical work of Shank [21] concerning a similar high advance ratio compound autogyro configuration. The present work is intended to complement Shank’s work in several ways.First,Shankdetermined“Howtoflythevehicle”intermsoftheoptimizedliftto drag ratio. In the actual flight vehicle other considerations may prevail that preclude operation at the optimum lift to drag ratio. For instance, modeling uncertainty or the inability of the pilot to monitor and adjust the operating conditions to achieve the optimumlifttodragratiomayresultinoperationinnonoptimumconditions.Secondly, otherfactorscouldimposeconstraintsthatpreventoperationattheoptimumlifttodrag ratioforflightsafetyreasons,suchasvehiclestabilityconsiderationsortheincreased potentialfor hull strikes, etc. Forthese reasons it is desirable to identify stability and control trends over a wider range of operating conditions and to appreciate the sensitivitiestotherotorparameters.

The objective of the present work is to consider the inherent features of the conceptvehiclecollectively,andidentifystabilityandcontrolcharacteristicsrelevantto thecontrolsystemconceptualdesignandtheimpactoftherotorontheintrinsicflight dynamicscharacteristicsoftheconceptvehicle.Duringtheconceptualdesignphase, the primary vehicle and rotor parameters are constantly evolving as information is gainedthroughmultidisciplinaryanalysis,testing,andtheinevitabletradeoffsaremade toaccomplishthetoplevelprojectgoals.Thereforestabilityandcontrolanalysisonan everchangingconfigurationcanproduceoutdatedorsuspectresults.Further,single pointorsingleconfigurationanalysiscanproduceresultsthatarenoteasilyunderstood withoutameanstoconnectthemtomorefamiliarresults.Thusaprimarytaskofthis

15 dissertationwastoperformaseriesoftrim,stability,andcontrolanalysesforabaseline configurationoverawiderangeofoperatingconditions.Nexttrendsassociatedwiththe rotor parameters were identified that clearly show the expected impact as design refinementsareproposedandtradeoffsconsidered.

Another equally important objective of this dissertation is to use the analysis resultstodevelopinsightintopotentialrotorcontrolstrategiesfortheconceptvehicle.

Theprimaryrotorcontrolfunctionisthespecificationandregulationoftherotorspeed.

Asecondaryrotorcontrolfunctionisthemanagementofcyclicflappingsoastoavoid

excessive structural loads and vibration. A number of rotor control strategies are

possible. Of particular interest for the concept vehicle is the potential to use the

swashplate controls and possibly tilting of the rotor shaft to accomplish rotor control.

Theseanalysesresultsprovideinsightintotheeffectsofslowingtherotor,reverseflow,

and changesto the rotor parameters, which must be understood before implementing

anyparticularrotorcontrolstrategy.

Finally, an objective of the present work is also to assess the intrinsic vehicle

flightdynamicscharacteristicsduetothecouplingoftherotorandairframe.Resultsof

interestaretheeffectoftherotoronthepresenceofclassicalaircraftmodesandthe

couplingoftherotorspeedmodewithvehiclemotion.

Insummary,anunderstandingofthestabilityandcontrolcharacteristicswhen

the key aspects of the concept vehicle are combined represents an open area of

research.Researchquestionswereformulatedtoguidetheeffortsinaccordancewith

thestatedobjectives,andtheresearchquestionsaresummarizedhereunderheadings

thatreflectthemajorsectionsinthepresentwork.

16 RotorTrimandPerformance–HowtoUnloadtheRotor

1) Underwhatconditionsisautorotationpossible?

2) How are the rotor speed, free stream velocity, rotor shaft incidence, and

collectivepitchrelatedwhenthetrimconditionsofzerotorque,andzeroaverage

hubmomentsareimposed?

3) Howcantherotorbeunloaded,andwhatthrustresultswhenthetrimconditions

areimposed?

4) What effect does the reverse flow have on the trim solution trends and the

pilotingorcontrolstrategy?

5) How is the rotor performance affected by imposing the hub moment trim

constraints?

RotorStability–WhatEffectsTendtoResultinReducedRotorStability

1) Howdotheadvanceratio,rotorspeed,andtherotorparametersaffecttherotor

stability,andwhateffectstendtoreducestability?

2) Howdoestherotorspeeddegreeoffreedomaffecttherotorstability?

3) Howdoestheleadlagblademotionaffecttherotorstability?

RotorPitchandRollingMomentSensitivitiestoSwashplateControlInputsandGusts

1) Howdoestherotorspeeddegreeoffreedomaffectthehubmomentresponseto

controlinputsand/ordisturbances?

2) What is the impact of slowed rotor operation athigh advance ratio on the hub

pitchingandrollingmomentsproducedbytheswashplatecontrols?

3) Howdoesthecrosscouplingdependontherotorparametersandadvanceratio?

17 SlowedRotorDynamics

1) Whatistheimpactofoperatingatareducedrotorspeedontherotordynamics?

2) Is the quasisteady rotor assumption valid, and what is the time scale of rotor

transienthubmomentresponse?

3) Howdoeshighadvanceratiooperationimpacttherotordynamics?

RotorSpeedResponsetoSwashplateControls

1) Cantheswashplatecontrolsbeusedforrotorspeedregulationandcontrol?

2) Whichcontrol(s)aremosteffectiveforrotorspeedcontrolathighadvanceratio?

3) Howdoesthereverseflowaltertherotorspeedcontrolstrategy?

4) Doestherotorspeedcontrolstrategyvarywiththerotorparameters?

5) Howquicklydoestherotorspeedchangewhentherotorisdisturbedfromtrim?

CoupledRotorandAirframeInteractionandRotorControl

1) What impact do the slowed rotor dynamics and the rotor speed degree of

freedom have on the intrinsic flight dynamics characteristics of the concept

vehicle?

2) Howcantherotorspeedbecontrolled,andwhatpracticalconsiderationsimpact

therotorcontrolstrategy?

1.4 Organization of Dissertation

Chapter1providesinintroductiontotheconceptofaslowedrotor,highadvanceratio compoundautogyro,aswellasthebackgroundliteraturereviewrelatedtotheconcept.

18 The motivation for the current research is also described, and the particular issues of interestareidentifiedintermsoftheresearchquestionsforwhichanswersaresought.

Inordertoinvestigatetheidentifiedissuesrelatedtotheconcept,detailedrotor andairframemodelsarerequiredthatspecificallyaccountfortheeffectofreverseflow, complexrotorblademotion,therotorspeeddegreeoffreedom,andprovideameansto varytheoperatingconditionsandrotordesignvariablesparametrically.Adescriptionof the models used in the analysis along with the analysis methods employed for addressingtheresearchquestionsispresentedinChapter2.

Chapter3presentstheresultspertinenttotheisolatedrotormodels.Rotortrim isdefined,andtherelationshipsbetweenrotorangularvelocity,autorotation,swashplate control positions, andflight speedfor trimmed rotors are presented in section 3.1. At highadvanceratiotheaerodynamicloadsarehighlyperiodic,androtorstabilityanalysis resultsarepresentedinsection3.2.Insections3.3and3.4,thequestionsrelatedtothe swashplate control moment sensitivities and gust sensitivities are addressed by presentation of the rotor steadystate hub pitching and rolling moments resulting from gustsandcontrolstepinputdisturbances.Section3.5addressesthequestionsrelated totheslowedrotordynamics.Thehubmomentresponsetorotorshaftincidenceangle isusedasameanstoexcitetherotortransientresponse.Systemidentificationmethods areappliedtopredicttherotorfrequencyresponsetodisturbancesforidentificationof thedominantrotorfrequenciesandtheeffectoftherotorparametersandadvanceratio.

Section 3.6 discusses the rotor speed response to swashplate control inputs and the relation to strategies for rotor speed control. Section 3.7 discusses the existence of multipletrimsolutionsandthesensitivitytotheinitialtrimconditionoftherotorspeed responsetoswashplateinputs.Section3.8addressesthesourceofthenonlinearrotor speedbehaviorobservedinsections3.6and3.7,aswellasprovidesadetailedanalysis oftheeffectsthatcontributetotherotortorquebalance.Section3.9addressesmoment

19 trim at high advance ratio and the steadystate flapping behavior on the trim contour presented in section 3.7. Section 3.10 addresses the effect of blade twist on the autorotationaltrimcontourcomparedtotheuntwistedblademodel.Insection3.11rotor performanceresultsforoutoftrimoperationarepresentedbyimposingtheautorotation condition,butleavingthecycliccontrolscentered.

Chapter 4 takes the isolated rotor models and couples them with an airframe model to address the research questions related to the interactions of the rotor and airframeandrotorcontrolstrategies.Fullvehicletrimisaccomplishedusingswashplate controls, conventional airframe controls, and rotor shaft incidence as trim variables.

Methodsofrotorspeedregulationarediscussedintermsofsteadyleveltrimandtwo aircraft quasisteady maneuvers: a rotor speed transition maneuver (commanded changeinrotorspeed)andaclimb/descentmaneuveratconstantrotorspeed.Quasi steady control and attitude trajectoriesfor themaneuvers are presented and the rotor control strategies are discussed in section 4.2 and section 4.3. Coupled rotor and airframeflightdynamicscharacteristicsarediscussedinsection4.5.

Chapter 5 summarizes the conclusions drawn from this study and presents recommendationsforfuturework.

20 CHAPTER 2

MODELING AND SIMULATION ENVIRONMENT

This chapter provides a detailed description of the models used in the analysis. Of concernherearetherotormodelsforpredictionoftheimpactoftheprimaryrotordesign parameters,modelingoftherotorspeeddegreeoffreedom,andthebaselineairframe modelwithconventionalcontrolsurfaces.Thelastsectionofthischapterpresentsan overviewoftheanalysesthatwereselectedtoanswertheresearchquestionsusing:trim results, Floquet analysis, time integration of the nonlinear simulation, and system identificationmethods.

2.1 Rotor Model Formulation

Accuratepredictionoftherotorbehaviorisafundamentalchallengeforanalysisofthe

conceptvehicle.Theinteractionsoftheaerodynamicsandrotorstructurearecomplex,

andinordertoaccuratelycharacterizetherotoroverarangeofconditionsbeyondthe

conceptualdesignphase,asubstantialeffortwouldberequiredinvolvingcomparisons

between computationally intensive modeling results and experimental data, likely with

numerousiterationstorefinethemodelstocorrelatewiththeexperimentaldata.Inthe

present work the analysis isfocused ontwo primary areas:the impactofthe rotor as

relatedtothevehicleflightdynamics,andtherotorbehaviorrelatedtotheconceptual

designofthecontrolsystem.Theconceptvehicleisexpectedtoutilizearotorwithstiff

inplane and outofplane characteristics which will be capable of generating large

momentsevenasthethrustloadingisreduced.Couplingofthesehubmomentswith

thevehicledynamicsisofprimaryinterestinthepresentwork.Thecontrolsystemis

expectedtoprovideameanstospecifyandregulatetherotorspeedtoavoidresonance

21 conditionsduetooperatingatfrequenciesthatcoincidewithstructuralfrequencieswhile maintainingtherotorrotation.Forthispurposeanunderstandingoftherotorbehavior asafunctionoftherotorspeedandflightspeedareessential.

Fortypicalflightdynamicssimulationmodels,Tischler[49]reportsthefrequency rangeofinterestas~0.3to12rad/sandemphasizesthatmodelsoftherotordynamics must be accurate near the frequency of the regressing flap mode as well. Analytical solutionfortherotorfrequenciesarepresentedbyJohnson[50]andothersforthehover case.Forrotorswiththreeofmoreblades,thetransformationoftherootstothenon rotatingframeleavestherealpartoftherootsunchanged,butshiftsthefrequencyby

± , forming the low frequency regressing mode and the high frequency advancing

mode, with the coning mode unchanged. The real part of the root is given by

− γ /16 andthefrequenciesaredeterminedbytheflappingstiffness.Fortheconcept

vehiclethecombinationofheavybladesandhighaltitudeoperationresultsinalowLock

number, γ ~ 2 ,andthereducedrotorspeeddrawstheregressingflapmodefrequency

tothesameorderofmagnitudeasthehighfrequencybodymotion.Thustheeffectsof

primaryconcerninthepresentworkcanbeconsideredrelativelylowfrequency,even

whentherotordynamicsareincluded.

The complex aerodynamic environment of the rotor is exacerbated by the

reverse flow region which dominates the retreating side of the rotor at high advance

ratio. The wake of an autorotating rotor is however above the rotor and with the

combination of theforwardflightspeed,reduced rotor speed, andreduced thrustload

theflowthoughtherotorislikelydominatedbytheinflowduetotheflightspeed,withthe

shedvorticesquicklyleftbehindinthefarfield.Forthepurposesofidentifyingtrends

associated with the rotor operating conditions and the rotor parameters an elaborate,

computationallyintensiverotorwakemodelwasdeemedunwarranted.

22 The choice of the type of hub and method of blade attachment is a design choice. The literature review revealed high advance ratio studies involving teetering, articulatedandhingelessrotors.Forthepresentworkthenumberofblades,therotor radius,andthebladechordareassumedtobefixedfrommissionanalysisandsizing considerations.Inthiscasearotormodelformulationispreferredthataccommodates theparametricvariationoftheoperatingconditionsandrotorparameters.Theconcept vehicleasdescribedintheliteratureisexpectedtouseahingelessrotor.Thehingeless rotor provides several advantages over an articulated rotor such as “mechanical simplicity with a low parts count and low aerodynamic drag” [51]. Modeling of a hingelessrotorrequiresdetailedinformationaboutthestructuralpropertiesoftheblade whichmaynotbeknownintheconceptualdesignphase.Introducingalevelofdetailed modeling consistent with a hingeless rotor with elastic blades may also introduce instabilitiesintothemodelrelatedtophenomenanotunderconsiderationinthepresent work,flutter,etc.Padfield[52]providesadiscussionofthe centerspringapproximation andtheassociatedtradeoffsinfidelity,consistingprimarilyoferrorsinthemodeshapes of the actual elastic blades. Further, the fundamental difference in the blade root attachment boundary conditions between hingeless rotors and articulated rotors precludes exact equivalence of the two formulations. Figure 3 from reference [52] showsthecenterspringapproximationcomparedtotheelasticandhingeoffsetblade models. Padfield [52] also cites several examples from the literature related to high speed flight in which the higher bending modes are important for flight dynamics of helicopters. For helicopters in high speed flight though the rotor is heavily loaded producingsufficientthrustforforwardpropulsionandlift.

23 Figure 3: Center Spring Approximation Rotor Model from Ref. [52]

Theinherentfeatureofunloadingtherotorandtheadmissibilityofanarticulatedrotor

into the conceptual design justifies investigation using the center spring model for a

parametrictrendsanalysisofrelativelylowthrustandlowfrequencyeffects.

In addition to tailoring the model formulation to the specific problems to be

addressed,themodelfidelityinthevariousaspectsshouldbebalancedsoasnottoadd

unnecessary computational overhead or incorrectly imply a level of accuracy to the

overallresults.ThemodelformulationselectedforimplementationinFLIGHTLAB TM [53]

was the articulated rotor, bladeelement model. Rigid blades were assumed and a

dynamic inflow model was selected as the baseline configuration. The flapping

frequency was determined by the addition of flapping hinge springs, and the models

were created with zero hingeoffset so that the flapping spring stiffness completely

determinedtheflappingfrequency.Whenleadlagmotionwasconsidered,theflapand

lag hinges were coincident. The sequence of hinges in the FLIGHTLAB TM articulated

24 rotormodelwas:flap,pitch,leadlagproceedingfromthecenterofrotationtowardthe blade tip. Figure 4 shows a schematic from reference [54] of the physical implementationofthehingesequence.AirloadswerecalculatedinFLIGHTLAB TM using atablelookupquasisteadymodel.

Figure 4: Articulated Rotor Model Hinge Sequence from Ref. [54]

ThefixedbaselinerotorparametersareshowninTable1,andwerecommonto all of the parametric models implemented in FLIGHTLAB TM . The rotor blades were

modeledasrigidbodieswithconstantmassproperties,andtheblademassproperties

usedforparametricanalysisareshowninTable2.Thesepropertieswerechosentobe

similar to values identified in the literaturereview for high advance ratio rotors, where

heavy, stiff blades operating at low density implies low Lock numbers and high non

dimensionalflappingfrequencies.

25 Table 1: Fixed Baseline Rotor Parameters Parameter Value Typeofrotor ArticulatedwithFlapSprings Numberofblades 4 Nominal40%RotorSpeed 12rad/s Rotorradius 21.5feet Bladechord 1.7feet Airfoil NACA0012 Hingeoffset 0 BladeTwist 0deg. Inflowmodel DynamicInflow

Table 2: Rotor Mass Properties for Parametric Analysis Mass per unit Weight per Blade Second Moment of Inertia length[sl/ft] [lbf] withrespecttotheFlapHinge [slft 2] Blade1 0.1 69.2 331.3 Blade2 0.2 138.5 662.6 Blade3 0.3 207.7 993.8 Blade4 0.4 276.9 1325.1

TheFLIGHTLAB TM inputfilesrequireadescriptionoftheblademasspropertiesinterms ofatableofradialstationandmassperunitlengthofthebladevalues.Inthiscase, withconstantmassproperties,thesecondmomentofinertiaofthebladeabouttheflap hingewaseasilydetermined,andastraightforwardcalculationoftheLocknumberwas made.TheLocknumberitselfisnotadirectinputtoFLIGHTLAB TM ,butisaresultofthe

mass properties input tables and the air density. The four blademass profiles were

designatedasbladesonethroughfourforeaseofidentification.Thenondimensional

flap frequency, ν , was determined for each of the blade models as a function of the flapping hinge spring constant and the rotor speed. The ‘Fan Plot’ utility in

26 FLIGHTLAB TM was used to correlate the nondimensional flapping frequency with the

flappinghingespringstiffnessaccordingto:

K ν = 1+ β I 2

ThecalculationsandtheFLIGHTLAB TM resultswereconsistenttowithinabout1%.The fan plot results are shown in Figure 5 for typical spring constant values. These four blademodelsformedthebasisfortheparametricanalysis.Sinceaprimaryinterestin the current work is the rotor behavior at a reduced rotor speed of 12 rad/s which correspondsto40%percentofthenominalhoverspeed,therotorpropertiesalsowere summarizedasinFigure6,whichshowstherelationshipbetweenthedifferentblades, theflaphingespringconstants,andtheresultingnondimensionalflapfrequencyatthe reducedrotorspeed.Sincethenondimensionalflapfrequencydependsontheratioof the spring constant and the blade second moment of inertia, lighter blades require a smaller spring constant for a given nondimensional flap frequency. The figure also demonstrates how the spring constants were varied between the blade models when analysisresultsatconstant ν arepresented.

In addition to the fixed baseline rotor parameters, a blade mass and spring

stiffnesscombinationwaschosenasaparametricbaselinetoserveasastartingpoint

forfurtheranalysis.Theimpactoftherotorparameterswasthenpresentedwithrespect

tothebaselinesothattrendscouldbeidentifiedmorereadily.Theparametricbaseline

stiffnessandmasspropertiesareshowninTable3.

27 Fan Plots for Parametric Rotor Models

] 1.2 1.2 0 ] 0 K =50,000ftlbf/rad K =10,000ftlbf/rad β

β / / ω ω

ω ω K =75,000ftlbf/rad 1.0 K =50,000ftlbf/rad 1.0 β ω ω

β ω ω K =75,000ftlbf/rad K =100,000ftlbf/rad β β 0.8 K =100,000ftlbf/rad 0.8 K =200,000ftlbf/rad β β 1/rev 1/rev

0.6 0.6

0.4 0.4 Blade 1 Fan Plot 0.2 0.2 Blade 2 Fan Plot Uniform Mass Uniform Mass Normalized Frequency [ Mass per ft =0.1 sl/ft Normalized Frequency [ Mass per ft =0.2 sl/ft 0.0 0.0 0 20 40 60 80 100 0 20 40 60 80 100 Rotor Speed [percent] Rotor Speed [percent] 1.2 ] ]

1.2 0 0 K =25,000ftlbf/rad K =50,000ftlbf/rad β β / / / ω ω ω ω 1.0 ω ω ω ω K =50,000ftlbf/rad K =100,000ftlbf/rad 1.0 β β K =100,000ftlbf/rad K =200,000ftlbf/rad β 0.8 β 0.8 K =200,000ftlbf/rad 1/rev β 1/rev

0.6

0.6

0.4 0.4 Blade 4 Fan Plot Blade 3 Fan Plot 0.2 0.2 Uniform Mass Normalized Frequency[ Normalized Frequency [ Uniform Mass Mass per ft =0.4 sl/ft Mass per ft =0.3 sl/ft 0.0 0.0 0 20 40 60 80 100 0 20 40 60 80 100 Rotor Speed [percent] Rotor Speed [percent] Figure 5: Fan Plots for Parametric Rotor Models

Rotor Flap Frequencies at Reduced Rotor Speed 2.0

1.8

1.6 LockNumber at30k,ISA

1.4 StandardDay Conditions =12rad/s γ=5.59 1.2 γ=2.79 γ=1.86 1.0 γ=1.40 Non-dimensional Flap Frequency 0 100 200 300 400 500 Flapping Hinge Spring Constant [ft-lbf/rad/1000] Figure 6: Flap Frequencies at Reduced Rotor Speed

28 Table 3: Parametric Baseline Rotor Properties AnalyticalQuantity FLIGHTLABInput LockNumberAt30k, Massperfoot=0.4 ISAStandardday γ = 4.1 slug/ft Nondimensional K =100,000ftlbf/rad Flapfrequencyat12rad/sν = .1 24 β

2.2 Rotor Speed Degree of Freedom Model

Therotorspeeddegreeoffreedomisaninherentfeatureofautorotation,anditseffects representasignificantportionoftheknowledgegapassociatedwiththeconceptvehicle.

Thereforeitsinclusionwasdeemedanecessaryfeatureandcriticalforthepresentwork.

The rotor speed degreeoffreedom was modeled using FLIGHTLAB TM library components including: drivetrain, shaft, gears, and a clutch component in conjunction withtheconstantspeedidealengine.Theclutchcomponentallowedtherotorspeedto remain constant during trimming routines, and provided a manual override to prevent anyengineshafttorquefrombeingappliedtotherotorduringthenonlinearsimulation of autorotation. The presence of an engine model is a feature of FLIGHTLAB TM for

helicopter simulation, and is required in rotorcraft models. The ideal engine simply

providesaconstantrotorspeedwithnodrivetraindynamics,andnotorquelimits.The

shaftandclutchcomponentsallowedtherotorspeedtovaryundertheinfluenceofthe

aerodynamics, etc, with no effect from the constant speed shaft of the ideal engine.

Theclutchstatewascontrolledthroughanon/offflaginthesimulation.

Rotor speed behavior was investigated at hover conditions and in zerodensity

conditionstocharacterizethedrivetrainmodel.Figure7showstherotorthrustathover

versusthecollectivepitchsettingfortheparametricbaselinemodel.Acollectivesetting

ofninedegreesprovidedathrustsimilartotheconceptvehiclegrossweightandwas

29 usedtodemonstratetherotorspeedbehaviorwiththeclutchdisengagedsuchthatno input shaft torque was applied to the rotor. The right side of Figure 7 shows two test cases.Inthefirstcasetherotorspeeddecaysinthepresenceoftheatmospherewith thecollectiveheldconstant,andthesecondcasetherotorspeedremainsconstantwith the density flag set to the “off” position. The result was a rotor speed that varied dependingononlytheaerodynamics,withnolossesinthedrivetrainduetofriction,etc.

This feature augmented the modeling of steady state autorotation in trim with the capabilitytoincludetherotorspeeddegreeoffreedominthenonlinearsimulation.

Rotor Thrust vs. Rotor Speed Response Collective Pitch at Hover to Clutch Disengagement 12000 BaselineRotor HoverConditions 30 10000 SLLockNumber=3.73 StandardSeaLevel =30rad/s DensityFlag"Off" 25 BaselineRotor 8000 HoverConditions beforeClutch Disengaged Q=18,162ftlbf 6000 20 T=10,640lbf o

Thrust Thrust [lbf] FM=0.77, θ =9.0 0 4000 RotorSpeed [rad/s] 15

2000 10 0 0 2 4 6 8 10 0 5 10 15 20 Collective Pitch [deg] time [sec] Figure 7: Rotor Drivetrain Response at Sea Level Hover

30 2.3 Airframe Model

The airframe configuration itself represents a design choice. A configuration was chosenasrepresentativeoftheconceptvehicleconfigurationfromthepubliclyavailable information. The primary purpose of the airframe model was to investigate issues relatedtointeractionoftherotorandairframe.Parametricanalysiswasrestrictedtothe rotorparametersastherotorrepresentsthenovelportionoftheconceptvehicle.The airframe model consisted of fuselage mass and inertia properties, and aerodynamic coefficient properties, along with horizontal and vertical stabilizers. The were modeled as pointforces with a fixed orientation in the body frame, but adjustable magnitudes for the trim process. Conventional fixed wing control surfaces wereincludedforairframecontrolseparatefromtherotorcontrols.Theairframemodel propertiesareshowninTable4.

Table 4: Airframe Model Properties Airframe Model Parameters GrossWeight 10,000lbs. FuselageEquivalentDragArea 10ft 2 WingSpan 30ft Airfoil NACA009withFlap Rootchord 4.5ft TipChord 2.0ft SweepAngle 5degrees DihedralAngle 4degrees HorizontalTailPlanformArea 40ft 2 HorizontalTailLocation 17ftBehindRotorHub VerticalTailPlanformArea 40ft 2 VerticalTailLocation 17ftBehindRotorHub AuxiliaryPropulsionSystem Thrustforceasrequired

31 2.4 Operational Envelope and Test Conditions

All analysis was conducted at test conditions of 30,000 ft altitude in the Standard

Atmosphere. This condition was selected as representative of the concept vehicle cruisemission,whereasubstantialportionoftheflightwillbeconducted.Achievingthe maximumlevelflightcruisespeedrequirestherotortobeslowedto40%ofthenominal hover angular velocity with an advance ratio ~ .2 29 to adhere to the advancing tip

MachnumberlimitM 1,90 <~0.85.Therelationshipbetweentheflightspeed,rotorspeed,

advance ratio, and advancing tip Mach number is shown in Figure 8. The hatched

regiondefinestheenvelopeoftestconditionsconsideredforthepresentwork.

Operational Envelope and Test Conditions 30,000ft,ISAConditions =2.32.01.81.61.41.2 400 1.0

300 0.8

0.6 200

M 1, 90 =0 .85 0.4 Velocity [kts] Velocity

100 0.7 0 0 0 5 .45 .55 .65

0 12 14 16 18 20 22 24 26 28 30 Rotor Speed [rad/s] Figure 8: Test Conditions Envelope

32 2.5 Analysis Selection and Methodology Overview

This section describes the relationship between the inherent feature of the concept vehicle,theresearchquestions,andanalysisselectedtoanswertheresearchquestions.

Mostanalysesbeganwithtrimmingthemodel.Thisprocessofdeterminingthecontrol positionsforaprescribedsteadystateconditionsetsthemodelinitialstatesforfurther analysis.Trimconditionsimposedinthepresentworkaredefinedinsection3.1.

RotorstabilitywasassessedbyapplyingFloquetanalysis,whichisapplicableto linear, periodic systems. A linear model with constant coefficients is a common approximationinhelicoptertheory.Theeffectofforwardflightistointroduceperiodic aerodynamic forcing on the blades, which results in periodic coefficients in the linear model.Inmanyhelicopter(relativelylowadvanceratio)applications,theperiodiceffect can be neglected. For the concept vehicle, high advance ratio operation implies the reverseflowcoversessentiallytheentireretreatingsideoftherotor,suchthatoneach rotorrevolution,eachbladeexperiencesflowoverthebladefromleadingedgetotrailing edge on the advancingside, thenfrom trailingedgeto leading edgeon theretreating side. The result is aerodynamic loads that strongly depend on the azimuth position

(periodic variation with azimuth in steady state). These effects cannot necessarily be neglectedinthisapplicationwhenconsideringtherotorstabilitytrends.BuiltinFloquet analysisroutinesinFLIGHTLAB TM wereusedtoproducetheresults,withscriptingused

tofacilitatedatacollectionandpostprocessing.

Rotorpitchingandrollingmomentsensitivitiestoswashplatecontrolinputswere

predicted usingtimeintegration of the nonlinear simulation. Step control inputs were

applied, and the steady state hub moments were recorded after the rotor transient

response decayed and the moments settled to a steadystate value. This analysis

answers the research questions related to the effect of high flight speed on the

33 magnitudeofthemomentsthatcanbegeneratedperunitdisplacementofswashplate control. The cross coupling moments in terms of the phase angle response are also presented, which highlights the issues with changing cross coupling effects with flight condition.Inhelicopterapplicationsitisoftenpossibletochooseafixedgeometrythat connectsthepilotcontrolstotheswashplateactuatorsandservesasacompromiseto provideacceptablylowcrosscouplingatmostflightconditions.Theconceptvehicleis required to operate over wide ranges of rotor speeds and flight conditions, and the literature review indicated that longitudinal and lateral controls have differing phase responses at high advance ratio. Therefore the results in this section address the researchquestionsrelatedtocontrolsensitivities,swashplatephaseangleresponseand controlcrosscoupling.

Inhelicopterapplications,therotortransientsgenerallyoccuronamuchshorter time scale than the vehicle body motion, thus justifying the quasisteady rotor assumption.Fortheconceptvehicle,therotortransientswereexpectedtooccurona much longer time scale, the primary contributing factors being: high blade mass, low density at high altitude, reduced rotor speed, and potentially the effect of the reverse flowregion.Theslowedrotordynamicsinthiscaseareofatimescalethatmaycouple with the body motion in a way that can make the piloting task more difficult, result in unacceptablylargestructuralloads,ormayleadtopilotinducedoscillations,increased pilot workload, etc. Transient rotor response may be seen whenever the rotor is disturbedbygusts,swashplatecontrolinputs,orvehiclebodymotion.Themagnitude andtimescaleofthemomentsgeneratedbythesedisturbancesmayalsoleadtothe needtosuppressthesemomentsthroughfeedbackcontrolintheconceptvehicle.The responsesofinterestarethehubmomentsinthenonrotatingframe,whichresultsfrom thecombinedeffectofthebladeflappingforalloftheblades.Bothtimedomainand frequencydomainresultsarepresentedinthediscussionoftheslowedrotordynamics.

34 Theobjectiveforthefrequencydomainanalysisistoobtainlowordertransferfunction modelsofrotorhubmomentresponsetoaninput.Inthisdissertationthehubpitching moment response to changes in shaft incidence are used to answer the research questionsrelatedtotheslowedrotordynamics.Thetransferfunctionsprovidedamping andfrequencyinformationabouttherotormodesandtheeffectoftherotorparameters and advance ratio. Frequency domain data also provides information useful for the designofahubmomentsuppressioncontroller,whenlinearcontroltheorywouldbea desirable starting point from a cost and complexity perspective. The time domain analysis consists of comparisons of the nonlinear simulation and the loworder linear modelresponsetostepchangesinshaftincidence.Theanalysisoffersinsightintothe predictivecapabilityofthelinearmodelsascomparedtothenonlinearsimulation,the dominantfrequencies present, andtypes ofresponses seen in the simulation that are notcapturedinthelinearmodels.

Regulation and control of the rotor speed throughout the flight envelope was statedasabasisrequirementofthecontrolsysteminherentintheconfiguration.The effectsoftheswashplatecontrolsontherotorspeedwereinvestigatedusingthenon linearsimulation.Fromtrim,stepcontrolinputswereapplied,andthemodelstepped forwardintimetoestablisharotoraccelerationthatwasapproximatedusingatwopoint approximation.Thisanalysisaddressestheresearchquestionsrelatedtorotorspeed behaviorandrotorspeedcontrolusingswashplateinputs.

Coupling of the rotor and airframe was investigated using trim analysis, linearizationofthenonlinearmodels,systemidentificationanalysis,andtimeintegration ofthenonlinearmodels.Rotorcontrolstrategieswerefurtherdevelopedbyconsidering twoquasisteadymaneuversusingtrimanalysisforfixedrotorshaft,controllablerotor shaft, trimmed hub moment, and untrimmed hub moment cases. The intrinsic flight dynamics characteristics were investigated by comparing results predicted from

35 linearization of the nonlinear models and system identification results based on surrogateflighttestdatafromthenonlinearsimulation.

36 CHAPTER 3

ISOLATED ROTOR ANALYSIS

3.1 Autorotating Rotor Trim and Performance Trends

Basictrendsforatrimmedrotorinautorotationwereestablishedusingtheparametric baselineisolatedrotormodel.Thefundamentalquestionsaddressedinthissectionare related to the conditions under which autorotation is possible, what are the effects of advanceratioandtherotorparameters,andhowtherotorloadisreduced.Theresults presentedwereobtainedusingthe‘trim’routineinFLIGHTLAB TM wherethesteadystate

trimconditionfortherotorwasdefinedintermsoftheaveragerotorhubmoments(pitch

androll)andtherotortorquebeingdriventozero.Trimwasaccomplishedbyadjusting

the swashplate controls and the rotor shaft incidence to the freestream airflow for a

specified rotor speed. The result was three quantities to drive to zero, with four

quantities that can be adjusted, three swashplate controls: longitudinal cyclic, lateral

cyclic,andcollectivepitch,andtheshaftangle.Assuch,thecollectivewasheldfixedat

zero degrees to establish the basic trends, and then adjusted to a new value on

successiverunsasasensitivityparameter.

Inordertopresenttherotorperformanceinaconcisemanneritwasdesiredto

establish if the relations between the rotor speed, freestream velocity, and rotor

performancecouldbepresentednondimensionally.Itwasnotassumed apriori thatin thepresenceofreverseflowandcomplexblademotiontheadvanceratiowassufficient to describe the performance for all equivalent combinations of rotor speed and freestreamvelocitycontainedintheadvanceratio.Inordertoaddressthisquestion,the effect on rotor performance for different rotor speeds was investigated. This was accomplished by trimming the rotor over a range of freestream velocities up to the

37 advancingtipMachnumberlimitatdifferentrotorspeeds.Theparametricbaselinerotor thrustcoefficientasafunctionofadvanceratioisshowninFigure9.Thefigureshows thatinnondimensionaltermsthecurvesallcoincideexceptastheadvancingtipMach numberapproachestheimposedlimit.Theminimumadvanceratioshowninthefigure corresponds to a free stream velocity of 50 knots since some velocity is required to achieveautorotation.Thethrustcoefficientdataalsoshowthattheeffectofincreasing advanceratioatafixedrotorspeedistoincreasetherotorthrust.Indimensionalterms, the unloading of the rotor (reduced thrust) comes about from allowing the rotor to operateatalowerrotorspeed.

Rotor Thrust Coefficient vs. Advance Ratio 0.024

0.020 =30rad/s =28rad/s 0.016 =26rad/s =24rad/s =22rad/s 0.012 =20rad/s =18rad/s =16rad/s 0.008 =14rad/s =12rad/s

Thrust Coefficient BaselineRotor 0.004 γ=1.4 o Coll θ =0 0 0.000 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 9: Baseline Rotor Thrust Coefficient vs. Advance Ratio

Therotorlifttodragratioandtherotorshaftincidencetothefreestream,shown

inFigure10andFigure11respectively,alsoindicatedconsistenttrendswhenpresented

38 intermsofadvanceratio.Therotorshaftincidencedata,Figure11,revealsthatatlow advanceratioalargeshaftincidenceisrequiredsuchthatsufficientairflowthroughthe rotorispresenttosustainautorotation.Asadvanceratioisincreasedhowever,lower shaftincidenceissufficientuntilatthehighestadvanceratioaslightlyincreasedshaft incidence is again required likely due to the higher drag associated with the blade tip highMachnumbercondition.Similarlythethrustcoefficientandrotorlifttodragratio data show that at low advance ratio the rotor is essential producing little thrust and a largecomponentisdownstream(drag).

ThecycliccontrolpositionsforthesebaselinetrimcasesareshowninFigure12 andFigure13.Thecontrolpositionsaregenerallywithinanarrowbandoftwodegrees for the baseline rotor with the longitudinal cyclic passing through a maximum near an advance ratio of one, and the lateral cyclic remains relatively flat in the range beyond ~ 0.1 .

Rotor Lift to Drag Ratio vs. Advance Ratio

10

=30rad/s 8 =28rad/s =26rad/s =24rad/s 6 =22rad/s

=20rad/s =18rad/s 4 =16rad/s =14rad/s 2 BaselineRotor =12rad/s γ=1.4 Rotor Lift to DragRatio o Coll θ =0 0 0 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 10: Baseline Rotor Lift to Drag Ratio vs. Advance Ratio

39 Rotor Shaft Incidence vs. Advance Ratio 25 BaselineRotor γ=1.4 Coll θ =0 o 20 0 =30rad/s =28rad/s =26rad/s 15 =24rad/s =22rad/s

=20rad/s 10 =18rad/s =16rad/s =14rad/s 5 =12rad/s Rotor ShaftIncidence [deg] 0 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 11: Baseline Rotor Shaft Incidence vs. Advance Ratio

Trimmed Rotor Longitudinal Cyclic vs. Advance Ratio 3.0

2.5 =30rad/s =28rad/s =26rad/s 2.0 =24rad/s =22rad/s 1.5 =20rad/s =18rad/s =16rad/s 1.0 =14rad/s =12rad/s BaselineRotor 0.5 γ=1.4

LongitudinalCyclic [deg] o Coll θ =0 0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 12: Baseline Rotor Longitudinal Cyclic vs. Advance Ratio

40 Trimmed Rotor Lateral Cyclic vs. Advance Ratio 0.0

-0.4 =12rad/s =14rad/s =16rad/s -0.8 =18rad/s =20rad/s =22rad/s -1.2 =24rad/s =26rad/s BaselineRotor =28rad/s Lateral Cyclic [deg] -1.6 γ=1.4 =30rad/s o Coll θ =0 0 -2.0 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 13: Baseline Rotor Lateral Cyclic vs. Advance Ratio

Based on the performance trends presented in terms of advance ratio, the trim and performancesensitivityanalysiswasconductedatthereducedrotorspeed(12rad/s)to simplifythepresentationofthetrends.PerformancesensitivitytotheLockNumberand thenondimensionalflappingfrequencyareshowninFigure14throughFigure16.The flapstiffnesshasminimaleffectontherotorperformanceintherangesconsidered,and the Lock number shows only a weak effect with a slight decrease in thrust coefficient and lift to drag ratio with increasing Lock number. Cyclic control positions for trim,

Figure17andFigure18,showthatthemorelateralcycliccontrolinputisrequiredfor higher Lock number (lighter) blades, suggesting the reverse flow forces the lighter bladestohigherflapping,requiringmorecontrolinputtotrimtherotor.Thecycliccontrol figures also show the magnitude of the inputs required for trim, which remain on the orderoftwodegreesfortherangesofrotorparametersconsidered.

41 Rotor Thrust Coefficient vs. Advance Ratio

0.020 γ=1.40, ν=1.08 γ=1.40, ν=1.13 γ=1.40, ν=1.24 0.015 γ=1.40, ν=1.43 γ=1.86, ν=1.24 γ=1.86, ν=1.30

γ=1.86, ν=1.43 0.010 γ=1.86, ν=1.55 γ=2.79, ν=1.24 γ=2.79, ν=1.34 γ=2.79, ν=1.43

Thrust Coefficient 0.005 SensitivitytoLockNumber γ=5.59, ν=1.24 andFlappingStiffness γ=5.59, ν=1.43 =12rad/s 0.000 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 14: Thrust Coefficient Sensitivity to Rotor Parameters

Rotor Lift to Drag Ratio vs. Advance Ratio

10 γ=1.40, ν=1.08 γ=1.40, ν=1.13 8 γ=1.40, ν=1.24 γ=1.40, ν=1.43 γ=1.86, ν=1.24 6 γ=1.86, ν=1.30

γ=1.86, ν=1.43 γ=1.86, ν=1.55 4 γ=2.79, ν=1.24 γ=2.79, ν=1.34 γ=2.79, ν=1.43 2 SensitivitytoLockNumber γ=5.59, ν=1.24 Rotor Lift toDrag Ratio andFlappingStiffness γ=5.59, ν=1.43 =12rad/s 0 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 15: Lift to Drag Ratio Sensitivity to Rotor Parameters

42

Rotor Shaft Incidence vs. Advance Ratio 7

6 γ=1.40, ν=1.08 γ=1.40, ν=1.13 5 γ=1.40, ν=1.24 γ=1.40, ν=1.43 γ=1.86, ν=1.24 4 γ=1.86, ν=1.30 γ=1.86, ν=1.43 3 γ=1.86, ν=1.55 γ=2.79, ν=1.24 2 γ=2.79, ν=1.34 γ=2.79, ν=1.43 SensitivitytoLockNumber γ=5.59, ν=1.24 1 andFlappingStiffness γ=5.59, ν=1.43

Rotor Shaft Incidence [deg] =12rad/s 0 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 16: Shaft Incidence Sensitivity to Rotor Parameters

Trimmed Rotor Longitudinal Cyclic vs. Advance Ratio 3 =12rad/s o Coll θ =0 γ=1.40, ν=1.08 0 γ=1.40, ν=1.13 2 γ=1.40, ν=1.24 γ=1.40, ν=1.43 γ=1.86, ν=1.24 γ=1.86, ν=1.30 1 γ=1.86, ν=1.43 γ=1.86, ν=1.55 γ=2.79, ν=1.24 γ=2.79, ν=1.34 0 γ=2.79, ν=1.43 γ=5.59, ν=1.24 Longitudinal Cyclic [deg] γ=5.59, ν=1.43 -1 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 17: Longitudinal Cyclic Trim Sensitivity to Rotor Parameters

43 Trimmed Rotor Lateral Cyclic vs. Advance Ratio

=12rad/s o Coll θ =0 0 0 γ=1.40, ν=1.08 γ=1.40, ν=1.13 γ=1.40, ν=1.24 γ=1.40, ν=1.43 γ=1.86, ν=1.24 -1 γ=1.86, ν=1.30 γ=1.86, ν=1.43 γ=1.86, ν=1.55 γ=2.79, ν=1.24 γ=2.79, ν=1.34 -2 γ=2.79, ν=1.43 γ=5.59, ν=1.24 LateralCyclic [deg] γ=5.59, ν=1.43

-3 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 18: Lateral Cyclic Trim Sensitivity to Rotor Parameters

Inthepreviousresults,theperformancetrendswereshownatafixedcollective pitchofzerodegrees.TheLocknumberwasalsoshowntoprovideaweakinfluenceon performance.Inordertodeterminetheeffectofthecollectivepitchsetting,theanalysis was repeated for collective pitch settings of +1 and 1 degrees for each of the blade models.Theflapstiffnesswasheldconstantat ν = .1 24 byadjusttheflaphingespring constant according to Figure 6. The thrust coefficient, lift to drag ratio, and shaft incidencetrendswithcollectivepitchandLocknumberareshowninFigure19,Figure

20,andFigure21respectively.Thethrustcoefficientdatashowsthatthrustincrement duetoanincreaseincollectiveandretrimmingtherotorchangessignnearanadvance ratioof ~ .0 86 .ThisisthesametrendobservedbyJenkins[9]inaLangleyResearch

Center wind tunnel investigation of a twobladed teetering rotor,reported as occurring at ~ 0.1 ,Ewans et.al. whileinvestigatingtheRVRconceptatAmesResearchCenter, with the reversal observed at ~ 9.0 , and Kuczynski and Sissingh [12] investigating

44 hingeless rotors, reported at ~ .0 79 . A physical explanation of the sign reversal is

also given by Kuczynski and Sissingh [12] from the experimentally determined lift

derivatives.Theeffectcanbeexpressed:

∂(C /σ ) ∂(C /σ ) ∂θ ∂(C /σ ) T = T + s T ∂θ ∂θ ∂θ ∂θ 0 trim 0 0 s

Beyondadvanceratio ~ .0 79 ,”thereductioninrotorliftduetothetrimcyclicpitchis greaterthanthatproducedbythecollectivepitch”,suchthatathighadvanceratiothe relativecontributionofthetwotermscausesthesignchange.

Rotor Thrust Coefficient vs. Advance Ratio 0.030 0 γ=1.40, θ =1 SensitivitytoLockNumber 0 0 andCollectivePitch γ=1.40, θ =0 0.025 =12rad/s 0 0 γ=1.40, θ =1 0 0 γ=1.86, θ =1 0.020 0 0 γ=1.86, θ =0 0 0 γ=1.86, θ =1 0.015 0 0 γ=2.79, θ =1 0 0 γ=2.79, θ =0 0.010 0 0 γ=2.79, θ =1 0 Thrust Coefficient 0 γ=5.59, θ =1 0.005 0 0 γ=5.59, θ =0 0 0 0.000 γ=5.59, θ =1 0.0 0.5 1.0 1.5 2.0 2.5 0 Advance Ratio [V/ R] Figure 19: Thrust Coefficient Sensitivity to Collective Pitch

45 The lift to drag ratio and shaft incidence data show that at high advance ratio, higher collective pitch reduces the lift to drag ratio and requires a higher shaft incidence to maintainautorotation.TheLocknumbertrendsshowthatthethrustcoefficientandliftto dragratiotendtovaryinanarrowerrangewithincreasingLocknumberbuttheshaft incidencerangeincreaseswithincreasingLocknumber.

The cyclic control positions are shown in Figure 22 and Figure 23. The longitudinalcyclicdata showslittlevariation withLocknumber,butthecollectivepitch effect is to shift the curves so that a reduction in collective requires a reduction in longitudinal cyclic. The lateral cyclic trim data show that the collective has very little effectonthelateralcycliccontrolpositionwiththerangeoftravelstillgenerally within twodegrees.

Rotor Lift to Drag Ratio vs. Advance Ratio

12 0 γ=1.40, θ =1 0 γ=1.40, θ =0 0 0 10 0 γ=1.40, θ =1 0 0 γ=1.86, θ =1 0 8 0 γ=1.86, θ =0 0 γ=1.86, θ =1 0 6 0 0 γ=2.79, θ =1 0 0 γ=2.79, θ =0 4 0 0 γ=2.79, θ =1 0 0 γ=5.59, θ =1 0 Rotor Lift to Drag Ratio 2 0 γ=5.59, θ =0 0 0 γ=5.59, θ =1 0 0 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 20: Lift to Drag Sensitivity to Collective Pitch

46 Rotor Shaft Incidence vs. Advance Ratio

0 8 γ=1.40, θ =1 0 0 γ=1.40, θ =0 0 0 γ=1.40, θ =1 0 0 6 γ=1.86, θ =1 0 0 γ=1.86, θ =0 0 0 γ=1.86, θ =1 0

4 0 γ=2.79, θ =1 0 0 γ=2.79, θ =0 0 0 γ=2.79, θ =1 2 0 0 γ=5.59, θ =1 SensitivitytoLockNumber 0 0 andCollectivePitch γ=5.59, θ =0 0 Rotor Shaft Incidence [deg] =12rad/s 0 γ=5.59, θ =1 0 0 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 21: Shaft Incidence Sensitivity to Collective Pitch

Trimmed Rotor Longitudinal Cyclic vs. Advance Ratio

γ=1.40, θ =1 0 =12rad/s 0 4 0 γ=1.40, θ =0 0 0 γ=1.40, θ =1 0 0 γ=1.86, θ =1 2 0 0 γ=1.86, θ =0 0 0 γ=1.86, θ =1 0 0 0 γ=2.79, θ =1 0 0 γ=2.79, θ =0 0 -2 γ=2.79, θ =1 0 0 γ=5.59, θ =1 0 0 0

LongitudinalCyclic [deg] γ=5.59, θ =0 -4 0 0 γ=5.59, θ =1 0 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 22: Longitudinal Cyclic Trim Sensitivity to Collective Pitch

47 Trimmed Rotor Lateral Cyclic vs. Advance Ratio 1 0 γ θ =12rad/s =1.40, 0=1 0 γ=1.40, θ =0 0 0 γ=1.40, θ =1 0 0 0 γ=1.86, θ =1 0 0 γ=1.86, θ =0 0 0 γ=1.86, θ =1 -1 0 0 γ=2.79, θ =1 0 0 γ=2.79, θ =0 0 0 γ=2.79, θ =1 -2 0 0 γ=5.59, θ =1 0

LateralCyclic [deg] 0 γ=5.59, θ =0 0 0 γ θ -3 =5.59, 0=1 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 23: Lateral Cyclic Trim Sensitivity to Collective Pitch

The trimmed, autorotating rotor performance analysis predicts some of the conditions underwhichautorotationispossibleaswellastheperformancetrendsintermsofrotor parameters.Thecollectivepitchsensitivitydatashowsthatmultipletrimsolutionsare possible at a particular flight condition with varying performance. Additionally, The highest Lock number blade (blade 1, γ = .5 59 ) results were only presented up to an

advanceratioof ~ 9.1 .Athigheradvanceratiosthetrimprocesstendedtofailedfor

thismodelindicatingthecombinationsofcycliccontrolsforzerohubmomentsdidnot

allowforazerotorquesolution.Thiswasevidencedinthetrimprocessasthesolution

converging,butnotwithinthenumericaltoleranceof10ftlbsusedinthisstudy.

Autorotation of therotor is afundamental characteristic ofthe conceptvehicle.

Autorotationisachievedwhen“theinflowangleissuchthatthereisnonetinplaneforce

on the blades, therefore no contribution to rotor torque” [50]. The components of the

rotoraerodynamicforcesintherotorshaftplanewereextractedfromthebladeelement

48 modelinFLIGHTLAB TM toestablishtheportionsoftherotorazimuththatservetoabsorb power from the relative air flow (driving region) and the regions that consume power

(drivenregion).FLIGHTLAB TM calculatestheaerodynamicforcesinthelocalwindframe

ateachaerodynamiccomputationpoint(ACP).Theseforcesweretransformedtothe

rotatinghubframesothatthecomponentcontributingtothetorquewasdeterminedfor

each azimuth position. Script files written in SCOPE facilitated the data processing.

Figure24showstherotorinplaneforcesandtheangleofattackcontoursat = .0 33 .

Theangleofattackcontourshowsasmallreverseflowregionatthislowadvanceratio

covering roughly one third of the blade radius as would be predicted from analytical

considerations. The inplane force contour shows values below zero covering the

advancingsideoftherotor,whichopposestherotation,whereastheretreatingsideof

therotorprovidespositiveinplaneforceswhichdrivetherotor.

Rotor Torque Balance in Autorotation AerodynamicContours, =0.33

Rotor Blade In-Plane Forces Blade Section Angle of Attack Trim Condition Trim Condition 90 90

20 20 135 45 10 135 45 0 15 DrivenRegion 15 5 2 10 10 0 5 5 5 1 10 0 180 0 0 180 0 5 20

5 10 5 90 Rotor Rotor Radial Station [ft]

10 15 Rotor Station Radial [ft] 10 120

20 15 DrivingRegion 15 150 225 315 225 315 25 180 20 20 270 270 ChordwiseSectionAirloads[lbf] SectionAngleofAttack[deg]

BaselineRotor , =12rad/s, γ =1.40, =0.33 Figure 24: Baseline Rotor Aerodynamic Contours at µ=0.33

49 Figure25showstheaerodynamiccontouratthecruisecondition, ~ .2 29 wherethe

retreatingsideoftherotorisdominatedbythereverseflowregion.Theinplaneforce

contour shows that the driving and driven azimuth regions remain similar to the low

advance ratio case, but with larger magnitude forces and a reduction in the driving

regionazimuthrange.

Rotor Torque Balance in Autorotation AerodynamicContours , =2.29

Rotor Blade In-Plane Forces Blade Section Angle of Attack Trim Condition Trim Condition 90 90

20 20 135 45 -10 135 45 5 15 15 DrivenRegion -5 3 10 10 0 0

5 1 5 5

0 180 0 5 0 180 0 15 90 5 10 5 120 15 Rotor Station[ft] Radial 10 10 150 20 ReverseFlowRegion 15 DrivingRegion 15 180 225 315 25 225 315 20 20 185 270 270 ChordwiseSectionAirloads[lbf] SectionAngleofAttack[deg]

o BaselineRotor , =12rad/s, γ =1.40, =2.29, θ =0 0 Figure 25: Baseline Rotor Aerodynamic Contours, µ=2.29

3.2 Rotor Stability

The rotor degrees of freedom in the rotating frame are the flapping of the individual bladesandtherotorspeed.Athighadvanceratiotheaerodynamicforcingoftherotoris highly periodic due to the extreme differences in the flow that the rotor experiences between the advancing and retreating sides. In order to assess the rotor flapping

50 stabilityandidentifyconditionsofreducedstability,Floquetanalysiswasappliedthrough abuiltinroutineinFLIGHTLAB TM .Johnson[50]describestheanalysisoflinearperiodic systems by determining the state transition matrix, φ, over one period of the system.

The eigenvalues, θ i, of φ then determine the stability of the system, with the stability boundary|θ i|<1.Therootsintheθplanearerelatedtotheλplaneby:

1 2π λ = (lnθ + i∠θ ) + n i T T

Such that a “multiple of the fundamental frequency may be added, depending on the

branchofthelogarithmthattherootison”[50].Rootsofthestatetransitionmatrixmay

berealnumbersorcomplexconjugates.Whentheθrootsarecomplex,theλrootswill

becomplexconjugatesaswell.Apositive,realθrootwilltransformtoasingleλroot

with a frequency that is a multiple of the fundamental frequency of the system. A

negative,realθrootwilltransformtoasingleλrootwithafrequencythatisonehalfthe

fundamentalfrequencyplusamultipleofthefundamentalfrequency[50].Movementof

theθrootsontherealaxiswillthencorrespondtomovementoftherealpartsoftheλ

roots locked toamultipleofthefundamentalfrequencyofthesystem.

For a lightlyloaded rotor, autorotating at high advance ratio the fundamental

frequency (rotor speed) will be considerably decreased with increasing flight speed

(slowedtoavoidviolationoftheadvancingtipMachnumberconstraint).Reductionof

the rotor speed shifts the fundamental frequency of the rotor, and the frequencies to

which the Floquet roots may become locked. It is therefore, of primary interest to

investigate the stability in terms of the rotor speed and advance ratio. The baseline

isolated rotor model was used to establish these trends by trimming the rotor (hub

momentsandtorque)foraspecifiedrotorspeedandwindtunnelfreestreamvelocity,

andexecutingtheFloquetanalysisroutine.ScriptswritteninthenativeFLIGHTLAB TM programming language, SCOPE, were used to facilitate the loops associated with

51 increasing the wind tunnel speed, retrimming the rotor, and repeating the Floquet analysis.TheeigenvaluesoftheFTM(FloquetTransitionMatrix)weretransformedto the λplane,andthemodewiththesmallestmagnituderealpartwasretained.Therotor modes are in the nonrotating system (multiblade coordinates) as described in the literature by Johnson [50], Padfield [52], and others. Typical results obtained in this analysisareshownintherootlocusplotsofFigure26.Whentherootsremaincomplex conjugates, the transformed roots simply shift in the complex plane with changes in advanceratio(oneoscillatorypairisshownontheleftsideofFigure26).

Typical Root Locus from Floquet Analysis 0.2 2 TransformedEigenvalues with Locked Frequency ) ) ) θ θ θ θ Increasing 1 AdvanceRatio 0.1

0 TransformedEigenvalues 0.0 withNonHarmonic Frequency -1

Imaginary Axis Imag( (1/T) ln( (1/T) Imag( AxisImaginary -0.1

-2 IncreasingAdvanceRatio -3 -2 -1 0 -2 -1 0 Real Axis Real ( (1/T) ln (θθθ) ) Real Axis Real ( (1/T) ln (θθθ) ) Figure 26: Typical Root Locus from Floquet Analysis

When the frequency of the oscillatory pair becomes locked to a particular frequency, the roots move in opposite directions with one root moving closer to the

52 stabilityboundaryandtheothermovingawayfromthestabilityboundaryasshownon therightsideofFigure26.StabilityfromtheFloquetanalysisispresentedhereinterms oftherootwiththesmallestrealpart,whichrepresentsthemodewiththeleastdamping.

Sinceamultipleofthefundamentalfrequency,orhalfthefundamentalfrequency,may be added, the damping ratio is not automatically known. The frequencies can be determinedfromphysicalinsightintosystemifnecessary.Inhelicopterapplicationsfor example, the absence of periodicity at the hover solution provides a convenient point from which to obtain the frequencies of the rotor modes. Then the introduction of periodiceffectswithforwardflightcanbeassumedtooccurasacontinuousfunction.In thepresentwork,thedampingoftheleaststablerootispresentedwithoutdetermining the actual frequencies of the modes as a means to identify trends of increasing or decreasingrelativestability.

Figure27showstheeffectsofslowingtherotorandincreasingtheadvanceratio forthebaselinerotor.Foraparticularrotorspeed,theeffectofincreasingadvanceratio is to increase the damping within the advance ratio range considered. The baseline rotor illustrates the case where the roots remain as oscillatory pairs, never becoming locked to a particular frequency. The advancing tip Mach number limit for each rotor speedisalsoshowninFigure27.Thislimitlinepassesthroughaminimumdamping valuenearanadvanceratio ~ 0.1 ,whichcouldrepresentacriticalcasewhenflexible bladeswithadditionaldegreesoffreedomareconsidered.

Sincethereducedrotorspeedoperationrepresentedthelowestdampingcases, this rotor speed was retained for the sensitivity analysis with respect to rotor flapping stiffnessandLocknumber.Figure28showstheeffectofvaryingtheflappingstiffness ofthebaselinerotor.

53 Damping from Floquet Analysis vs. Advance Ratio

2.5 BaselineRotor γ=1.4 M =0.85 1,90 Collective=0 o 12rad/s

R] 2.0 14rad/s 16rad/s 18rad/s 1.5 20rad/s

22rad/s 24rad/s 1.0 26rad/s 28rad/s 30rad/s 0.5 Advance Ratio [V/

0.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 Real Axis Real( (1/T) ln(θθθ) ) Figure 27: Baseline Rotor Stability from Floquet Analysis

The damping curves only differ when the frequency becomes locked. The frequency of the roots for the low stiffness rotors start out closer to a fundamental frequency,andbecomelockedataloweradvanceratiothanthehigherstiffnesscases whichremainnonharmonicintherangespresentedhere.TheLocknumbersensitivity,

Figure29,showsthathigherlocknumberrotorshavehigherdampingatlowadvance ratiowhichisexpectedsincethedampinginhoverisgivenanalyticallyas γ /16 ,but tend to become locked at a much lower advance ratio and tend toward the unstable regionwithadvanceratio.

54 Damping from Floquet Analysis vs. Advance Ratio

2.5 ν=1.08 ν=1.13

R] 2.0 ν=1.18 ν=1.24 ν=1.33 1.5 ν=1.43

1.0

0.5 BaselineRotor Advance Ratio [V/ =12rad/s, γ=1.4 Collective=0 o 0.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 Real Axis Real( (1/T) ln(θθθ) ) Figure 28: Rotor Stability Sensitivity to Flapping Stiffness

Damping from Floquet Analysis vs. Advance Ratio

2.5 γ=1.40 γ=1.86 2.0 γ=2.79 R]

1.5 Unstable

Stable

1.0

0.5

Advance Ratio [V/ =12rad/s ν=1.24 0.0 -4 -3 -2 -1 0 1 2 Real Axis Real( (1/T) ln(θθθ) ) Figure 29: Rotor Stability Sensitivity to Lock Number

55 Inclusionoftherotorspeeddegreeoffreedomaddsafirstordermodetotherotor.With the clutch disengaged, the rotor speed responds to changes in the torque balance similarlytothehovercaseshowninFigure6.Theprimaryfactorsaffectingthelocation oftherotorspeedeigenvaluearetheadvanceratioandtheLocknumberasshownin

Figure30,withtherotorstiffness(notshown)providinganegligibleeffect.Thelargest increaseindampingoccursatanyrotorspeedwhen the advancingtip Mach number approachesthelimit,suggestingtheeffectoftheincreaseindragwithMachnumber.

The eigenvalue is also seen toreach aminimum near ~ .0 78 . In all casesfor the baselinerotor,themagnitudeoftheeigenvalueisverysmall,indicatinglowdampingand alongtimeconstantforrotorspeedchanges.

Rotor Mode Eigenvalue vs. Advance Ratio 2.5 =12rad/s

2.0

R] γ=1.40 γ=1.86 1.5 γ=2.79 =20rad/s 1.0

0.5 =30rad/s Advance Ratio [V/

0.0 -0.10 -0.08 -0.06 -0.04 -0.02 0.00 Real Axis Figure 30: Rotor Speed Mode Eigenvalue Sensitivity

56 The inclusion of the leadlag motion adds additional degrees of freedom to the rotor.

Thedampingoftheleadlagmotionisrelatedtothedragoftheairfoil,whichbydesignis lowerthanthelift.Sincetherotormodelutilizes thearticulatedformulation, damping canbeaddedtotheleadlagmotionbyincludingamechanicaldampercomponenton eachblade.Therealpartsoftheeigenvaluesincludingtheleadlagmotionareshownin

Figure31.Theresultsarepresentedintermsofthenondimensionalparameter:

* Cς Cς = I b

TM where Cς isthedimensionaldamperconstantwhichisaFLIGHTLAB input.The damping shows very little sensitivity to advance ratio and nondimensional leadlag stiffness. The primary factors that affect the damping are the Lock number and the addedmechanicaldamper.

Damping from Floquet Analysis vs. Advance Ratio Including the Lead-Lag Blade Motion 2.5 γγγ =1.4, ζζζ =1.24 =12rad/s * c =0.063 ν=1.24 ζ c *=0.031 2.0 C*=C /(I ) ζ ζ ζ b c *=0.014 ζ R] * c =0.006 ζ 1.5 γγγ = 1.4, ζζζ =1.43 *

c =0.063 ζ 1.0 c *=0.031 ζ c *=0.014 ζ c *=0.006 0.5 ζ Advance Ratio [V/ γγγ = 1.86, ζζζ =1.60 c *=0.084 0.0 ζ c *=0.042 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 ζ c *=0.017 Real Axis Real( (1/T) ln(θθθ) ) ζ Figure 31: Eigenvalue Damping vs. Advance Ratio Including Lead-Lag Motion

57 Johnson[50]reportstypicalvaluesforhingelessrotorstructuraldampingcoefficientsin the range 0.01 to 0.03. Values associated with elastomeric dampers on the Bell 412

Advanced System Research Aircraft are reported as 0.075 per damper with two dampersperblade[55].Thesereportedvaluesrelatetohelicopterapplications.

Thepredicteddampingoftheleadlagmotionandtherotorspeedmodearebothlow and have the potential to interact since the inplane motion of the blades affects the torquebalanceontherotor.TheresultspresentedinFigure31didnotincludetherotor speeddegreeoffreedombecausethisinteractiontendedtoproducesomewhaterratic numericalresultsmakingtheidentificationoftrendsdifficult.Thenonlinearsimulation howeverprovidesadditionalinsightintothecoupling.Figure32showsthenonlinear simulationtimehistoryfortherotorwithnocontrolinputs,butwiththerotorspeedand leadlagdegreesoffreedomactive.Therotortorqueandhubmomentsweretrimmed priortotheserunstoatoleranceof1ftlbftominimizethetrimtoleranceresidualeffect.

TheleftsideofFigure32showsthelowadvanceratiocase.Lowvaluesofthedamping parameterresultsinthegrowthofanunstableoscillationintherotorspeedbehavior.

TherightsideofFigure32showsthehighadvanceratiocase,wheretheincreasein dynamicpressureandthevariationoftheaerodynamicloadsaroundtheazimuthresults inincreasedoscillationsevenforthestablevaluesofthedampingparameter.Figure33 summarizesthecasesshowninFigure31intermsofthedampingandthevalueofthe dampingparameter,andshowstherealpartoftheroottendstovarylinearlywiththe dampingparameter.Alsoshownisthestabilityboundaryasascertainedfromthenon linear simulation data, with increasing advance ratio requiring an increase in the dampingparameterforrotorspeedstability.Theseresultssuggestaminimumvalueof

* thedampingparameterforthebaselinerotorof Cς = .0 094 whentheleadlagandthe rotorspeeddegreesoffreedomareincludedintheanalysis.

58 Rotor Speed Response vs. Time - No Control Input LowAdvanceRatioCase, =0.33 HighAdvanceRatioCase, =2.29

c *=0.031 12.1 ζ 12.1 c *=0.047 ζ c *=0.063 ζ 12.0 12.0

11.9 11.9

RotorwithLeadLag * c =0.063 Rotor Speed [rad/s] 11.8 BladeMotion 11.8 ζ γ=1.40, ν=1.24 c *=0.094 ζ ζ=1.62, =0.33 * o c =0.125 Collective=0 ζ 11.7 11.7 0 2 4 6 0 2 4 6 Time [sec] Time [sec] Figure 32: Non-linear Rotor Speed Response with Lead-lag Motion

Lead-Lag Mode Coupling with Rotor Speed Mode - No Control Input o γ =1.40, ν=1.24 ,ζ =1.62, θ =0 0 0.14 * ζ ζ ζ ζ 0.12 RotorSpeedStablewith =2.29 LeadLagMotion 0.10

0.08 =0.33

0.06

0.04

0.02 RotorSpeedInstabilitywith LeadLagMotion

0.00 Lead-Lag C Parameter Damping Lead-Lag

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 Real Axis Real( (1/T) ln(θθθ) ) Figure 33: Lead-Lag Mode Sensitivity to Damping Parameter

59 3.3 Steady-State Control Hub Moments and Cross-Coupling

Themomentsgeneratedbyswashplatecontrolinputs were investigated by perturbing the individual swashplate controls andrunningthe isolated rotor nonlinear simulation forwardintime.Theobjectivewastoassessthemagnitudeofthemomentsgenerated asafunctionoftheadvanceratio,andtoaccessthetimescaleoftherotortransient response for hub moments and rotor speed changes. The time history of the rotor pitchingmomenttransientresponsetoalongitudinalcyclicstepisshowninashorttime scale(6seconds)inFigure34withtheclutchinthe “off” position, meaning the rotor speedwasallowedtovaryingundertheeffectsoftheaerodynamicforcesontheblades.

Thetimescalefortherotormomenttransientresponsecanbeseenasontheorderof twoseconds.Atthesametimetherotorspeedischanging,andthetimehistoryinthis shorttimescaleisshowninFigure35.Inthisshorttimescaletherotormomentsreach an essentially constant steadystate value even as the rotor speed changes, and the rotorspeedisseentochangerelativelyslowly.Whenthesameresponseisconsidered overamuchlongertimescale(100seconds),therotormomentsareseentochange onlyastherotorspeedchangessignificantlyandapproachesthenewsteadystaterotor speedcorrespondingtothetorquebalanceatthenewcycliccontrolposition.Figure36 showsthepitchandrollmomentsattwodifferentadvanceratiosinthelongtimescale, andFigure37showstherotorspeedresponseinthelongtimescale.Therotorspeedis seentochangeintheorderofthelongtimescale(~100seconds)whilethehubmoment transient response is on the order of the short time scale (~23 seconds). This difference in time scales admits an approximation to the steadystate control moment sensitivityasbeingessentiallyatconstantrotorspeed.Onthebasisoftheassumption ofconstantrotorspeedintheshorttimescale,rotorhubmomentsduetoswashplate controlinputsarepresentedwithconstantrotorspeedinnonlinearsimulation.

60 Rotor Transient Response to Longitudinal Cyclic Step Input 0 0 -2000

-4000 -5000

=0.33 0

-6000 =0.65 0 -10000 =0.98 0 lbf] Moment [ft- Rotor Hub Pitcing =2.29 BaselineRotor 0 -8000 =1.31 0 =12rad/s 0 1 2 3 4 5 6 =1.63 γ=1.4, ν=1.24 0 Time [sec] =1.96 -10000 0 * =2.29 ζ=1.62C =0.094 0 ζ -12000 NoLeadLagDoF Rotor Hub Pitcing Moment[ft- lbf] 0 1 2 3 4 5 6 time [sec] Figure 34: Rotor Pitch Moment Transient Response to Longitudinal Cyclic Step

Rotor Transient Response to Longitudinal Cyclic Step Input ShortTimeSca le

12.0 12.0

11.9

11.9 =0.33 0

=0.65 0

Rotorspeed [rad/s] Rotorspeed 11.8 =0.98 =2.29 0 0 =1.31 11.8 0 0 1 2 3 4 5 6 =1.63 0 Time [sec] Rotor Speed [rad/s] =1.96 BaselineRotor 0 =12rad/s * =2.29 ζ=1.62C =0.094 0 γ=1.4, ν=1.24 ζ 11.7 NoLeadLagDoF 0 1 2 3 4 5 6 Time [sec] Figure 35: Rotor Speed Response to Longitudinal Cyclic Step – Short Time Scale

61 Hub Moment Transient Response to Longitudinal Cyclic Step

=1.96,M =1.63,M 0 0 y 0 y 0=1.96,M x 0=1.63,M x

-2000

-4000

-6000 Hub Moment [ft -lbf] BaselineRotor =12rad/s 0 -8000 0 20 40 60 80 100 Time [sec] Figure 36: Long Time-Scale Hub Moment Response to Cyclic Step

Rotor Speed Response to Longitudinal Cyclic Step 12.0 =1.96 0 11.6 =1.63 0

11.2

10.8

10.4

Rotor Speed[rad/s] 10.0 BaselineRotor =12rad/s 0 9.6 0 20 40 60 80 100 Time [sec] Figure 37: Long Time-Scale Rotor Speed Response to Cyclic Step

62 TheinsetstoFigure34andFigure35alsoshowacomparisonoftheresponsewithand withouttheleadlagdegreeoffreedomwhenthedampingparameterisselectedbased

* on the minimum value identified in section 3.2, Cς = .0 094 . Themagnitude and low frequency response is essentially identical indicating that with sufficient damping to ensure rotor speed stability, the effect of leadlag motion is negligible for the presentation of the steadystate moment sensitivity. Hub moments generated by longitudinal, lateral, and collective pitch inputs were thus determined at constantrotor speed and without the leadlag degrees of freedom. Steadystate pitching moment valuesforonedegreeoflongitudinalcyclicinputareshownfortheparametricbaseline rotorasafunctionofadvanceratioinFigure38.Theeffectofoperatingathigherrotor speedisanincreaseinthemagnitudeofthemomentsgenerated.Theadvanceratio alsoincreasesthesensitivityto verylargevaluesathighadvanceratioindicatingthe rotorwillbeverysensitiveandcapableofproducinglargemomentswithsmallinputs.In additiontothepitchmomentfromthelongitudinalcyclic,arollmomentisalsoproduced.

Thiscontrolcouplingexistsduetotheflappingstiffnessoftherotor,andalsovarieswith theadvanceratio.TherollmomentresponseisshowninFigure39.Thecombined effectofthepitchingandrollingmomentcanbeseenbycalculatingtherotormoment phaseresponseasinFigure40.Aphaseresponseofninetydegreewouldindicateno crosscoupling(onlyonaxisresponse).Thesmallphaseangleatlowadvanceandlow rotorspeedindicatestheprimaryeffectoflongitudinalcyclicwouldbeoffaxisbecause oftheassociatedincreaseinnondimensionalflapfrequency.

63 Steady State Pitching Moment Response to Longitudinal Cyclic 0

-2000 =12rad/s =14rad/s =16rad/s -4000 =18rad/s =20rad/s -6000 =22rad/s =24rad/s -8000 =26rad/s =28rad/s =30rad/s -10000 BaselineRotor γ=1.4

Hub Pitching Moment [ft-lbf/deg] -12000 0.0 0.5 1.0 1.5 2.0 2.5

Advance Ratio [V/ R] Figure 38: Steady State Pitch Moment Response to Longitudinal Cyclic Step

Steady State Rolling Moment Response to Longitudinal Cyclic 1000 =12rad/s =14rad/s =16rad/s =18rad/s =20rad/s =22rad/s 0 =24rad/s =26rad/s =28rad/s =30rad/s

-1000

-2000

BaselineRotor γ=1.4

Hub RollingMoment [ft-lbf/deg] -3000 0.0 0.5 1.0 1.5 2.0 2.5

Advance Ratio [V/ R] Figure 39: Steady State Roll Moment from Longitudinal Cyclic

64 Phase Angle Delay from Longitudinal Cyclic Input 100 BaselineRotor 90 γ =1.4 =12rad/s 80 =14rad/s =16rad/s 70 =18rad/s =20rad/s

60 =22rad/s =24rad/s 50 =26rad/s =28rad/s

Phase Angle [deg] 40 =30rad/s

30 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 40: Steady State Hub Moment Phase Response to Longitudinal Cyclic

The effect of increasing advance ratio is to shift the phase back toward an onaxis response.This behavior would be a consideration in adopting aflight profilefor rotor speed,altitude,andflightspeedsincethiseffectwouldalsoresultinacomplexcontrol orpilotingstrategy.Figure41showsthesteadystaterollingmomentfromlateralcyclic stepsforthebaselinerotor.Thesametrendofincreasingmagnitudewithadvanceratio is present; however the high advance ratio magnitude is much lower than the longitudinal cyclic case. The phase angle response exhibits a smaller sensitivity to advance ratio, but with different phase angles between longitudinal and lateral cyclic responses,aswellasthesensitivitytorotorspeedandadvanceratio,choosingafixed mechanicalswashplatephasingtoeliminatethecrosscouplingwoulddifficult.

65 Steady State Rolling Moment Response to Lateral Cyclic 0

-500 =12rad/s =14rad/s -1000 =16rad/s =18rad/s -1500 =20rad/s =22rad/s =24rad/s -2000 =26rad/s =28rad/s -2500 =30rad/s BaselineRotor γ=1.4 -3000 Hub Rolling Moment [ft-lbf/deg] 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 41: Steady State Roll Moment Response to Lateral Cyclic Step

Phase Angle Delay from Lateral Cyclic Input

60 =12rad/s =14rad/s =16rad/s =18rad/s 40 =20rad/s

=22rad/s =24rad/s =26rad/s 20 =28rad/s

PhaseAngle [deg] =30rad/s BaselineRotor γ=1.4 0 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 42: Steady State Hub Moment Phase Response to Lateral Cyclic

66 Steady State Pitching Moment Response to Lateral Cyclic Step

BaselineRotor γ=1.4 2500 =12rad/s =14rad/s =16rad/s =18rad/s 2000 =20rad/s =22rad/s =24rad/s =26rad/s 1500 =28rad/s =30rad/s

1000 Hub PitchingMoment [ft-lbf/deg] 0.0 0.5 1.0 1.5 2.0 2.5

Advance Ratio [V/ R] Figure 43: Steady State Pitch Moment from Lateral Cyclic

Collective control inputs also result in both pitching and rolling hub moments. The steadystatepitchingmomentsasafunctionofrotorspeedandadvanceratioareshown inFigure44.Thetrendsaresimilartotheeffectofthelongitudinalcycliccontrolwith largemagnitudeathighadvanceratio.Figure45showsthesteadystaterollingmoment responsetocollective.Atlowadvanceratiotheeffectofthepositivecollectivestepisto produce a steady state negative (right) rolling moment, with and increasingly positive

(left)rollingmomentwithhigheradvanceratio.

67 Steady State Pitching Moment Response to Collective Step 18000

=12rad/s =14rad/s 15000 =16rad/s =18rad/s =20rad/s =22rad/s =24rad/s =26rad/s 12000 =28rad/s =30rad/s

9000

6000

3000 BaselineRotor γ=1.4

Hub Pitching Moment[ft-lbf/deg] 0 0.0 0.5 1.0 1.5 2.0 2.5

Advance Ratio [V/ R] Figure 44: Steady State Pitching Moment Response to Collective Step

Thesteadystatemomentsensitivitiestorotornondimensionalflappingfrequency are shownintermsoftheonaxisresponseandthephaseangledelayresponseforboth longitudinalandlateralcyclicinputs.Figure46showsthepitchingmomentresponsefor varying flapping stiffness. At low advance ratio the sensitivity is low and the curves essentially coincide, but at high advance ratio the reverse flow effect changes the flappingbehavior.TheinsetofFigure46showsthesteadystatemomentsat = .2 29 versus the flapping frequency. A maximum occurs near ν ~ 2.1 with even higher stiffnessvaluesproducingsmallermomentssuggestingthestifferbladesresultinlower flap angles and lower restoring moments from the hinge springs, where as the low stiffness values may admit higher flap angles, but with lower spring constants, lower restoring moments result. The phase angle response is shown in Figure 47. Lower stiffnessvaluesincreasethephaseangleresponseclosertothefamiliarninetydegrees,

68 and the effect of advance ratio increases the phase angle still further until at high advanceratiotherollingmomentreversessignascanalsobeseeninFigure39.

Steady State Rolling Moment Response to Collective Step 6000 BaselineRotor γ=1.4

4000

2000

=12rad/s =14rad/s 0 =16rad/s =18rad/s =20rad/s =22rad/s =24rad/s =26rad/s =28rad/s =30rad/s Hub Rolling Moment[ft-lbf/deg] -2000 0.0 0.5 1.0 1.5 2.0 2.5

Advance Ratio [V/ R] Figure 45: Steady State Rolling Moment Response to Collective Step

Steady State Pitching Moment Response to Longitudinal Cyclic Step 0

-4000 ννν=1.08 -4000 ννν=1.13 =2.29 ννν=1.18 ννν=1.24

-8000 -8000 ννν=1.33 ννν=1.43 ν→ -12000 1.1 1.2 1.3 1.4

-12000 SteadyStatePitchMomentSensitivity toFlappingStiffnessforLongitudinalCyclic Inputs, γ=1.4, =12rad/s HubPitching Moment[ft-lbf/deg] 0.0 0.5 1.0 1.5 2.0 2.5

Advance Ratio [V/ R] Figure 46: Steady State Pitching Moment Response Sensitivity to Flap Frequency

69 Phase Angle Delay from Longitudinal Cyclic Input

120 ν=1.08 ν=1.13 100 ν=1.18 ν=1.24 80 ν=1.33 ν=1.43 60

40 Phase Angle [deg] 20 PhaseAngleSensitivitytoFlappingStiffnessfor LongitudinalCyclic Inputs, γ=1.4, =12rad/s 0 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 47: Longitudinal Phase Angle Sensitivity to Rotor Flap Frequency

Rollmomentsteadystateresponsetolateralcyclicforvaryingrotorstiffnessisshownin

Figure48.Theinsetagainshowsamaximummagnituderesponsenear ν ~ 2.1 ,but withasmallervariationinmagnitudewithflappingstiffness.Phaseanglesensitivityto flappingstiffnessforlateralcyclicinputsisshowninFigure49.SimilarlytoFigure42, the effect of increasing advance ratio is smaller than the longitudinal response, and higher flapping stiffness values reduce the phase angle indicating significant offaxis response.

70 Steady State Rolling Moment Response to Lateral Cyclic Step 0

ν=1.08 -1000 ν=1.13 ν=1.18 -1200 =2.29 ν=1.24 ν=1.33 -1600 ν→ ν=1.43 -2000 -2000 1.1 1.2 1.3 1.4

SteadyStateRollMomentSensitivity toFlappingStiffnessforLateralCyclic Inputs, γ=1.4, =12rad/s HubRolling Moment [ft-lbf/deg] -3000 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 48: Steady State Rolling Moment Sensitivity to Flapping Frequency

Phase Angle Delay from Lateral Cyclic Input 100 ν=1.08 PhaseAngleSensitivityto FlappingStiffnessfor ν=1.13 80 LateralCyclic Inputs, ν=1.18 γ=1.4, =12rad/s ν=1.24 60 ν=1.33 ν=1.43 40

Phase Angle[deg] 20

0 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 49: Lateral Phase Angle Sensitivity to Rotor Flap Frequency

71 ThesteadystatemomentsensitivitytoLocknumberisshownforlongitudinalcyclicin

Figure50.FortherangesofLocknumberconsider,theeffectissmallexceptforthe highestLocknumberblade(blade1),whichtendstodivergefromthebasictrendnear anadvanceratioof ~ 0.1 .ThephaseanglesensitivitytoLocknumber,Figure 51,

showstheincreaseinphaseanglewithadvanceratioandLocknumber.Theblade1

responsefollowsthetrendsoftheotherbladesmorecloselybecauseofthegenerally

smallermagnitudeofboththeonaxisandoffaxisresponses.Phaseangleshigherthan

90degreesoccuratloweradvanceratiosforincreasingLocknumberandindicateasign

reversalfortheoffaxismomentsgenerated.Steadystaterollingmomentsensitivityto

LocknumberisshowninFigure52,withthephaseangleresponseshowninFigure53.

Steady State Pitching Moment Response to Longitudinal Cyclic Step 0

-4000 γ=1.40 γ=1.86 γ=2.79

γ=5.59 -8000

SteadyStatePitchingmomentSensitivity -12000 toLockNumberforLongitudinalCyclic Inputs, ν =1.24, =12rad/s Hub Pitching Moment [ft-lbf/deg] 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 50: Steady State Pitching Moment Sensitivity to Lock Number

72 Phase Angle Delay from Longitudinal Cyclic Input 120 γ=1.40 100 γ=1.86 γ=2.79 80 γ=5.59

60

40

20 Phase Angle[deg] PhaseAngleSensitivitytoLockNumberfor LongitudinalCyclic Inputs, ν =1.24, =12rad/s 0 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 51: Longitudinal Phase Angle Sensitivity to Lock Number

Steady State Rolling Moment Response to Lateral Cyclic Step 0 γ=1.40 γ=1.86 -500 γ=2.79 γ=5.59

-1000

-1500

SteadyStateRollingmomentSensitivity toLockNumberforLateralCyclic Inputs, -2000 ν =1.24, =12rad/s Hub Rolling Moment [ft-lbf/deg] 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 52: Steady State Rolling Moment from Lateral Cyclic

73 Phase Angle Delay from Lateral Cyclic Input 60 γ=1.40 γ=1.86 γ=2.79 40 γ=5.59

20 Phase Angle [deg] PhaseAngleSensitivitytoLockNumberfor LateralCyclic Inputs, ν =1.24, =12rad/s 0 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 53: Lateral Phase Angle Sensitivity to Lock Number

Theprimaryconclusionsfromthesteadystatehubmomentsensitivitystudyarerelated totheincreasedsensitivitywithadvanceratio,thestrongcrosscouplingeffects,andthe nonlinear effects at high advance ratio with varying flapping hinge spring stiffness.

Alsoshownwasthesignreversalintheoffaxismomentresponseathighadvanceratio, whichoccurredataloweradvanceratioforlighterblades.Thephaseangleresultswere presented to highlight the crosscoupling in the context of swashplate with a fixed mechanicalphasingtoemphasizethedifficultywithchoosingasinglephaseanglethat wouldprovideprimarilyonaxisresponseatallflightconditions.Thiseffectwouldmake itdifficultforahumanoperatortocontroltheswashplateinputssincethemagnitudeand signs change with flight condition, and an automatic controller design would need to accountforthiseffectaswell.

74 3.4 Rotor Steady-State Gust Sensitivity

Rotor steadystate moment responses to atmospheric gusts were investigated using stepwindmagnitudeinputswiththeisolatedrotormodels.Theresponsesinvestigated wereselectedasbeingrelatedtofamiliarstaticstabilityderivatives:angleofattackstatic stability(M w),speedstaticstability(M u),anddihedraleffect(L v),althoughtheyrepresent

steadystate values and cannot be considered instantaneous values as in the quasi

steadyrotorassumption.Thegustresponsesdohoweverprovidevaluableinsightinto

therotorbehaviorasfarasitstendencytoprovidestabilizinganddestabilizingeffects

(moments).Verticalgustsrepresentanangleofattackchangeontherotor.Therotor

contribution to angle of attack stability in helicopter theory is destabilizing since an

increase in angle of attack leads to a positive (noseup) pitch moment, leading to a

furtherincreaseinangleofattack.Inthesimulatedwindtunnelexperimentthesame

phenomenon was observed. Figure 54 shows the steady state pitch moment per

increment in vertical gust velocity, dimensionally as ftlbs of moment per ft/s of gust

velocity.

Speedstaticstabilityinhelicoptertheoryimpliesanoseuppitchingmomentwith

increasesinspeedrelativetothefreestreamvelocityasprovidingastabilizingmoment

whichtendstoreturnthespeedtotheundisturbedvalue.Steadystatepitchingmoment

responsetohorizontalgustswereinvestigatedasapredictorfortherotorbehaviorusing

stepincrementsinthefreestreamwindtunnelvelocity,andtheresultsforthebaseline

rotorareshowninFigure55.Highermagnituderesponseinseenathigherrotorspeed,

when shaft incidence is high, while advance ratio sensitivity is low except as the

advancingtipMachnumberlimitisapproached.

75 Rotor Pitch Moment Sensitivity to Vertical Gusts 800 BaselineRotor γ=1.4 o Coll=0 =12rad/s 600 =14rad/s [ft-lbf/ft/s]

w =16rad/s =18rad/s =20rad/s 400 =22rad/s =24rad/s =26rad/s =28rad/s 200 =30rad/s

0 0.0 0.5 1.0 1.5 2.0 2.5 Steady State Moment~M Advance Ratio [V/ R] Figure 54: Baseline Rotor Pitch Moment Sensitivity to Vertical Gusts

Rotor Pitch Moment Sensitivity to Horizontal Gusts 60 BaselineRotor γ=1.4 50 Coll=0 o =12rad/s =14rad/s

[ft-lbf/ft/s] =16rad/s u 40 =18rad/s =20rad/s 30 =22rad/s =24rad/s =26rad/s 20 =28rad/s =30rad/s

10

Speed Static StabilityM 0 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Figure 55: Baseline Rotor Pitch Moment Sensitivity to Horizontal Gusts

76 Thedihedraleffectinhelicoptertheoryprovidesastabilizingrollingmomentinresponse tosideguststhattendtorollthehelicoptersoastoeliminatethesideslip.Thesteady state response of the baseline rotor to side gusts shows that at high rotor speed the responseprovidesastabilizingeffectwherethemomentsareshownasthenegativeof thevaluesinthehubframesoastobeconsistentwiththecommoninterpretationofthe dihedraleffectwherenegativevaluesarestabilizing.Withreducedrotorspeedhowever the response to side gusts produces moments which tend to increase the sideslip

(destabilizing)withlittlesensitivitytoadvanceratio.Inthecaseofthebaselinerotor,the explanationofthisdestabilizingeffectcanbeattributedtothebladeflappingbehavior.

Atlowadvanceratioandlowrotorspeed,theheavybladesareproducinglittlethrust.

The result is a negative coning angle such the blades are drooped slightly. At high advanceratio,thethrusthasincreasedsuchthattheconingangleispositive.

Rotor Roll Moment Sensitivity to Side Gusts 20

10

0 [ft-lbf/ft/s] v -10 BaselineRotor γ=1.4 -20 Coll=0 o

-30 =12rad/s =14rad/s =16rad/s =18rad/s =20rad/s =22rad/s -40 =24rad/s =26rad/s =28rad/s =30rad/s -50 0.0 0.5 1.0 1.5 2.0 2.5 SteadyState Moment~ L Advance Ratio [V/ R] Figure 56: Baseline Rotor Sensitivity to Side Gusts

77 3.5 Rotor Transient Response and Slowed-Rotor Dynamics

Rotortransienthubmomentresponsewasshowntooccuronamuchfastertimescale thantherotorspeedchanges,therebyjustifyingthepresentationofthesteadystatehub moment results. However the slowedrotor dynamics themselves are such that the assumptionthattherotorresponsesinstantaneously(“quasisteadyassumption”)isnot correct. Consideration of the time history of the nonlinear simulation hub moment response to cyclic step inputs, Figure 34, indicates that the transient rotor responses requireontheorderofonetothreesecondstoreachasteadystatevalue.Itcanalso be seen that the response is generally dominated by the lowfrequency content. In analyticalhelicopterworktheregressingflapmodeistypicallythedominantmode,with the damping given by the quantity γ /16 for the hover case. Heffley et. al. [56] summarizedtheLocknumberrotorspeedproductforexistinghelicopters,andnotethat thequantity γ /16 isintheneighborhoodof12to15s 1.Theconceptconfiguration

parameters place the quantity γ /16 below this range due to three main factors: reducedrotorspeed,heavyblades,andhighaltitude(lowdensity).Fortheparametric baselinerotoratthereducedrotorspeed,thequantity γ /16 =1.05s 1.Thislowvalue

meansthetimescaleofrotortransientresponsetodisturbancesorinputsmaybeonthe

same order of magnitude as the vehicle motion. In the present work experimental

transfer functions are determined from application of system identification methods.

Thesetransferfunctionsarelineardescribingfunctionsfortheinputoutputrelationships

forrotorcontrolinputsordisturbancestohubmomentsinthenonrotatingframe.Rotor

transient dynamics can be excited by any swashplate control input, gust, or rotor

orientation disturbance from the trim condition. In this dissertation, the hub pitching

momentfrequencyresponsetochangesinshaftincidenceanglearestudied.Thishub

momentresponseresultswhentheairframeundergoesachangeinpitchattitudedueto

78 gusts or airframe pitch control input. In the case of an automatic feedback controller designed to suppress the hub moments, determination of frequency response models would be a logical first step. Kuczynski and Sissingh [57] determined experimental transfer functions for a 45inch radius hingeless rotor and compared results from theoreticalpredictions.Advanceratiosupto ~ .1 44 wereconsidered,andafirstorder lag feedback control system, “described most accurately as a steadystate gust alleviationdevice”[57],wasevaluated.Inthepresentwork,thefrequencyresponseis usedtoinvestigatetheeffectofadvanceratioandtherotorparametersatthereduced rotor speed. Comparison of step response for the loworder identified model and the nonlinearsimulationisusedtohighlighttheeffectofadvanceratioandthesensitivityto rotorparametersinthetimedomain,aswellasdiscusstheresponsecomponentsnot captured in the loworder model. The comparison provides relevant background information that would influence the architecture of the feedback control system. For instance, a linear feedback controller versus a controller designed for a nonlinear or periodic system represent different architecture choices with varying cost and complexity.

The experimental transfer functions were obtained according the methods described by Tischler and Remple [49]. The system identification process involves collectingtimehistorydataofsysteminputsandoutputsasthesystemisexcitedbya variable frequency input sweep. The time history data is then transformed into the frequency domain. The software program CIFER ® [58] was used to accomplish the transformationandfacilitatedatapostprocessing.CIFER ®,developedbytheU.S.Army

AeroflightdynamicsDirectorateatAmesResearchCenter,hasbeenusedextensivelyfor

rotorcraftandaircraftdynamicsmodelidentificationfromflighttestdata.Inthepresent

work, time history data from the FLIGHTLAB TM nonlinear simulation was used as

79 surrogateflighttestdata.Theinputfrequencysweepswereconductedoverafrequency range of 0.001 to 5.0 Hz with a total time history for each record of two hundred seconds. Figure 57 shows the experimental frequency response for the hub pitching momentsresultingfromshaftincidenceperturbations.Thecoherencefunction“canbe interpretedphysicallyasthefractionoftheoutputspectrumthatislinearlyattributableto theinputspectrum”ataparticularfrequency[49].Coherencevalueswillbebetween0 and1withhighervaluesprovidingmoreconfidenceinthemodel.

Experimental Frequency Response Pitching Moment from Shaft Incidence Angle 80

60

40 M y/ishaft

Magnitude [dB] Magnitude 20 0

-90 BaselineRotor -180 =12rad/s γ=1.4, ν=1.24

Phase[deg] -270 1.00

0.75 =0.33 =0.65 =0.98 =1.31 =1.63 =1.96 0.50 =2.29 Coherence 0.00 0.1 1 10 100 Frequency [rad/sec] Figure 57: Experimental Frequency Response – Advance Ratio Sensitivity

Transfer function models were identified using the NAVFIT component of

CIFER ®.NAVFITidentifiesthecoefficientsforaparticulartransferfunctionformusing an optimization process to curve fit the frequency response of the identified transfer functiontotheexperimentaldata.Lowfrequencyeffectswereofprimaryinterestsothat

the range of the curve fitting process was restricted to 1.0 ≤ ωn ≤ 10 rad/s, which

80 includes the regressing flap mode for the baseline rotor, but neglects the coning and advancing flap modes. A proper fourth order transfer function form was found to accurately fit the data in this range, as reflected by low cost functions, ranging from

J = 6.0 for the = .0 33 , up to J = 11 1. for the = .2 29 case. Figure 58 shows the

frequencyresponseoftheloworderidentifiedmodelsofpitchingmomentresponseto

shaftincidenceanglechanges.

Low Order Approximation Frequency Response Pitching Moment from Shaft Incidence Angle

80 BaselineRotor ComplexPole =12rad/s DampingRatio 60 γ=1.4, ν=1.24 =0.33 ζ=0.28 =0.65 ζ=0.36 ζ 40 =0.98 =0.40 =1.31 ζ=0.48 =1.63 ζ=0.58 Magnitude [dB] Magnitude 20 =1.96 ζ=0.65 0.1 1 10 100 =2.29 ζ=0.80

0

-40 Phase [deg] Phase -80 M (s)/ i (s) y shaft

0.1 1 10 100 Frequency [rad/sec] Figure 58: Hub Pitching Moment Frequency Response to Shaft Incidence Angle

The magnitude plot shows the increase in steadystate value with increased advance ratioaswasseeninthesteadystateanalysis.Alsoshowistheamplitudepeakvalue whichisindicativeofthedamping,whereanincreaseinthepeakamplitudeimpliesa decreaseindamping.Theidentifiedmodelscontainacomplexpolepairwithadamping

81 ratio that increases with advance ratio at an essentially constant natural frequency,

ωn ≈ 8.2 rad/s.

Rotorhubpitchingmomentresponsetoshaftincidencestepinputswasusedto comparethenonlinearsimulationandthelowordermodelsfromsystemidentification.

Beyond just the frequency response plot, the time history provides several important conclusionsregardingtheuseofloworderlinearmodelstopredicttherotorbehavior.

Figure59showtheeffectofadvanceratioontherotorresponse.Fromaninitialtrim condition,thesteadystatemagnitudeincreasesinthesamemannerasthesteadystate control input data presented earlier. At still higher advance ratios the effect is a reductioninovershootandareducedresponsesettlingtime.AlsovisibleinFigure59is a high frequency oscillations. This high frequency response peaktopeak magnitude increaseswithadvanceratioastheeffectofincreasedsensitivityandwillbeseeninthe fixedsystemasanincreasein4/revvibration.

82 Non-linear Simulation Response to Shaft Incidence Perturbation OneDegreeStepInput, γ=1.4, ν=1.24, =12 rad/s

300 1000 2000

200 500 1000 100 0 0 =0.33 0 =0.65 =0.98 0 2 4 6 0 2 4 6 0 2 4 6

4000 6000 8000

4000 2000 4000 2000

0 =1.31 0 =1.63 0 =1.96 0 2 4 6 0 2 4 6 0 2 4 6

time [sec] 12000 3 HubPitch Moment[ft-lbf] Shaft Incidence Angle 8000 FLIGHTLAB 2 1 oStepInput

NonlinearSimulation 4000 IdentifiedLinearModel 1 0 =2.29 0 0 2 4 6 0 2 4 6

time [sec] ShaftPerturbation [deg] time [sec] Figure 59: Advance Ratio Effect on Slowed-Rotor Transient Response

Figure 60 shows the experimental frequency response sensitivity to nondimensional flappingfrequencyatthecruisecondition.Thefrequencyresponseforthehigherflap stiffnessshowsahigheramplitudepeakatahigherfrequency,indicatingareductionin dampingratio.Forthelowstiffnessvaluesthelowfrequencyrotorresponseappearsas realroots,notanoscillatorypair,andthefrequenciesneartherotorspeedappearmore prominently.Figure61showstheidentifiedmodelbasedonthedominantlowfrequency modes,withtheeffectofthefrequenciesneartherotorspeedretained.

83 Experimental Frequency Response Pitching Moment Response to Shaft Incidence

80 60 M / i y shaft Magnitude[dB]

0 -90

=12rad/s -180 γ=1.4, =2.29

Phase [deg] Phase -270 1.0

ν=1.13 ν=1.18 0.5

ν=1.24 ν=1.33 ν=1.43 ν=1.60

Coherence 0.0 0.1 1 10 100 Frequency [rad/sec] Figure 60: Experimental Frequency Response – Flap Stiffness Sensitivity

Low-Order Approximation Frequency Response Pitching Moment Response to Shaft Incidence 80 M / i y shaft

60

40 Magnitude [dB] Magnitude =12rad/s γ=1.4, =2.29 20

0

-90 ν=1.13 ν=1.18

ν=1.24

Phase [deg] -180 ν=1.33 ν=1.43 ν=1.60 -270 0.1 1 10 100 Frequency [rad/sec] Figure 61: Frequency Response Sensitivity to Flapping Stiffness

84 Figure62showsthestepresponseatthecruiseconditionforthesensitivitytoflapping stiffness.Thelowestflappingstiffnessresponseshowsanoverdampedbehavior,with theeffectofincreasingflappingstiffnessbeinganincreaseinovershootandoscillatory behaviorindicativeofanunderdampedresponse.

Non-linear Simulation Response to Shaft Incidence StepInputatCruiseCondition, γ=1.4, =2.29, =12 rad/s

10000 10000

5000 5000

0 ν=1.13 0 ν=1.24 0 2 4 6 0 2 4 6

10000 10000 5000

5000

0 ν=1.33 0 ν=1.52 0 2 4 6 0 2 4 6

FLIGHTLABSimulation 15000 0.07 LowOrderIdentifedModel

HubPitchMoment[ftlbf] 10000 0.06

5000 0.05 0.04 o 0 ν=1.60 ShaftIncidenceAngle1 StepInput 0.03 0 2 4 6 0 2 4 6 time[sec] time[sec] Figure 62: Rotor Flapping Stiffness Effect on Slowed-Rotor Transient Response

ExperimentaltransferfunctionsensitivitytoLocknumberisshowninFigure64.Asmall steadystatemagnitudeincreasewithLocknumbercanbeseeninthemagnitudeplot.

ThestepresponsecomparisonisshowninFigure65.Atconstantflappingfrequency, the increase in Lock number results in an overdamped response. In the nonlinear simulation, the primary trend with increasing Lock number is an increase in the 4/rev

85 vibrationcontent,indicatingthatthelighterbladesareexperiencinghighercyclicflapping whendisturbedfromtrim.

Experimental Rotor Frequency Response Pitching Moment from Shaft Incidence Angle

75

M /i y shaft Magnitude [dB] Magnitude 50 0

90 =2.29 180 =12rad/s

Phase[deg] ν=1.24 270 1.0 0.8 γ=2.79 γ=1.86 0.6 γ=1.40 Coherence 0.4 0.1 1 10 100 Frequency [rad/sec] Figure 63: Experimental Frequency Response – Lock Number Sensitivity Identified Frequency Response Pitching Moment Response to Shaft Incidence

80

70 γ=2.79 60 γ=1.86 M / i Magnitude [dB] γ=1.40 y shaft 50 -180

-225

Phase[deg] =12rad/s =2.29 -270 0.1 1 10 Frequency [rad/sec] Figure 64: Identified Hub Pitching Moment Frequency Response to Shaft Incidence

86 Non-linear Simulation Response to Shaft Incidence StepInputatCruiseCondition, =2.29, =12 rad/s 12000 12000

8000 8000

4000 4000 Blade4 Blade3 γ=1.40 0 γ=1.86 0 ν=1.24 ν=1.24 -4000 0 2 4 6 0 2 4 6 time [sec] time [sec] 12000 4

8000 Hub Hub Pitch Moment [ft-lbf] 2 4000 Blade2 FLIGHTLAB γ=2.79 NonlinearSimulation 0 ν=1.24 IdentifedModel Shaft Incidence [deg] Shaft Incidence 0 0 2 4 6 0 2 4 6 time [sec] time [sec] Figure 65: Lock Number Effect on Slowed-Rotor Transient Response

3.6 Rotor Speed Response to Swashplate Controls

Somemeansofrotorspeedregulationhasbeendiscussedasaninherentfeatureofthe conceptvehicle.Earlierthehubpitchingandrolling momentresponse to swashplate controlinputswaspresentedintermsofthesteadystateresponsetoaonedegreestep inputatconstantrotorspeed.Rotorcontrolusingonlyswashplatecontrolsrepresentsa possible strategy, and in this section the rotor speed response to swashplate control inputsispresented.Therotorspeedresponseisaresultofthetorquebalanceonthe rotor,andtheresponsewasshowntooccuronamuchlongertimescalethantherotor hub moments, justifying the constant rotor speed approximation in section 3.3. The changes in rotor speed due to swashplate inputs cannot however be presented in

87 exactlythesamemannerasthehubmomentdatabecauseoftheobservanceofanon linearbehaviorinthesimulation.Thenonlinearbehaviorisapparentbecausethesign oftheoutputdependsonthemagnitudeoftheinput.Figure66illustratesthenonlinear behavior through the rotor speed time history to a slow, ramp longitudinal cyclic perturbationfromtrim.Inthisexample,thesmallmagnitudestepresultsinadecrease inrotorspeed,whilethelargestepinitiallyresultsinareducedrotorspeed,butwhena certainmagnitudeinputisreachedtherotorspeedbeginstoincrease.Forthisreason the rotor speed response to swashplate control inputs is shown in terms of the magnitudeoftheinput.Thesourceofthisnonlinearbehaviorisinvestigatedinsection

3.8.

Thenonlinearsimulationtimeresponseoftheisolatedrotormodeltoswashplate

inputs showed that the rotor acceleration could be estimated using a two point

approximationofchangeinrotorspeedoversimulationtime,/t,whereswashplate

control step inputs were applied as in Figure 66. This procedure was repeated for

positiveandnegativestepinputsforeachoftheswashplatecontrols.Figure67shows

therotoraccelerationduetolongitudinalcyclicinputsasafunctionofadvanceratio.At

low advance ratio the behavior is nearly linear with only a small magnitude, but with

increasingadvanceratiothemagnitudeincreasesandthenonlinearbehaviorappears

forpositiveinputs.Figure68showstherotoraccelerationforlateralcyclicinputs.The

magnitudeforlateralinputsisanorderofmagnitudesmallerthanthelongitudinalcyclic

results,anddoesnotdisplaythesamenonlinearresponse.Collectivepitchresultsare

showninFigure69.Thenonlinearresponseisagainpresentathighadvanceratio,for

negative collective pitch inputs, but the magnitude is smaller than the longitudinal

results.

88 Rotor Speed Response to Cyclic Step

3.0

2.5

2.0 LargeStep SmallStep Longitudinal Cyclic [deg] 1.5 BaselineRotor 12.2 =12rad/s 0 =2.29 12.0

Rotor [rad/s] Speed 11.8 t

0 2 4 6 8 time [sec] Figure 66: Rotor Speed Response to Small and Large Longitudinal Cyclic Steps

Rotor Acceleration due to Longitudinal Cyclic Step Size 0.3 RotorAcceleration

] =0.33 2 fromTwoPoint Approximation =0.65 0.2 / t =0.98 =1.31 =1.63 =1.96 0.1

=2.29

0.0 BaselineRotor =12rad/s o θ =0 0 Angular Acceleration[rad/s γ=1.4, ν=1.24 -0.1 -2 -1 0 1 2 Longitudinal Cyclic Perturbation from Trim [deg] Figure 67: Advance Ratio Effect on Rotor Speed Response to Longitudinal Cyclic

89 Rotor Acceleration due to Lateral Cyclic Step Size

RotorAcceleration fromTwoPoint

] 0.02 2 Approximation / t

0.00

=0.33 -0.02 =0.65 =0.98 =1.31 BaselineRotor =1.63 -0.04 =12rad/s o =1.96 θ =0 0 =2.29

Angular Acceleration [rad/s γ=1.4, ν=1.24 -2 -1 0 1 2 Lateral Cyclic Perturbation from Trim [deg] Figure 68: Advance Ratio Effect on Rotor Speed Response to Lateral Cyclic

Rotor Acceleration due to Collective Step Size

RotorAcceleration 0.20 =0.33 fromTwoPoint ] 2 =0.65 Approximation 0.15 =0.98 / t =1.31 0.10 =1.63 =1.96 =2.29 0.05

0.00 BaselineRotor =12rad/s -0.05 o θ =0 0

AngularAcceleration [rad/s γ=1.4, ν=1.24 -0.10 -2 -1 0 1 2 Collective Perturbation from Trim [deg] Figure 69: Advance Ratio Effect on Rotor Speed Response to Collective

90 Therotoraccelerationdatawerepresentedforthebaselinerotoratzerodegrees of collective pitch. The sensitivity to the collective pitch setting is addressed in

Subsection 3.7 where sensitivities to trim condition and the existence of multiple trim solutionsarepresented.SensitivitytorotorparametersisaddressedinSubsection3.8in theinvestigationofthesourceofthenonlinearbehavior.

3.7 Cruise Condition Rotor Performance and Multiple Trim Solutions

Amoredetailedinvestigationofthecruiseconditionwasmadewiththeisolatedrotor modelsinceaconsiderableportionoftheconceptvehiclemissionwouldbeflowninthis condition.Thewindtunnelconditionsweresettothecruisecondition,andaseriesof sweeps were made using the collective control and the rotor shaft incidence to the tunnelvelocityasparameters.Atafixedcollective,theshaftincidencewassweptfrom

3degreetoplus3degreesandtherotorrollingandpitchingmomentsweretrimmedat each point. Figure 70 illustrates the rotor torque vs. the rotor shaft incidence to the tunnelfreestreamvelocityatthecruisecondition.

91 Simulated Wind Tunnel Experiment 800 BaselineRotor =12rad/s 400 =2.29 γ=1.4, ν=1.24

0 -400

-800 Coll=1deg Coll=0deg

RotorMz Hub Moment [ft-lbf] Coll=1deg -1200 -4 -2 0 2 4 Shaft Incidence with Freestream [deg] Figure 70: Trimmed-Rotor Torque Curves – Cruise Condition

The collection of points at the zerotorque crossing was retained as possible autorotationaltrimoperatingpoints.Theresultwasacontourofcombinationsofrotor shaftincidenceandcollectivecontrol.TheleftsideofFigure71showsthecontourin termsofthecollectivepitchsettingsandtherightsideofthefigureshowsthecontourin termsoftheliftproducedbytherotor.Thepointsdesignatedas“TrimPoint2”andTrim

Point6”arepointsthatprovidenearlyequivalentrotorlift(~1,500lbs.),butdifferinthat

TrimPoint2hasanaftshaftorientationwithrespecttothefreestreamflow,andTrim

Point 6 has a small forward tilt into the freestream flow. These two trim points are identically the conditions discussed by Rigsby and Prasad [59] when considering the applicationofsystemidentificationmethodstoidentifymodelsforthepredictionofrotor speed behavior. In both cases the point represents a trimmed, zerotorque condition.

Pointsonethroughsixareusedtoinvestigatethedifferencesbetweenthemultipletrim

92 conditionsforthebaselinerotorconfigurationatthecruiseconditionintermsoftherotor speedresponsetocontroldisturbancefromtrim.

Zero-Torque Contour in Trim Cruise Condition 2 BaselineRotor , =12rad/s 2000 5 4 ν=1.24 , =2.29 3 6 2 1 1000 1

1 0 2 0

3 4 Rotor Lift [lbs] -1 -1000

Collective Pitch Angle [deg] 5 6 =11rad/s =11rad/s -2 -2000 -2 0 2 4 -2 0 2 4

Shaft Incidence with Freestream [deg] Figure 71: Rotor Trim Contours - Cruise Condition

Cyclic Control on Rotor Zero-Torque Contour in Trim 6 BaselineRotor =12rad/s 4 ν=1.24 1 =2.29

2 2 3 0 4 -2 5 -4 6 Longitudinal Cyclic [deg] =11rad/s -6 -1 0 1 2 3 Lateral Cyclic [deg] Figure 72: Cyclic Control Positions on Trim Contour – Cruise Condition

93 Theorientationoftherotorshafttothefreestreamrepresentsadesigndecisionthat mayormaynotbeadjustableinflight.Thedecisiontotilttheshaftaddscomplexityand costtothedesign,butallowsforgreaterflexibilityinchoosingtherotoroperatingpoint.

Inadditiontothedifferencesinperformanceforthetrimpoints,therotorspeedresponse toswashplateinputsalsodependsonthechoiceoftrimpoint.Figure73showstherotor accelerationduetolongitudinalcyclicstepversusthemagnitudeofthestep.Trimpoint

2 exhibits the behavior that negative steps tend to speed up the rotor while positive stepstendtoslowdowntherotorforstepsofatleastaslargeasonedegreeofcyclic eventhoughthepositivestepsshownonlinearbehaviorstartingnear½degree.Trim point6exhibitsasimilartrendfornegativestepsbutthepositivedirectionshowsasmall negativeeffectuntilabout½adegreethenasignreversalforlargerinputs.Figure74 showstheeffectofthelateralcycliconrotoraccelerationandsimilarlyFigure75shows theeffectofthecollective.Thebehaviorhighlightsthenonlineareffects.Afundamental principleintheconceptofavehicleutilizingalightlyloadedrotorautorotatingathigh advance ratio is the need to tightly control the rotor speed either with pilot inputs or automaticfeedbackcontrol.Thenonlinearitiesandsignreversalsindicatethatcomplex piloting strategies would be required or a feedback control system that can accommodate changing sensitivities and partial derivative signs would be required in ordertoutilizeswashplateinputsforrotorspeedcontrolwhenthisbehaviorispresent.

TheoriginofthenonlinearbehaviorisdiscussedinSection3.8.

94 Rotor Acceleration due to Longitudinal Cyclic Step

RotorAcceleration PointsDefined fromTwoPoint ] onTrimContour 2 0.3 Approximation Point1 / t Point2 Point3 0.2 Point4 Point5 Point6 0.1

0.0 BaselineRotor =12rad/s =2.29

Angular Acceleration [rad/s γ=1.4, ν=1.24 -0.1 -2 -1 0 1 2 Longitudinal Cyclic Perturbation from Trim [deg] Figure 73: Rotor Acceleration Sensitivity to Longitudinal Cyclic Step Magnitude

Rotor Acceleration due to Lateral Cyclic Step 0.04 RotorAcceleration

] fromTwoPoint 2 0.02 Approximation / t

0.00 PointsDefined onTrimContour -0.02 Point1 Point2 Point3 BaselineRotor Point4 =12rad/s -0.04 Point5 =2.29 Point6

Angular Acceleration [rad/s γ=1.4, ν=1.24 -2 -1 0 1 2 Lateral Cyclic Perturbation from Trim [deg] Figure 74: Rotor Acceleration Sensitivity to Lateral Cyclic Step Magnitude

95 Rotor Acceleration due to Collective Step

0.2 RotorAcceleration fromTwoPoint ] 2 Approximation / t 0.1

PointsDefined 0.0 onTrimContour Point1 Point2 BaselineRotor Point3 =12rad/s Point4 -0.1 =2.29 Point5 γ=1.4, ν=1.24 Point6 Angular Acceleration[rad/s -2 -1 0 1 2 Collective Perturbation from Trim [deg] Figure 75: Rotor Acceleration Sensitivity to Collective Step Magnitude

3.8 Source of Rotor Speed Non-linear Response to Control Inputs

Nonlinear rotor speed response to swashplate control inputs was presented in subsection3.6.Astudywasperformedtoidentifymorespecificallythesourceofthis nonlinear behavior. Initially, factors considered as potentially contributing to the behaviorweretheinflowmodel,flappingstiffness,andtheLocknumber.Thesefactors wereinvestigatedparametricallyandcomparedtothebaselinerotor.Subsequently,a detailedaccountingofthecontributionstothetorqueofasinglerotorbladewasmadeto provideadditionalinsightintotheoriginofthenonlinearbehavior.

Toassesstheimpactoftheinflowmodelonthenonlinearrotorspeedbehavior, thelongitudinalcyclicperturbationanalysiswasrepeatedusingtwootherinflowmodels:

Glauertuniforminflow,andafinitestateinflowmodel.Thefinitestateinflowmodelused afourthorderpolynomialforthespanwisevariation.Therotorinflowmodelresultsare showninFigure76.Theresultsindicateverylittleimpactontherotorspeedbehavior

96 likelyduetothereducedthrustloadingontherotorinthecruisecondition.Theliterature review revealed no clear findings on the applicability of dynamic inflow to the lightly loadedrotorautorotatingathighadvanceratio,norsuggestedthesuperiorityofinflow modelssuchastheprescribedorfreewakemodels.Forworkbeyondtheconceptual designphase,higherfidelitywakemodelswouldhoweverbeappropriatewhenhigher fidelitybladestructuralmodelsareavailable.Next,thesensitivitytotherotorflapping stiffnesswasinvestigatedbyadjustmentoftheflappinghingespringconstant.Figure77 shows the sensitivity to changes in the flap hinge spring, which alters the flapping frequency. Lower stiffness values results in a smaller range where negative rotor accelerationispossible,whilelargerstiffnessvaluestendtostraightenandflattenthe curve resulting in a lower sensitivity to the inputs. Figure 78 shows the sensitivity to blademasschanges(LockNumbereffect)withthehingespringadjustedtomaintainthe nondimensionalflappingfrequencyatthebaselinevalueofν~1.24.

Rotor Acceleration due to Longitudinal Cyclic Step

0.15 3StateDynamicInflow ]

2 UniformInflow FiniteState 0.10

0.05

0.00 BaselineRotor γ=1.4 -0.05 =12rad/s =2.29 Angular Acceleration [rad/s -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Longitudinal Cyclic Perturbation from Trim [deg] Figure 76: Sensitivity to Rotor Inflow Model - Baseline Rotor

97 Theresults show thatreducing the blademass (increased Lock number) produces a similareffectasareductioninstiffness,namelyasteeperslopeandareductioninthe rangefornegativerotoracceleration,andamoreparaboliccurveshape.Figure77also shows the limiting case of an infinitely stiff rotor which has no flapping degrees of freedom.Inthiscasethelongitudinalcycliceffectonthetorqueisessentiallylinear, indicatingthenonlineareffectsareassociatedwiththebladeflapping.Consideringthe sensitivitytoflappingstiffnessandLocknumber,thenonlinearitiesappearmoresevere incaseswherethebladeflappingresponsetothecyclicinputresultsinlargermagnitude flappingangles.Inotherwordsthelighterbladeswithlowerstiffnesstendtoresultin moreseverenonlinearitiesasalsoconfirmedwiththeinfinitelystiffrotorcase.

Rotor Acceleration due to Longitudinal Cyclic Step 0.25 ν=1.00 ]

2 0.20 ν=1.13 ν=1.24 0.15 ν=1.43 0.10 ν=1.60 ν= ∞ 0.05

0.00

γ=1.4 -0.05 =12rad/s =2.29 Angular Acceleration [rad/s -0.10 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Longitudinal Cyclic Perturbation from Trim [deg] Figure 77: Rotor Acceleration Sensitivity to Rotor Flapping Stiffness

98 Rotor Acceleration due to Longitudinal Cyclic Step 0.2 γ=1.40 ] 2 γ=1.86 γ=2.79 0.1 γ=5.59

0.0

=12rad/s =2.29 ν=1.24 Angular Acceleration [rad/s -0.1 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Longitudinal Cyclic Perturbation from Trim [deg] Figure 78: Rotor Acceleration Sensitivity to Lock Number

Sincetherotormodelsuseaflaphingelocatedat the center of rotation, the contributiontotherotortorqueofasingleblade can be easily used to identify which regionsoftherotorazimuthtendstoaddtorquetotherotorandwhichregionsconsume torquebyexaminationofthebladeroottorquemomentanditscomponents.Thiswas accomplished by performing an accounting of the torque moment at the root of one blade along with the effects that contribute to the torque moment over one rotor revolution.

Figure 79 shows the total blade root torque moment, and the contribution from aerodynamics,gravity,andtheCorioliseffectduetotheflappingmotionintherotating hub frame for the baseline rotor trimmed in autorotation at ~ .2 29 . The gravity momentresultsfromtheafttiltoftheshaftandthe Coriolis moment results from the flappingangleandflappingrate.Thesetwoeffectsaveragetozeroaroundtheazimuth foreachbladeandforallbladescombined.Theydonotaffecttheaveragetorqueon

99 therotorthattendstochangetherotorspeed,buttheyareincludedonlytoprovidean accountingofthetotalbladeroottorquemomentaroundtheazimuth.

Single Blade Torque Moments vs. Azimuth Steady State Trim , = 2.29

1000 BladeTorqueMoment BladeRoot inRotatingHubFrame TotalTorqueMoment Positive=DrivingRegion AerodynamicTorqueMoment CoriolisTorqueMoment GravityTorqueMoment 0 TotalGravity,Coriolis, AeroTorqueMoment

1.0

-1000 0.5 SingleBlade AverageAeroTorque=0ftlbf Torque Moment Torque [ft-lbf] 0.0

-2000 Angle[deg] Flap BaselineRotor =12rad/s ,γ =1.40 , =2.29 -0.5 0 90 180 270 360 0 45 90 135 180 225 270 315 360 Azimuth Angle [deg] Azimuth Angle [deg] Figure 79: Blade Root Torque vs. Azimuth

Thecontributiontothetorquefromtheaerodynamicsshowstheadvancingsideofthe rotor provides a negative moment,meaning rotor power is consumed (driven region), while the retreating side provides a positive moment,meaning power is added tothe rotor(drivenregion).Thisisthesteadystateenvironmentofanindividualbladeasit passesaroundtheazimuth,andsincetherotoristrimmedtozerotorque,theaverage aroundtheazimuthiszero.Thisplotisthesummedeffectofallofthebladeelement sectionsateachazimuthposition,whereasFigure25isapolarcontourplotaccounting for the variation of the aerodynamic inplane force along the blade span. The blade flappingangle,shownintheinsetofFigure80,remainssmall,andisontheorderof½ degree.Whentherotorisperturbedfromtrimandruntoanewsteadystate,thetotal

100 torquemomentsnolongeraveragetozero.Theresult for a one degree longitudinal cyclicstepisshownin Figure80.Thenewsteady state results in ahigher value of cyclic flapping, on the order of three degrees, and the contribution from the aerodynamicsnowaveragestoanegativevalue,tendingtoslowtherotor.Thepeak magnitudeoftheCoriolismomenthasincreasedduetotheincreaseinflappingmotion, buttheaverageremainszero,makingnonetcontributiontotheaveragetorque.

Blade Torque Moments vs. Azimuth One Degree Longitudinal Cyclic Steady-State Perturbation 2000 Positive=DrivingRegion BladeRoot TotalTorqueMoment 1000 AerodynamicTorqueMoment CoriolisTorqueMoment GravityTorqueMoment TotalGravity,Coriolis, 0 AeroTorqueMoment 3 -1000 0 SingleBlade AverageAeroTorque=61.6ftlbf Torque MomentTorque [ft-lbf] -3 -2000 BaselineRotor

=12rad/s [deg] Angle Flap γ=1.40 , =2.29 -6 0 90 180 270 360 -3000 0 45 90 135 180 225 270 315 360 Azimuth Angle [deg]

Azimuth Angle [deg] Figure 80: Individual Blade Torque Moment for 1o Steady State Cyclic Perturbation

Figure 81 shows the contributions to the torque for a two degree longitudinal cyclic

perturbationfromtrim.Inthiscase,thecyclicflappinghasincreasedevenfurther,in

excessoffivedegrees.ThemagnitudeoftheCoriolismomenthasanevenlargerpeak

topeakmagnitude,butcontinuestoaveragetozero,againcontributingnothingtothe

average torque on the rotor. The aerodynamic loads, however now average to a

101 positivevalue,tendingtoacceleratetherotor.Theazimuthregionnear ψ ~ 180 o shows a larger contribution to the accelerating torque than the trim case with the blade experiencing large flap angle magnitude in this region as well. When the combined effectofallfourbladesisconsideredintherotatinghubframe,eachbladeexperiences thesameeffect,butphasedduetothebladespacingaroundtheazimuth.Thesummed effectonthetorqueofallfourbladesastheyarespacedaroundtheazimuthisshownin

Figure82.Theresultforthetrimandperturbedcasesistheclearpresenceofa4/rev response as expected for a four bladed rotor. The gravity and Coriolis moments continue to average to zero, making no contribution to the average torque, with the torqueeffectontherotorspeeddueentirelytothechangeinaerodynamicenvironment.

The results presented are steadystate values so that the change in aerodynamic environmentincludesthefactthattheblademotionhasbeenforcedtoconsistofhigher flappingrates,whichaffectstheangleofattackinthebladeelementmodel.

Blade Torque Moments vs. Azimuth Two Degrees Longitudinal Cyclic Steady State Perturbation 8000 Positive=DrivingRegion BaselineRotor BladeRoot =12rad/s TotalTorqueMoment γ=1.40 , =2.29 AerodynamicTorqueMoment 4000 CoriolisTorqueMoment GravityTorqueMoment TotalGravity,Coriolis, AeroTorqueMoment

0 5

0

Torque Torque Moment [ft-lbf] -4000 -5

SingleBlade [deg] Angle Flap AverageAeroTorque=+156.5ftlbf -10 0 90 180 270 360 -8000 0 45 90 135 180 225 270 315 360 Azimuth Angle [deg]

Azimuth Angle [deg] Figure 81: Individual Blade Torque Moment for 2 o Steady State Cyclic Perturbation

102 Torque Hub Moments vs. Azimuth

Trim and Steady-State Longitudinal Cyclic Perturbations

Trim Trim 4000 1degLongitudinalCyclic 4000 1degLongitudinalCyclic Average=248ftlbf 2degLongitudinalCyclic 2degLongitudinalCyclic Average=+627ftlbf

Positive=DrivingRegion

2000 2000

0 0 TorqueMoment [ft-lbf] TorqueMoment [ft-lbf]

TotalHubTorque -2000 AeroTorqueMoment -2000 0 90 180 270 360 0 90 180 270 360 Azimuth Angle [deg] Azimuth Angle [deg] 2000 5 Trim Trim 1degLongitudinalCyclic 1degLongitudinalCyclic 2degLongitudinalCyclic 2degLongitudinalCyclic 1000

0 0 TorqueMoment [ft-lbf] TorqueMoment [ft-lbf] -1000 CoriolisTorqueMoment GravityTorqueMoment -5 0 90 180 270 360 0 90 180 270 360 Azimuth Angle [deg] Azimuth Angle [deg] BaselineRotor =12rad/s ,γ =1.40 , =2.29 Figure 82: Steady-State and Perturbed Torque Moments from all Four Blades

3.9 Preferred Rotor Operating Point Selection Criteria

The performance plots indicate that multiple trim solutions exist at a particular flight condition and rotor speed. Severalfactors were considered to suggest the preferred operating point(s) for the rotor. Trim points that produce a negative lift were not consideredforfurtheranalysissincenegativeliftwouldrepresentaperformancepenalty similartoaddedweightthattheairframemustcarry.Theperformancedatashowsthe pointofmaximumrotorliftatcruisetobejustlessthanonedegreeofincidencetothe freestream.Themaximumlifthoweverisnotnecessarilydesirablesincethevehicle conceptistounloadtherotorforgreatervehicle aerodynamicefficiency.Thecontrol sensitivities suggest that the rotor should be operated at a slightly higher incidence

103 angle, ~ 2 to 3 degrees (0 degree collective pitch) in order to operate such that the controlshavethelargestrangeoflinearvariationandthelargestrangeoftravelwithout encounteringsignreversals.Thesteadystateblademotionisalsoconsideredsince cyclic variationoftheflappingangleresultinblade structural loads and manifests as vibrationtransmittedtotheairframe.TheinsetofFigure79showedthebladeflapangle versusazimuthpositionfortriminthecruisecondition.Theaveragepitchingandrolling momentsweretrimmedtozero,butthebladestillexperiencedachangeinflapangle aroundtheazimuthsuchthattrimmingtozeromomentsdidnotresultsinzerocyclic flapping.Intermsofthemotionofalloftheblades,multibladecoordinatescanbeused to describethemotionoftherotor as a whole in the nonrotating frame. The non rotating degrees of freedom are derived from the Fourier coordinate transform by

Johnson[50]as:

N 1 (m) β 0 = ∑ β N m=1

N 2 (m) β nc = ∑ β cos nψ m N m=1

N 2 (m) β ns = ∑ β sin nψ m N m=1

N 1 (m) m β N 2/ = ∑ β (− )1 N m=1

TheconingandfirstharmonicnonrotatingdegreesoffreedomareshowninFigure83 for the baseline rotor, trimmed at the cruise condition. The higher harmonic terms

β 2c , β 2s andthereactionlessmode β N 2/ (notshown)arenecessaryfortherecreationof

104 the individual blade motion, and result from asymmetric flow pattern of the rotor due largelytothereverseflowregion[61].

Trimmed Rotor in Autorotation - Multiblade Coordinate Degrees of Freedom CruiseCondition, =2.29, γ=1.4, θ =0 o 0 0.6 β ConingMode BaselineRotor 0 =12rad/s β LongitudinalTPPTilt 1c β LateralTPPTilt 0.4 1s

0.2

0.0

-0.2

Multiblade Coordinate Coefficients [deg] 0 90 180 270 360 Azimuth Angle [deg] Figure 83: Rotor Non-Rotating Degrees of Freedom in Trim at Cruise Condition

Thepresenceofthistiltofthetippathplanewhentheaveragehubpitchingandrolling momentsarezerocanbeexplainedbyconsideringthe equationfor the hub pitching momentforasinglebladeasdescribedbyBramwell[60].Themomentisdeterminedby the inertial, centrifugal, weight, hub spring restraint, and aerodynamic forces on the blades.Whentheaerodynamicforcesvaryaroundtheazimuth,thebladewillbeforced so that the other effects provide flapping moments to keep the blade in dynamic equilibrium.Figure84showsthesumoftheaerodynamicforcesforanindividualblade normaltothehubplane(thrust).Thisaerodynamicloadforcesthebladesuchthatthe equilibriumconditionwithzeroaveragehubmomentsisestablishedwhentheflapping

105 moments created by the aerodynamics are balanced by the inertia couples resulting fromatiltoftheplaneoftherotorrelativetotheshaft.

Variation of Blade Aerodynamic Force Component Normal to Hub Plane o BaselineRotor, γ=1.4, θ =0 0 IndividualBladeAerodynamicForce 800 =2.29 ComponentNormaltoHubPlane =1.96 =1.63 =1.31 600 =0.98 =0.65 =0.33 400

200

Blade Total Normal [lbf] Force 0 BaselineRotor =12rad/s 0 90 180 270 360 Azimuth Angle [deg] Figure 84: Advance Ratio Effect on Azimuth Thrust Distribution in Trim

The variation of the aerodynamic environment at high advance ratio will result in complexblademotion,whichalsodependson theparticular trim solution on the trim contour.Figure85showstheabsolutevalueofthemaximumbladeflappingangleat eachsteadystatetrimpointatthecruisecondition.Theminimumcyclicflappingisseen tooccuratacollectivepitchnearzerodegrees,withotherpointsonthetrimcontour resulting in larger cyclic flapping. Since large cyclic flapping increases vibration and structuralloads,thecollectivepitchofzerodegreesisalsoapreferredoperatingpoint fromthisviewpoint.

106 Theconceptofthetrimcontourandthepreferred operating conditions of the rotorarediscussedfurtherinChapter4.Otherflight conditions are considered in the discussionofrotorcontrolstrategiesandtheinteractionsoftherotorandairframe.From thenonlinearresultspresentedinFigure73andFigure75,rotorspeedcontrolusing the collective and cyclic controls will require more complex control strategies that accommodatethesenonlinearities,andwillresultsinrotoroperationwithhighercyclic flapping.

Absolute Value of Maximum Flapping Angle SteadyStateTrimCruiseCondition 2.5 BaselineRotor =12rad/s =2.29 2.0

1.5

1.0

Maximum Flapping Maximum AngleFlapping [deg] 0.5 MinimumCyclicFlapping -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Collective Pitch [deg] Figure 85: Maximum Cyclic Flapping Angle in Trim – Cruise Condition

3.10 Effect of Blade Twist at the Cruise Condition

The effect of blade twist was investigated from the perspective of the impact on the cruiseconditiontrimcontourandthepreferredrotoroperatingcondition.Thebaseline

107 modelwasmodifiedtoincludealineartwistvariationofnegativetendegrees,wherethe zerocollectivepitchsettingoccurredatthe75%radiuslocationsuchthatthestations inboard of the 75% location were twisted leadingedge up, and the outboard stations weretwistedleadingedgedown.Figure86showsthesectioninplaneforcesandthe angleofattackcontours.Thecontoursaresimilartotheuntwistedcase,Figure25,with the drivingregion shifted to includethe inboard portion of the advancing blade. The magnitude of the inplane forces shows larger forces on a smaller portion of the advancingsidewithlowerdrivingforcesspreadoveralargerportionoftheretreating sidewhencomparedwiththeuntwistedbladeresults.

Rotor Torque Balance in Autorotation with Twisted Blades 0 AerodynamicContours,LinearTwist=10 , =2.29

90 90 20 20 135 45 135 45 -180 15 -10 15 -5 -10 10 10 0 0 5 5 5 5 0 180 0 0 180 0 10 10 5 5 20 15

10 30 10 90 135

50 BladeRadialStation[ft]

BladeRadialStation[ft] 15 15 225 315 225 315 180 20 50 20 270 270

Section In-Plane Force [lbf] Blade Section Angle of Attack [deg]

o o BaselineRotorwith10 LinearTwist, =12rad/s, γ=1.4, =2.29, θ =0.9 0 Figure 86: Aerodynamic Contours in Autorotation with Blade Twist

ThecruiseconditiontrimcontourfortherotorwithbladetwistisshowninFigure87,with the maximum steadystate flapping angle on the contour shown in Figure 88. The primaryeffectsofthebladetwistaretoexpandtheliftcontourtohighervalues(improve

108 theperformance)andtoshiftthecollectivepitchsettingforminimumflapping.Forthis baseline rotor with negative ten degrees of twist, the preferred collective setting has

o o shiftedto θ 0 ~ − 9.0 ,withamagnitudesimilartotheuntwistedcasewith max β ss ~ 5.0 .

Zero Torque Contour in Trim with Twisted Blades CruiseCondition 2 LinearBladeTwist=10 0 =12rad/s ,γ =1.4 3000 1 =2.29 ,ν =1.24

0 2000

-1 1000

-2 Rotor Lift [lbs] RotorLift

0

Collective Pitch Angle [deg] Angle Collective Pitch -3

MinimumCyclicFlapping -4 -1000 -2 0 2 4 -2 0 2 4 Shaft Incidence with Freestream [deg] Figure 87: Cruise Condition Trim Contour with Twisted Blades

Thecontoursforthetwistedbladessuggestthattheeffectofmoderatebladetwistdoes notfundamentalalterthetrendsassociatedwiththerotor,butmerelyshiftingthevarious curves. Instead of repeating all of the previous analysis for the twisted blades as a sensitivityparameter,theconceptsofthepreferredoperatingpointandthetrimcontour willberetainedsuchthatitisassumedthatsmallvariationsinbladepropertieswillhave incrementaleffectsonthetrimcontourandtheconditionforminimumcyclicflapping.

109 Zero Torque Contour in Trim with Twisted Blades CruiseCondition 6 LinearBladeTwist=10 o =12rad/s ,γ =1.4 3 =2.29 ,ν =1.24 4

2

2 0

-2 1 Longitudinal Cyclic[deg] Longitudinal

-4

MinimumCyclicFlapping

Absolute Value of Maximum Flap Angle [deg] FlapAngle of Maximum Value Absolute 0 -6 -4 -3 -2 -1 0 1 -2 -1 0 1 2 3 Collective Pitch Angle [deg] Lateral Cyclic [deg] Figure 88: Blade Flapping on Trim Contour with Blade Twist

3.11 Rotor Performance Out of Moment Trim

Performancetrendsfortrimmedrotorswereshowninsection3.1.Iftherotoristrimmed forautorotationusingtheshaftincidenceangleandthehubpitchingandrollingmoment constraint is not imposed, a residual hub moment results. This moment would be reactedintheairframeandthecontrolsurfaceswouldberequiredtoovercomethese momentsfortrimandmaneuvering.Theeffectofmaintainingthecycliccontrolsfixedat zerodegreesisshownforthebaselinerotorinFigure89andFigure90.Intheoutof trimconditionhigherthrustcoefficientandlifttodragratiosarepredictedthroughoutthe rangeofadvanceratio.Therotorshaftincidencetothefreestreamvelocityfortheout oftrimcaseshowsalowerincidenceisrequiredtosustainautorotation.

110 Rotor Out-of-Trim Performance RotorinAutorotation, θ = θ =0 1s 1c 0.028 BaselineRotor =12rad/s 0.024 12 γ=1.4, ν=1.24 θ =0 o 0.020 0 10

0.016 8 0.012 6

0.008 4

Thrust Coefficient RotorinHub

RotorLift to Drag Ratio MomentTrim 0.004 2 RotorOutofTrim θ θ 1s = 1c =0 0.000 0 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Advance Ratio [V/ R] Figure 89: Baseline Rotor Performance Out of Moment Trim

Rotor Performance Out of Moment Trim RotorinAutorotation, θ = θ =0 1s 1c 7 RotorinHub HubPitch MomentTrim MomentCoefficient 6 RotorOutofTrim 0.003 HubRoll θ = θ =0 MomentCoefficient 1s 1c 5

4 0.002 3

2 0.001 Rotor Shaft [deg] Incidence HubMoment Coefficient[nd] 1 BaselineRotor =12rad/s ,γ =1.4 o ν=1.24 ,θ =0 0 0 0.000 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 Advance Ratio [V/ R] Advance Ratio [V/ R] Figure 90: Baseline Rotor Out of Trim Hub Moment Coefficients

111 Theresidualhubmomentsarepresentedincoefficientform,withthepitchingmoment increasingwithadvanceratio.Indimensionaltermsforthebaselinerotor,theresidual

pitchingmomentatthehighspeedconditionis M y ≈ ,5 500 ftlbf.Theresidualrolling momentforthebaselinerotorpeaksnear ~ 2.1 ,thendecreasingwithfurtherincrease inadvanceratio.

Operating the rotor in the outoftrim condition represents a tradeoff in the conceptualdesign.Gainsinrotorperformanceand thesimplificationsinrotorcontrol wouldbetradedagainsttheimpactoftheresidualmoments:increasedstructuralloads andincreasedauthorityrequiredoftheairframecontrolstoovercometheresidualhub moments.

3.12 Chapter Summary

Trim,stability,andcontrolresultsrelatedtotheisolatedrotorhavebeenpresentedin thischapterthroughsimulatedwindtunnelexperiments.Thefundamentalrelationships between the free stream velocity, rotor speed, and shaft incidence were presented, along with the sensitivity to collective pitch setting and the rotor parameters. Rotor stabilitywaspredictedusingFloquetanalysisand thetrendsleadingtoareductionin stabilitywerediscussedincludingthecouplingoftherotorspeeddegreeoffreedomand leadlagmotion.Rotorresponsetoswashplatecontrolinputswaspresentedtohighlight thedependenceofcontrolcrosscouplingonadvanceratio,andthenonlinearbehavior in the rotor speed response. Transient rotor response for slowly rotating, low Lock numberbladeswasshowtooccuroverarelativelylongtimescalewhichcouldcouple withtheairframemodes.Finally,multipletrimconditionssuggestedpreferredsteady

112 stateoperatingconditionsthatreducedcyclicflapping,andtheinclusionofa10 oblade twistcasewasshowntoshiftthetrendcurveswithoutalteringthefundamentaltrends.

113 CHAPTER 4

COUPLED ROTOR-AIRFRAME ANALYSIS

In this chapter a baseline airframe with conventional control surfaces is used to investigatethe potential rotor control strategies and the concept vehicle intrinsic flight dynamicscharacteristics.Thefundamentalrotorcontrolissueisthespecificationand regulationoftherotorspeed.Multipletrimsolutionshavebeenshowntoexist,andthe isolatedrotoranalysishasbeenpresentedusingtheincidenceoftherotorshafttothe freestreamasacontrolvariable.Whencoupledwiththeairframemodel,theorientation oftheshaftandthepotentialabilitytocontroltheshaftorientationrepresentsadesign choice,addinganadditionaldegreeoffreedom,alsoaddingcostandcomplexity.Two quasisteadymaneuversareconsideredforinvestigationofrotorcontrol:arotorspeed transitionmaneuver,andaflightpathtransitionmaneuver.Therotorspeedtransition maneuverresultsfromtherequirementtoslowtherotorquicklyinordertopassthrough arotorresonancefrequency,transitioningfromonerotorspeedtoanother.Analysisof thismaneuverrepresentsacommandedchangeinrotorspeed.Commandedchanges invehicleattitudeatconstantrotorspeedareinvestigatedwiththeflightpathtransition maneuver.

Intrinsicflightdynamicscharacteristicsoftheconceptvehicleareinvestigatedby

comparisonoflinearmodelsthatexplicitlyincludetherotorstatesandtransferfunctions

identifiedusingsystemIDextractedfromsurrogateflighttestdatausingthenonlinear

simulation. Together, these analyses address the research questions related to the

rotorspeedcontrolstrategyandtherotorairframeinteractions.

114 4.1 Rotor Control in Quasi-Steady Maneuvers

4.1.1 Commanded Rotor Speed Transition Maneuver

Aninherentfeatureoftheconceptvehicleistheslowingoftherotorwithincreasingflight

speed while maintaining autorotation. At some rotor speeds, the blade natural

frequenciesmaycoincidewiththerotorangularvelocitycausingaresonancecondition,

whichisundesirable.Inthiscasetherotorspeedshouldbetransitionedquicklytoavoid

vibrationandhighstructuralloads.Anexamplecaseisconsideredwherethevehicle

hasreachedaflightspeedof300ktsat30,000ftandtherotorhasalreadybeenslowed

to16rad/s,denotedasthe transition condition .AtthispointtheadvancingtipMach

numberlimithasbeenreached,andtherotormustbe slowed furtherto increase the

flightspeed.

In this section, various means to accomplish the transition maneuver are

discussed in terms of rotor control strategies and the associated tradeoffs. Rotor

operation outofmoment trim was discussed insection 3.12. Withthecyclic controls

heldatzero,residualhubmomentsthattheairframewouldberequiredtoovercomefor

vehicletriminsteadylevelflightpersist.Thechoicetooperateinthismannerrepresents

adesigndecision,simplifyingthecontrolschemeatacostofincreasedloads,vibration,

etc. The autorotation contours at the transition condition for outofmoment trim are

showninFigure91.

115 Autorotation Contour - Out of Moment Trim TransitionCondition,300kts,30,000ft, θ = θ =0 1s 1c 6 =16rad/s =14rad/s =12rad/s 4

2 0 Collective[deg]

-2

BaselineRotor γ=1.4 -4 -2 0 2 4 6 Shaft Incidence [deg] Figure 91: Transition Condition Autorotation Contour – Out of Moment Trim

Considering first the case where the rotor shaft has a fixed orientation in the

airframe, the contour of Figure 91 shows that the collective control can be used to

achieveautorotation.Theshaftincidencewillbedeterminedbytheairframeangleof

attacksuchthatthetotalliftequalstheweightfor steadylevel flight. To executethe

transitionmaneuverthecollectivecontrolcanbeloweredtoslowtherotor.Figure92

showsthecollectivepitchtrajectoriesandtherotorliftforthetransitionmaneuveroutof

momenttrim.Thecollectivecontrolinputusedtoreducetherotorspeedalsoresultsin

adecreaseinrotorlift.Theairframewouldberequiredtoprovideadditionalliftinthis

casewhichcouldbeaccomplishedwithflaps,etc.orsimplyanincreaseinwingangleof

attack.Withtherotorshaftfixedintheairframe,anincreaseinangleofattackwould

requireafurtherdecreaseincollectivetocontroltherotorspeed.Figure91andFigure

92showthatatanincreasedshaftincidencethecollectivecontrolbecomesineffective

atreducingtherotorspeedfurthersothatitmaynotbepossibletoexecutethetransition

116 maneuver as a steadylevel maneuver without flaps or high lift devices for airframe attitudeindependentliftcontrol.

Rotor Speed Transition Maneuver - Out of Moment Trim TransitionCondition,300kts,30,000ft, θ = θ =0 1s 1c 2 BaselineRotor 2200 i =0 o shaft γ=1.4 i =1 o shaft 1 o 2000 i =2 shaft i =3 o shaft 0 1800

-1 1600 Rotor Lift[lbf] CollectivePitch [deg]

-2 1400

-3 1200 16 15 14 13 12 16 15 14 13 12 Rotor Speed [rad/s] Rotor Speed [rad/s] Figure 92: Transition Maneuver Out of Moment Trim

Figure 93 shows the residual hub moments and the maximum blade flapping angle in steadystate. The shaft incidence angles which allow for the rotor speed to reach 12 rad/s also result in the largest residual hub moments and blade flapping.

Beyond just the vertical force balance, other configuration dependent issues exist for trim of the entire vehicle using this rotor control strategy, such as sufficient control surfaceauthoritytoprovidezerovehicleangularaccelerations.Independentcontrolof theshaftincidencetothefreestreamvelocitydoesallowforthefullrangeofrotorspeed necessary to reach the slowed rotor speed, but with the associated rotor loads and flapping(Figure93)inthisoutoftrimcondition.

117 Rotor Speed Transition Maneuver - Out of Moment Trim TransitionCondition,300kts,30,000ft, θ = θ =0 1s 1c 15000 5 M ,i =0 o x shaft M ,i =0 o y shaft 10000 4 M ,i =1 o x shaft M ,i =1 o y shaft M ,i =2 o 5000 3 x shaft M ,i =2 o y shaft o M ,i =3 x shaft 0 2 M ,i =3 o y shaft Hub Moment [ft-lbf]

-5000 1 Maximum Blade Flapping Angle[deg] -10000 0 16 15 14 13 12 16 15 14 13 12 Rotor Speed [rad/s] Rotor Speed [rad/s] Figure 93: Residual Hub Moments and Blade Flapping – Transition Maneuver

When the hub pitching and rolling moment constraints are imposed, the

autorotation contours at the trim condition areas shown in Figure 94. Thetransition

maneuveratconstantflightspeedrequirestherotoroperatingstatetomovesfromsome

point on the 16 rad/s contour to some point on the 12 rad/s contour when the trim

conditionsareimposed.Themostdesirableoperatingpointsareatpositive(aft)shaft

incidence and collective pitch near zero degrees, or slightly negative. These points

provide positive lift, minimal flapping, and the largest region of linear response to

swashplate control inputs as discussed in Chapter 3. In the case of the rotor shaft

orientationfixedintheairframe,rotorspeedtransitionwouldthenbeaccomplishedby

raising the collective pitch while adjusting the cyclic controls to maintain zero hub

moments.Duetothethrustincrementsignreversaleffectdiscussedinsection3.1,a

reductioninrotorthrustresults.Similartotheoutoftrimoperation,additionalairframe

liftwouldberequiredtomaintainsteadylevelflight.Whenairframeattitudeisusedto

provide the additional lift, the slowed rotor condition again may not be achievable in

118 steadystate.Evenwiththehubmomentconstraintsapplied,rotorspeedtransitionasa steadylevel maneuver may not be possible without airframe attitudeindependent lift control.

Zero Torque Contour in Trim TransitionCondition,30,000ft,300KTAS 5 =16rad/s, =1.47 4 =12rad/s, =1.96 3

2

1

0 -1

-2

Collective Pitch Angle [deg] -3

-4 BaselineRotor γ=1.4 -5 -4 -2 0 2 4 Shaft Incidence Angle [deg] Figure 94: Transition Condition Trim Contours

Figure95showsthemaximumflappinganglethatisencounteredonthetrimcontourin steadystate.Theminimumflappingangleoccurswhenthecollectivepitchisjustbelow zeroforthebaselinerotorandtheshaftistiltedaft.Thistrimconditionrepresentsa desirable operating point for the rotor since higher cyclic flapping will result in higher vibrationandstructuralloads.Therotorisinmomentbalanceforallofthepointsonthe contour,butsomepointsresultincyclicflappinginexcessofonedegreewhileinsteady statetrim.

119 Absolute Value of Maximum Flapping Angle in Steady State Trim TransitionCondition,30,000ft,300KTAS 1.8 =16rad/s, =1.47 =12rad/s, =1.96 1.6

1.4

1.2

1.0 0.8

0.6

0.4

0.2 BaselineRotor γ=1.4 Maximum Cyclic Flapping Angle [deg] 0.0 -4 -2 0 2 4 Collective Pitch Angle [deg] Figure 95: Maximum Flapping Angle in Trim at Transition Condition

Finally,considerarotorcontrolstrategythatincludes the ability to adjust the shaft incidence. A series of quasisteady trim results are presented that represent intermediatetrimpointsatrotorspeedsfrom16rad/sto12rad/sforthecoupledrotor and airframe. The quasisteady results presented as a series of trim conditions are informativebecausetheyrepresentthemagnitudeanddirectionofthemovementofthe controlsrequiredtoexecutetherotorspeedtransitionmaneuver,andassumethatthe maneuver can be executed without exciting the vehicle dynamic modes, as might be accomplished with pilot intervention or an automated system to suppress the motion usingtheairframecontrols.

The transition maneuver can be accomplished using a variety of piloting

strategies. For the present work, a constantthrottle strategy is used so airspeed

replacesthethrottleasatrimvariable,thecollectivepitchisheldfixedatzerodegrees,

andalevelflightpathconstraintisimposed.Trimresultsatdecreasingrotorspeedsare

usedtodeterminethequasisteadycontrolandattitudetrajectorieswithdecreasingrotor

120 speed.Figure96showsthetrajectoriesfortheairframecoupledwiththebaselinerotor at the transition condition, with the flight speed allowed to vary due to the constant throttle.Inordertoreducetherotorspeedinthismannertherotorshaftincidencetothe freestream is reduced by moving the shaft forward, while at the same time the longitudinalcyclicismovedafttokeepthepitchingmomentontherotorintrim.Only smalladjustmentofthelateralcyclicisrequiredforthebaselinerotorsincetheisolated rotor phase angle response data showed a small amount of lateral response at this condition.TheinsettoFigure96showsthattheflightspeedincreasestoabout310kts duetoareductionintotaldrag.Theothercontrolsandtherollattitudeshowonlysmall changessuchthatshaftincidenceandlongitudinalcyclicaretheprimarycontrolsinthis case.Figure97showstherotorliftandthefractionofthegrossweightforthequasi steadytransition.Therotorisunloadedtolessthantenpercentofthegrossweight,and themaximumflappingangleshowsthattherotoroperateswithlowcyclicflappingwith thecollectiveatzerodegreesandtheshafttiltangleadjustedfortrim.

The ability to control the rotor shaft angle allows for the rotor speed to be controlledwhiletherotoroperateswithminimumcyclicflapping.Duringthetransition maneuver,astherotorisunloaded,thelossofrotorliftcanbecompensatedforbythe airframe to maintain steadylevel flight. The rotor control strategy demonstrated in

Figure 96 can be summarized as using: rotor shaft incidence to control rotor speed, cyclictosuppresshubpitchingandrollingmoments, and collective to minimize cyclic flapping. In the absence of airframe attitudeindependent lift control, this strategy providesameanstospecifytherotorspeedandallowtherotortooperateatapreferred conditionconsideringthepracticalconstraintsofstructuralloadsandvibration,etc.

121 Rotor Speed Transition Maneuver - Quasi-Steady Control Trajectories o ConstantThrottle,LevelFlightPath, θ =0 3 0 Lo RollAttitude, ϕ nCyclic Move sAft→ PitchAttitude, θ 2 ElevatorAngle AileronAngle Sha ftMo LateralCyclic vesF 1 orw LongitudinalCyclic ard→ ShaftIncidenceAngle

0 320

315

-1 310 TrimVariables [deg] 305 Airspeed[kts] -2 300 16 15 14 13 12 BaselineRotor ,γ =1.4 RotorSpeed[rad/s] -3 16 15 14 13 12 Rotor Speed [rad/s] Figure 96: Quasi-Steady Control Trajectories for Rotor Speed Transition Maneuver

Quasi-Steady Rotor Speed Transition Maneuver ConstantThrottle,LevelFlightPath, θ =0 ο 0 TransitionCondition,300kts,30,000ft

1800 0.16 0.5

1600 0.4 0.14

1400 0.3 0.12 RotorLift [lbf]

1200 0.2

0.10 [deg] Angle Flap Blade Maximum RotorLift Share[Fraction of Gross Weight] 1000 0.1 16 14 12 16 14 12 16 14 12 Rotor Speed [rad/s] Rotor Speed [rad/s] Rotor Speed [rad/s] Figure 97: Constant Throttle Transition Maneuver- Rotor Lift

122 4.1.2 Flight Path Transition Maneuver

Theflightpathtransitionmaneuversimulatesthecontrolandattitudetrajectoriestotrim thevehicleinclimbanddescentatconstantrotorspeed.Thecoupledrotorandairframe wastrimmedatthecruiseconditionforflightpathanglesfromnegativethreedegreeto threedegrees,whichcorrespondstoclimbratesupto+/1800ft/min.Thequasisteady controltrajectories,usingtherotorcontrolstrategydescribedinsection4.1.1,areshown inFigure98.Toexecutethemaneuveratconstantspeed,theprimarycontrolswerethe throttle and the pitch attitude, with the angle of attack, rotor lift, and cyclic flapping remainingessentiallyconstantasshowninFigure99.

Flight Path Transition Maneuver - Quasi-Steady Control Trajectories o CruiseCondition,ConstantSpeed, θ =0 , =2.29 0 4 BaselineRotor ,γ =1.4, =12rad/s RollAttitude, ϕ PitchAttitude, θ ElevatorAngle AileronAngle 2 LateralCyclic LongitudinalCyclic ShaftAngle

1000 0 800

600 Trim Variables [deg]

EngineThrust[lbs] 400 -2 3 2 1 0 1 2 3 Flight Path Angle [deg] -3 -2 -1 0 1 2 3 Flight Path Angle [deg] Figure 98: Flight Path Transition Maneuver Control Trajectories

123 Quasi-Steady Flight Path Transition Maneuver ConstantSpeed, θ =0 ο 0 CruiseCondition,350kts,30,000ft, =2.29

2000 0.7 0.6

1900 0.5 0.6 1800

0.4

1700 RotorLift[lbf] 0.5 0.3 1600 Fuselage Angle oAttackFuselage f Angle [deg] Maximum Blade Flap Angle [deg] BladeFlap Maximum

1500 0.4 0.2 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 Flight Path Angle [deg] Flight Path Angle [deg] Flight Path Angle [deg] Figure 99: Flight Path Transition Maneuver Rotor Load and Blade Flapping

Thesmallchangestotherotorshaftincidence,evenwiththerelativelylargechangein pitch attitude, results because the angle of attack remains nearly constant. These results reiterate the inherent relationship presentedfor the isolatedrotor between the rotorspeed,freestreamvelocity,andtherotorshaftincidencetothefreestream.Even thoughtheshaftincidencechangesweresmallinthiscase,withoutindependentcontrol oftherotorshaft,anumericaltrimsolutionmaynotalwaysexist,andcollectivecontrol inputs for rotor speed regulation will again result in operation with increased cyclic flapping.

124 4.3 Coupled Rotor and Airframe Flight Dynamics Characteristics

Flightdynamicscharacteristicsofthecoupledrotorandairframewereinvestigatedbya combination of linear analysis and system identification methods. Linear state space modelsoftheform: v v v x& = Ax + Bu wereextractedfromFLIGHTLAB TM usingthebuiltinlinearizationroutines.Themodels

explicitlyincludedtherotorstates,expressedinmultibladecoordinates(MBC),therotor

speed mode, and the vehicle body states. This formulation is similar to the hybrid

formulation described by Tischler and Remple [49], who also refer to the roll control

effectivenesscriteriaworkofHeffley,et.al.[56].

Allofthelinearmodelsinthischapterwereextractedfromthenonlinearmodels

trimmed in the cruise condition. The linear models were obtained using the “steady

perturbation” method. The FLIGHTLAB TM XAnalysis User Manual [53] indicates “the steadyperturbationmethodobtainsthelinearmodelbyperturbingthestateorcontrol, runningthemodeltosteadystate,andthenaveragingtheresultingpartialderivatives overarotorrevolution.”Longitudinaldynamicsincludingtherotorstates,butuncoupled fromthelateralstateswereinvestigated,suchthatthestatevectorwas:

v & & & & T x = [β 0 β1c β1s β N 2 β 0 β1c β1s β N 2 u w q θ ]

Theresponseofthelinearmodeltoanelevatordoubletwascomparedtothenonlinear

simulationresponseinordertoassessthepredictivecapabilityofthelinearmodelinthe

time domain. Figure 100 shows a timehistory comparison, and for inputs consistent

withsmalldisturbancesfromtrim,thislinearmodelformulationwasdeemedsufficientto

investigate the vehicle characteristics for comparison with system ID results. This

125 formulationeffectivelyignorestherotorperiodicitybyaveragingtherotordynamicsover arotorrevolution.Theformulationallowsforreasonablepredictionofthevehiclemotion howeverbecausethelowfrequencyrotormodeisinafrequencyrangethatcancouple withthebodymotionbuttheperiodicityoccursatamuchhigherfrequencysuchthatthe effectscan be neglectedfor prediction of the relatively low frequency vehicle motion.

Table5showstheeigenvaluesofthestabilitymatrixforthebaselinerotorandairframe atthehighspeedcruisecondition.Thefourrotorflappingmodeswereidentifiedbythe proximityofthefrequenciestothevaluesexpectedfromtheanalyticalhoversolution.

Therealportionsoftherotoreigenvaluesarealsoseentobesimilartothetransformed valuesreportedintheFloquetanalysis.Thevehiclemodesappearasclassicaircraft longitudinal modes: short period and phugoid. The rotor speed mode appears as a single real negative root with small magnitude as was presented in the isolated rotor analysis.

Table 5: Eigenvalues from 13-State Linear Model – Longitudinal Modes CruiseCondition,BaselineRotorandAirframe =12rad/s,=2.29,γ=1.40 Eigenvalue ModeDescription 1.9437+/27.1112i AdvancingFlap 2.1441+/15.2790i ReactionlessFlap 2.5461+/14.4864i Coning 2.1272+/1.2618i ShortPeriod 2.1869+/8.1163i RegressingFlap 0.0109+/0.0905i Phugoid 0.0336 RotorSpeed

126 Linear Model Response to Elevator Doublet

BaselineRotor,CruiseCondition,13StateLinearM odelofLongitudinalDynamics 4 4

2 0

0 -4 -2 Pitch AttitudePitch [deg] Pitch Rate Pitch [deg/s] -4 -8 0 5 10 15 0 5 10 15

620 20

610 10 600 0 X-axisVelocity [ft/s] 590 Z-axis[ft/s] Velocity 0 5 10 15 0 5 10 15 time 13.0 0.0 NonlinearSimulation 12.5 LinearModel -0.5

12.0 -1.0 11.5

RotorSpeed[rad/s] 11.0 -1.5 0 5 10 15 0 5 10 15 ElevatorDeflection [deg] time [sec] time [sec] Figure 100: Linear Model and Non-linear Simulation Doublet Response

For comparison, system ID analysis was used to identify the transfer function for the pitchrateduetoelevatorinputs.Pitchingmomentsontheairframeduetochangesin angleofattackandpitchratewillbeaugmentedbytherotoreffects,andtheseeffects can be seen in thefrequency responses. Figure 101 shows the identified frequency responsesforarangeofflappingstiffnessvalues.Theresponseswereidentifiedfrom

½ degree elevator sine sweeps, and transfer function coefficient data was identified usingtheCIFER ®componentNAVFIT.Fortheseresponsesitwasfoundthataproper

fourth order transfer function fit the data extremely well as indicated by a low cost

function J ≤ 5.6 whenfittothedatainthefrequencyrange 0.1 ≤ ω ≤ 30 0. .

127 Coupled Rotor and Airframe Identified Pitch Rate Frequency Response

q/ δδδ 20 Elevator

10 ν =1.13 ν = 1 .24 ν =1.43 ν = 1 .60 Magnitude [dB] ν = 1.73 0 -45 CruiseCondition, γ= 1 .4 -90 o θ , , 0 = 0 =12rad/s =2.29 -135

-180

Phase [deg] -225

-270 1 10 30 Frequency [rad/sec] Figure 101: Identified Pitch Rate Frequency Response from Elevator Input

Acomparisonoftheshortperiodandregressingflapmodeeigenvaluesfortherangeof

stiffnessvaluesisshowninTable6.Forthelowflappingstiffnesscasetheshortperiod

modeispredictedtobenonoscillatory(tworealroots)bybothanalysismethods,andin

the frequency response plot the result is a single amplitude peak at the frequency

identifiedastheregressingflapmode.Forhigherflapstiffnessvaluestheshortperiod

modeispredictedasanoscillatorypairandthevalues predicted by the linear model

agreewellwiththevaluesidentifiedfromthesystemIDanalysis(Table6).

In the highest flapping stiffness cases of Figure 101, the amplitude peaks

associated with both modes are clearly visible indicating the coupling of the modes

containedinthepitchratefrequencyresponseandtheircloseproximity.Basedonthe

twomodesobservedinthepitchrateresponse,thelinearmodelformulationwasusedto

obtain root locus plots based on the sensitivity to rotor Lock number and flapping

stiffness.

128 Table 6: System ID and Linear Analysis Results – Coupled Pitch Motion Non TransferFunctionPoles Eigenvalues dimensional From q(s) δ e (s) Flapping FromSystemIdentification 13StateLinearModels Frequency, ν CruiseCondition,=12rad/s,=2.29,γ=1.40 Regressing ShortPeriod Regressing ShortPeriod Flap Flap 1.13 1.99+/7.55i 1.12,16.53 2.03+/7.64i 0.98,3.67 1.24 2.34+/7.69i 1.75+/1.25i 2.19+/8.12i 2.13+/1.26i 1.43 2.68+/9.87i 1.57+/5.82i 2.42+/9.33i 1.87+/3.33i 1.60 2.32+/11.97i 2.87+/5.70i 2.51+/10.84i 1.73+/4.42i 1.76 2.62+/12.32i 1.34+/4.76i 2.53+/12.48i 1.70+/5.01i

Figure 102 shows the root locus for the regressing flap mode eigenvalues from the coupledlinearmodels.Forthelowflappingstiffnessvalues,alloftheresultstendto convergetoanoscillatorypair.

The short period mode, which independently depends on the airframe

parametersandthedynamicpressure,ispredictedby the coupled rotor and airframe

analysistoalsodependontherotorparameters.Figure103showstherootlocusofthe

coupledshortperiodmodeatthecruiseconditionaspredictedbythelinearanalysis.

Increasesinfrequencyoftheregressingflapmodeandthecouplingofthetwomodes

increasesthefrequencyofthecoupledshortperiodmodeascanalsobeseeninthe

frequencyresponseinFigure101.AlsovisibleinFigure103athighLocknumberand

lowstiffnessisansmalloscillatorymodewhichisacouplingoftheshortperiodmode

andtherotorspeedmodeduetothemovementoftherealroottowardtherealaxis.

129 Regressing Flap Mode Eigenvalues from 13-State Linear Models CruiseCondition, =2.29, =12rad/s 15 ν=1.91 ν=1.95 ν=1.90 10

ν~1.08 5 γ=1.40 γ=1.86 γ=2.79 0 SensitivitytoRotorParameters Imaginary Axis -5 singν Increa

-10

-15 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -0.2 0.0

Real Axis Figure 102: Coupled Regressing Flap Mode Root Locus – Longitudinal Models Coupled Short Period Mode Eigenvalues from 13-State Linear Models CruiseCondition,30,000ftaltitude, =2.29, =12rad/s

γ=1.40 ν ≈1.91 γ=1.86 5 γ=2.79

Increasing ν ν≈1.08

0 ν≈1.08 ImaginaryAxis

-5

ν ≈1.91 -10 -8 -6 -4 -2 0 RealAxis Figure 103: Coupled Short Period Mode Root Locus – Longitudinal Models

130 Couplingoftherotorandthelateralmotionwasinvestigatedinasimilarmanner to the longitudinal motion. Linear models were extracted for the lateral directional vehiclemodescoupledwiththerotormodes,suchthatthestatevectorwas:

v & & & & T x = [β 0 β1c β1s β N 2 β 0 β1c β1s β N 2 v p r φ ] Eigenvaluesfromthelateraldirectionallinearmodeatthecruiseconditionareshownin

Table7.

Table 7: Eigenvalues from 13-State Linear Model – Lateral / Directional Modes Eigenvalue ModeDescription 1.9314+/26.9832i AdvancingFlap 2.2785+/15.3150i ReactionlessFlap 2.5483+/14.5684i Coning 2.6912+/4.8111i RegressingFlap 1.6392+/8.6874i DutchRoll 1.9644 Roll 0.0002 Spiral 0.0897 RotorSpeed

Frequency response of the roll motion due to aileron inputs was used to identify the natureoftherollmotionandtheinfluenceoftherotor.Figure104showstheidentified frequency response. A proper third order transfer function was found to provide an excellentfittothedatawithaverylowcostfunction,J~1.0.

Table8showsacomparisonofthelinearandsystemIDresultsforarangeof flapping stiffness values. The results show a close agreement between the linear analysisandsystemIDresultsforthepredictionofthecoupledmodesintherollmotion.

Figure105showstherootlocusfromthelinearanalysisforthecoupledregressingflap modefromthelateralmodels.

131 Coupled Rotor and Airframe Identified Roll Rate Frequency Response 25

20 ν=1.13 ν=1.24 ν=1.43 15 ν=1.60 p/ δδδ ν=1.76 aileron Magnitude [dB] Magnitude 10 0.2 1 10 20

-180

-210 -240 CruiseCondition, γ=1.4 ο Phase[deg] θ =0 , =12rad/s, =2.29 0 -270 0.2 1 10 20 Frequency [rad/s] Figure 104. Roll Rate from Aileron Identified Frequency Response

Table 8: System ID and Linear Analysis Results – Coupled Roll Motion Blade4Non TransferFunctionPoles Eigenvalues dimensional From p(s) δ a (s) Flapping FromSystemID 13StateLinearModels Frequency,ν CruiseCondition,=12rad/s,=2.29,γ=1.40 Regressing Roll Regressing Roll Flap Flap 1.13 3.21+/2.81i 37.7 2.93+/2.94i 1.55 1.24 2.66+/4.27i 2.22 2.69+/4.81i 1.96 1.43 2.59+/7.54i 2.61 2.22+/7.65i 2.35 1.60 2.55+/9.95i 2.56 2.47+/10.47i 2.55 1.76 2.44+/12.22i 2.74 2.42+/12.49i 2.67

132 Regressing Flap Mode Eigenvalues from 13-State Linear Models CruiseCondition,30,000ftaltitude, =2.29, =12rad/s 15 γ=1.40 RotorandLateralStates γ=1.86 10 γ=2.79 ν≈1.91

5 Increasing ν ν≈1.08 0 ν≈1.08

-5 Imaginary Axis Imaginary

-10

ν≈1.91 -15 -8 -7 -6 -5 -4 -3 -2 -1 0 Real Axis Figure 105: Regressing Flap Mode Root Locus from Lateral Linear Modes

4.4 Rotor Speed and Longitudinal Mode Coupling

Theslowrotorspeedchangeswereshowntohaveaminimaleffectonthehubmoments generatedintheshorttimescalemotion.Therotorspeedwashowevershowntobe sensitivetocontrolinputsathighadvanceratio,andpossessanonlinearbehavior.To furthercharacterizethebehavioroftherotorspeed,aqualitativeassessmentwasmade usingthenonlinearsimulation.Anelevatorfrequencysweepwasusedtoexcitethe longitudinaldynamicsforrotorspeedfixedandrotorspeedfreecases.Theresultsfor thebaselinerotor,showninFigure106,indicatethattherotorspeedchangeshavelittle effect of the vehicle motion, but the rotor speed shows short period and long period response.Thisonewaycouplingfortherotorspeedresponseindicatesthatrotorspeed excursionfortheuncontrolledrotorwillresultfromspeedandattitudechanges.

133 Coupled Rotor and Airframe - Longitudinal and Rotor Speed Modes BaselineRotor, =12rad/s, =2.29, ν=1.24

4

-0.5 2

0

-1.0 -2

-1.5 ElevatorFrequencySweep -4 BodyPitchRate[deg/s] ElevatorDeflection[deg] 0.001Hzto1.0Hz -6 0 50 100 190 200 0 50 100 190 200 time[sec] time[sec] 630 FixedRotorSpeed 12.2 620 FreeRotorSpeed 12.0 610 11.8 600 11.6 590

580 11.4 FixedRotorSpeed RotorSpeed[rad/s] 570 11.2 FreeRotorSpeed XVelocityComponent[ft/s] 0 50 100 150 200 0 50 100 150 200 time[sec] time[sec] Figure 106: Rotor Speed Coupling with Longitudinal Modes

The conclusions from the coupled analysis indicate the close proximity of the body modesandthelowfrequencyrotormodesresultsinacouplingofthesemodes.The regressingflapmodeseeninthelongitudinalmodelsresultedinahigherfrequencythan wasseenfortheisolatedrotoralone,andtheresultingbodypitchmotionwasseento dependontherotorparameters.Thehybridlinearmodelincludingtherotordynamics wasseentopredictmodesthatwereincloseagreementwiththemodesobtainedfrom thesystemIDanalysisobtainedfromthenonlinearsimulationdata.Therotorspeedfor the baseline rotor was shown qualitatively to be sensitive to flight speed and attitude changesinthenonlinearsimulation.

134 4.5 Chapter Summary

Rotorandairframeinteractionswerediscussedinthischapter.Controltrajectoriesfor twoquasisteadymaneuverswerepresented.Onemaneuverwasacommandedrotor speedchange;theotherwasacommandedvehicleattitude change atconstantrotor speed.Casesforfixedrotorshaftincidenceangleandacontrollablerotorshaftangle werediscussed.Incaseswithafixedrotorshaftorientation,intermediatesteadystate trimsolutionswerenotobtainedforeitherthehubmomentintrim,oroutoftrimcases, indicating the maneuvers would occur as a transient maneuver and the goal of specifying the rotor speed was not certain. For cases with controllable rotor shaft incidencethemaneuverswereshownasaseriesofquasisteadytrimcasessuchthat the rotor speed was specified at each intermediate point and the cyclic flapping was minimized.Theeffectoftheslowedrotordynamicsonthevehiclepitchandrollmotion wasshownbycomparisonofhybridlinearmodelsandsystemIDresults.SystemID resultsidentifiedtransferfunctionsforairframecontroltobodyangularrates.Transfer functionpoleswereseentoagreewellwiththemodespredictedbythelinearmodels, andindicatedthatbodyrateresponseswereinfluencedbytheairframeandtherotor regressingflapmodeasacoupledresponse.Rotorspeedwasshowntocouplewith longandshortperiodmotionasthetorquebalancewassensitivetovehiclespeedand attitudechanges.

135 CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In this dissertation the concept vehicle has been model and analyzed. The inherent features of unloading the rotor, operating at high advance ratio, autorotation, slowed rotor dynamics, and the rotor speed degree of freedom have been considered collectively.Issuesinvestigatedrelatespecificallytotheconceptualdesignofthecontrol systemandtheintrinsicflightdynamicscharacteristicsoftheconceptvehicle.Trends relatedtorotoroperatingconditionswereidentified,aswellassensitivitytorotorblade massandstiffnessproperties.Firstsimulatedwindtunnelexperimentswereconducted usingisolatedrotormodels,andthenabaselineairframemodel was incorporatedfor atmosphericflightanalysis.

Specificfindingsfromthestudiesaresummarizedasfollows:

1. Thetrimmedrotorperformancecouldbesummarized nondimensionally such

that the thrust coefficient, lift over drag ratio, and shaft incidence to the

freestreamvelocitycurvesversusadvanceratiowere coincident except asthe

advancingtipMachnumberapproachedtheimposedlimit.

2. Theeffectofadvanceratiowastoincreasethe rotorthrust in autorotation, so

that a reduction in rotor speed was necessary to unload the rotor for a fixed

collectivepitchsetting.

3. Rotor shaft incidence to the freestream velocity decreased with increasing

advanceratiotomaintainautorotationataspecifiedrotorspeed.

4. The thrustincrement sign reversal for the trimmed rotor was predicted at an

advance ratio ~ .0 86 which is in close agreement with experimental data,

136 namelythevaluereportedintheRVRreport( ~ 9.0 )[11],thevaluereportedin

the NAS 25419 report, ( ~ .0 79 ) [12], and NASA TN D2628 [9], reported

as ~ 0.1 .

5. Rotorthrustcoefficientandlifttodragratiowasmoresensitivetocollectivepitch

setting beyond the thrust increment sign reversal advance ratio, with higher

collectivepitchsettingsresultinginlowerthrustcoefficientandlowerlifttodrag

ratios.

6. Rotorperformancepredictionswereessentiallyinsensitive to flapping stiffness

andweaklyinfluencedbyLocknumber,primarilyaboveadvanceratio ~ 0.1 .

7. The contour plots of the inplane aerodynamic forces indicated that the

advancingsideoftherotorconsumespower(drivenregion),whiletheretreating

sideoftherotorextractspowerfromtheairstream(drivingregion)bothatlow

andhighadvanceratioautorotation,withanincreaseinthemagnitudeofthein

planeforceswithadvanceratio.

8. FlappingstabilityaspredictedbyFloquetanalysisshowsanincreaseindamping

withadvanceratioforthebaselinerotoratconstantrotorspeed,withtheeffectof

reducing rotor speed being a reduction in damping. Slowing the rotor by

maintainingthemaximumMachnumberattheadvancingbladetipindicateda

minimum damping value occurred near ~ 0.1 . Sensitivity to the rotor

parametersshowedthathigherLocknumberbladeshadahigherdampingvalue

aspredictedbythehoveranalyticalsolution,buttendedtobecomefrequency

locked at a lower advance ratio, such that further increase in advance ratio

resultedareductionindamping.Sensitivitytoflappingstiffnessresultsindicated

that lower flapping stiffness resulted in roots becoming frequencylocked at a

137 loweradvanceratio,withareductionindampingwith increased advance ratio

comparedtohigherflappingstiffnessblades.

9. Analysisoftherotorspeedmodeintheabsenceofleadlagmotionshoweda

stable real mode with small magnitude over the range of advance ratio

considered.Theprimaryfactorsaffectingthemagnitudeweretherotorspeed

andtheLocknumber,withhigherLocknumbersandhigherrotorspeedresulting

inlargerstability.Atthereducedrotorspeeds,aminimumstabilityconditionwas

observed near ~ .0 78 , suggesting a critical stability condition.

Beyond ~ .0 78 , stability increased gradually with advance ratio, then

experienced a rapid increase in damping as the advancing tip Mach number

approachedtheimposedlimit.

10. Inclusionoftheleadlagmotionaddedlightlydampedmodeslargelyinsensitive

toadvanceratio.Primaryfactorsaffectingthedampingwereshowntobethe

Locknumberandtheleadlagdampingcoefficientparameter,withincreasesin

bothresultinginincreaseddamping.Apotentialinstabilitywaspredictedasthe

rotorspeedmodecouplingwiththeleadlagmotioninsimulation,resultinginthe

selectionoftheleadlagdampingparametersufficientforstability.

11. Rotorspeedchangeswereseentooccuronatimescalemuchlongerthanthe

rotorhubmomenttransientresponse,justifyingthehubmomentsensitivitydata

presentationatconstantrotorspeed.

12. Hubmomentsensitivitytoswashplatecontrolinputswerepresentedintermsof

thesteadystateonaxis,offaxis,andphaseresponse.Theeffectofadvance

ratiowastoincreasethesteadystate,onaxismomentsensitivityforlongitudinal

and lateral cyclic inputs. Hub moment phase angle response decreased with

reducedrotorspeedduetotheassociatedincreaseinflappingfrequency,while

138 the effect of advance ratio was to increase the phase angle response.

Longitudinalandlateralcyclicinputsproduceddifferentphaseangleresponses

atthesameadvanceratio,complicatingthecontrolorpilotingstrategy.Primary

factorsaffectingthecontrolsensitivitiesweretherotorspeedandtheadvance

ratio, with the lateral cyclic responses being less sensitive to advance ratio.

Pitchingandrollingmomentsensitivityfromcollectivepitchinputsincreasedwith

advance ratio with larger pitching moment magnitude compared to rolling

moments. Rotor parameter sensitivity showed and increase in phase angle

response with reduced flapping stiffness and increased Lock number. Gust

sensitivityanalysisshowedanincreaseinsensitivitytoangleofattackchanges

withadvanceratio,anddihedraleffectwasdestabilizingforlowrotorspeedand

low advance ratio combinations when low rotor thrust resulted in primarily

negativeflappingangles.

13. System identification methods applied to identify transfer functions for hub

moment response to shaft incidence angle disturbances captured the low

frequencyrotormoderesponseandthemagnitudeincreasewithadvanceratio,

shown in the control sensitivity study, could also be seen in the frequency

responseplots.Forthebaselinerotor,theeffectofadvanceratiowastoreduce

thelowfrequencyoscillatorybehaviorinthestepresponse,whilethe4/revhigh

frequencycontentduetothelargevariationinaerodynamicforces around the

azimuthincreasedinpeaktopeakmagnitudeindicatingincreasedvibration.The

effect of increased rotor stiffness was seen to increase the low frequency

oscillatorybehavioratthehighadvanceratiocondition,andincreasethepeak

overshoot. Increased Lock number resulted in increased peaktopeak 4/rev

excitations.

139 14. Multipletrimsolutionswerepredictedforagiven rotor speed and free stream

velocity. Cruise condition and transition caseswere presented as a contour of

possible trim conditions. On this contour, rotor lift, control positions, shaft

incidenceangle,andsteadystateflappingbehaviorwaspresentedandpreferred

operating conditions were discussed. Minimization of cyclic flapping was

suggestedasacriterionforselectionofapreferredoperatingcondition.

15. Rotor speed response to swashplate inputs was shown to depend on the

magnitude of the input and the trim condition. This nonlinear behavior was

predictedathighadvanceratio,withlongitudinalcyclicandcollectivepitchinputs

from trim resulting in rotor speed excursions that changed sign with the

magnitude of the input for the baseline rotor. Lateral cyclic inputs resulted in

nearlylinearbehaviorwithinputmagnitude,butwithrotoraccelerationsanorder

ofmagnitudelowerthanthecollectiveandlongitudinalcyclicresponses.Astudy

was conducted to investigate the source of the nonlinear behavior. An

accounting of the effects contributing to the torque moments on the rotor

revealedthechangeinaerodynamicforcesonthebladesfromtrimwithsmall

andlargeinputsaccountedforthesignreversal.Thecombinedtorqueofallfour

bladesshowedthegravityandCorioliseffectsmadenonetcontributiontothe

rotortorque,butcontributedtothepeaktopeakmagnitudeofthetorquemoment

aroundtheazimuth.

16. Theeffectofbladetwistwaspresentedinthecontextoftheimpactonthetrim

contouratthecruisecondition.Thetrimcontour wasshiftedinrelationtothe

untwistedbladesuchthatthecollectivepitchsettingforminimumcyclicflapping

wasatadifferentcollectivepitchsettingthantheuntwistedblade.Otherwisethe

twisted blade retained the fundamental characteristics of the untwisted blade,

withashiftinthedata.

140 17. Trimresultsforthecoupledrotorandairframemodelsshowedthatsteadystate

trimsolutionsmaynotexistwhenrotorspeedisprescribedandtherotorshaft

incidenceisfixedinthevehiclebecausethevehicleattituderequiredtoproduce

liftfromthewingandrotorcombinationmayrequireacollectivepitchsettingthat

doesnotlieonthetrimcontour,thusresultinginarotorspeeddifferentfromthe

prescribedvalue.Inclusionofindependentrotorattitudecontrolallowstherotor

speedtobeprescribedandthecollectivepitchtobesettominimizethecyclic

flapping,therebyreducingstructuralloadsandvibration.Withtheflightspeed

and rotor speed prescribed, the resulting rotor lift is therefore known. The

remainder of the vehicle lift must be produced by the airframe, and with

independent rotor and airframe attitude control the flight envelope can be

expandedintermsofthecombinationsofflightspeedandrotorspeedatwhich

steadystate trim solutions exist. Independent rotor attitude control (shaft tilt)

therefore appears as a desirable feature in order to specify the rotor speed,

otherwisetheabilitytospecifytherotorspeedis limited to the collective pitch

pointsonthecontourthatcorrespondtotheshaft incidence resultingfrom the

vertical force balance. These points will in general not be at the point of

minimum cyclic flapping and could result in shaft incidence angles such that

prescribingtherotorspeedisnotpossible.

18. Rotor control strategies were discussed, including the effect of outofhub

momenttrimoperation.Theminimumcyclicflappinginsteadystatewasshown

tooccurataparticularcollectivepitchsetting,andhigherflappingresultedwhen

other solutions were imposed. The transition maneuver was used to

demonstratethattherotorspeedandhubmomentscouldbecontrolledovera

range of target rotor speeds using the shaft incidence angle and the cyclic

controlswiththecollectivecontrolfixed.Otherwise,usingthecollectiveandthe

141 cycliccontrolsimpliedthatatsomeconditionslargercyclicflappingwasrequired

to maintain trim, and no full vehicle trim solution at a specified rotor speed is

guaranteed without independent control of the rotor lift and airframe lift.

Thereforeacontrolstrategyusingrotorattitudecontrolforrotorspeedcontrol,

withcycliccontroltosuppressthehubmoments,andcollectivepitchtominimize

thecyclicflappingresultedincontroltrajectoriesforquasisteadymaneuversthat

satisfied the requirement to regulate the rotor speed while simultaneously

controllingthehubmomentsandminimizingthecyclicflapping.

19. Pitchrateandrollratefrequencyresponsetoairframecontrolinputsshowsthe

closeproximityoflowfrequencyrotormodetotheairframemodesduetothelow

Locknumberandrotorspeed,resultinginacoupledresponse.Thehybridlinear

modelformulationandthesystemIDresultsshowreasonable agreement, and

thelinearmodelcapturestheresponsetrendsofthenonlinearsimulationwell

becauseoftherelativelyhighfrequencyoftheperiodicitycomparedtothelarge

magnitude,lowfrequencyhubmoments.

20. Therotorspeedmodecoupleswiththeothermodesinaonewayfashioninthat

thetorquebalanceontherotorissensitivetoflightspeedandattitudechanges,

but the vehicle longitudinal motion is weakly affected by small rotor speed

excursions.

5.2 Recommendations for Future Work

Recommendationsforfutureworkarelistedasfollows:

1. In the present work, rigid rotor blades with uniform mass distribution were

assumed.Typicallyhelicopterbladeswillhaveanonuniformmassdistribution,

142 with higher mass concentration at structural attachment points or high stress

regions. Further, the concept vehicle is expected to utilize a reaction drive

systemwhichcanresultinsubstantialweightassociatedwiththecombustionunit

concentrated near the blade tip. The range of Lock numbers considered

providesinsightintothebladeflappingmotionforuniform,rigidblades,however

similaritytorigidbladeswithequivalentLocknumbersbutmassconcentratedat

the tip has not been established. Elastic blade models can also provide an

increaseinfidelityifsufficientbladepropertiesareknown.Itisrecommended

thatmoredetailedbladepropertiesandelasticblademodelsbeusedforanalysis

beyondtheconceptualdesignphase.

2. Quasisteady, two dimensional rotor air loads were assumed for establishing

trends.Astudyofaerodynamicforceandmomentmodelsforcomparisonwith

available experiment data is recommended, as well as modification of the

FLIGHTLAB TM blade element model to include three dimensional lift and drag

effects.

3. Dynamicinflowwasselectedasacomputationallyefficientinflowmodelforthe

present work. The literature review yielded no particular conclusive evidence

regardingtheapplicabilityofdynamicinflowinautorotationathighadvanceratio.

Inthestudyoftherotorspeedresponsetoswashplateinputs,thesensitivityto

theinflowmodel wasshowntohaveonlya weakeffect compared to uniform

inflow, however both inflow models represent a significant simplification. It is

recommended that CFD and experimental data be used to assess the

importance of the inflow model for predictions of rotor behavior beyond the

conceptualdesignphase.

4. Rotor speed changes were predicted to occurover a much longer time scale

than the hub moment transient response. It is recommended that CFD and

143 experimentalworkbeusedtovalidatethisresultsothatfeedbackcontrolgains

forthesuppressionofhubmomentscanbeestablished for discrete operating

points.

5. Shafttiltwasshownasanintegralpartofthe rotor control strategy in the full

vehicle trim and the investigation of the quasisteady maneuvers. The

relationship between the rotor speed changes and the speed of shaft tilt

actuationhasnotbeeninvestigated,andspeedwithwhichtherotorshaftcanbe

actuated may be a practical limiting factor in the control system design. It is

recommendedthatfurthernonlinearsimulationworkbeconductedtoestablish

theshafttiltrateandrateofrotorspeedchangetoestablishthislimit.

6. The articulated rotor model utilized flap, pitch and lag hinges as described in

section2.1.Thesensitivitytotheorderofthehingesandthephysicalspacing

dimensionsshouldbeinvestigated,aswellastheeffectsofkinematicfeedback

suchasdelta3becauseitmaybepossibletostabilizetherotorspeedinstability

andeliminatetheneedfortheleadlagdampers,whichwouldhighlydesirablein

apracticalapplication.

144 APPENDIX

Section Lift and Drag Coefficients vs. Angle of Attack - NACA0012 Airfoil 1.5 0.4 Mach Number 2.0 0.1 1.0 0.3 0.5 0.7 0.3 0.5 1.5 0.9

0.0 0.2 1.0

-0.5

0.5 0.1

Section Section LiftCoefficient [nd] -1.0 Section DragCoefficient [nd]

-1.5 0.0 0.0 -180 -90 0 90 180 -180 -90 0 90 180 -20-10 0 10 20 Angle of Attack [deg] Angle of Attack [deg] Figure 107. Rotor Blade Airfoil Lift and Drag Coefficient Data

145 REFERENCES

[1] Floros,MathewW.,WayneJohnson,“StabilityandControlAnalysisoftheSlowed Rotor Compound Helicopter Configuration”, Journal of the American Helicopter Society,July2007.

[2] DARPA Tactical Technology Office Website, September 19, 2008, http://www.darpa.mil/TTO/programs/Heliplane.htm.

[3] Carter Aviation Technologies Company Website, September 19, 2008, http://www.cartercopters.com/cctd_flight_data.html.

[4] Hislop,G.S., The Fairey Rotodyne , The Fairey Aviation Company, Presented to TheHelicopterAssociationofGreatBritainandThe Royal Aeronautical Society, November1958.

[5] Harris, Franklin D., “An Overview of Autogyros and the McDonnell XV–1 Convertiplane.”NASAContractorReport–2003–212799,October2003 .

[6] Hohenemser, K., “A Type of Lifting Rotor with Inherent Stability”, McDonnell AircraftCorporation,PresentedattheRotatingWingAircraftSession,18 th Annual Meeting,I.A.S.NewYork,January1950.

[7] Hickey,DavidA., FullScale WindTunnel Tests of the Longitudinal Stability and ControlCharacteristicsoftheXV1ConvertiplaneintheAutorotatingFlightRange , NACARMA55K21a,May1956.

[8] Jenkins,J.L.,Jr.;Sweet,G.E.,WindTunnelMeasurementsonaLiftingRotorat High Thrust Coefficients and High TipSpeed Ratios , NASA, Langley Research Center,TND2462,September1964.

[9] Jenkins,JulianL.Jr., WindTunnelInvestigationofaLiftingRotorOperatingatTip Speed Ratios from 0.65 to 1.45 , Langley Research Center, NASA TN D2628, February1965.

[10] McCloud,JohnL.III,JamesC.Biggers,RobertH.Stroub,AnInvestigationofFull scale Helicopter Rotors at High Advance Ratios and Advancing Tip Mach Numbers ,AmesResearchCenter,NASATND4632,68N28268.

[11] Ewans,J.R.,F.J.McHugh, FurtherModelWindTunnelTestsofaReverseVelocity RotorSystem ,FairchildRepublicCompany,DepartmentoftheNavy,AirSystems CommandHC171R1089,July1975.

[12] Kuczynski,W.A.,Sissingh,G.J.,” Researchprogramtodeterminerotorresponse characteristicsathighadvanceratiosFinalreport”,LR24122;NASACR114290, NASA,Feb1,1971.

[13] Sissingh,G.J.,“ DynamicsofRotorsoperatingatHighAdvanceRatio s”,Lockheed California Company, Rotary Wing New Design Division, Presented at AGARD Specialists’Meeting,Goettingen,September,1967.

146 [14] Bramwell, A.R.S., E. Wilde, R. Summerscales, “The Flapping Behaviour of a Helicopter Rotor at high TipSpeed Ratios”, Aeronautical Research Council, MinistryofAviation,London,1966.

[15] Perisho,ClarenceH.,“AnalysisoftheStabilityofaFlexibleRotorBladeatHigh Advance Ratio”, McDonnell Aircraft Corp., Journal of the American Helicopter SocietyApril1959,Vol.4,No.2.

[16] Peters,DavidA.,KurtH.Hohenemser,“ApplicationoftheFloquetTransitionMatrix to Problems of Lifting Rotor Stability”, American Helicopter Society 26 th Annual NationalForum,June1970.

[17] Floros, Mathew W., Wayne Johnson, “Stability Analysis of the Slowed Rotor Compound Helicopter Configuration”, American Helicopter Society 60 th Annual Forum,Baltimore,MD,June2004.

[18] Floros,MathewW.,WayneJohnson,“PerformanceAnalysisoftheSlowedRotor Compound Helicopter Configuration”, American Helicopter Society 4 th Decennial Specialists’ConferenceonAeromechanics,SanFrancisco,California,2004.

[19] Bergquist,R.R.,Tanner,W.H.,,NewYork,NY1964,"SomeProblemsofDesign and Operation of a 250 knot Compound Helicopter Rotor”, American Inst. of AeronauticsandAstronautics,AIAAPaper1964195.

[20] Ashby,Dale,WilliamEadie,GuyJuanMontoro,“AnInvestigationoftheReverse Velocity Rotor Concept and its Application to High Speed Rotorcraft”, Sikorsky Aircraft Corporation, presented at 2002 Biennial International Powered Lift Conference,Nov.2002.

[21] Schank, Troy C., Optimal Aeroelastic Trim for Rotorcraft with Contrained, Non unique Trim Solutions, PhD Thesis, School of Aerospace Engineering, Georgia InstituteofTechnology,April2008.

[22] Glauert,H.,“AGeneralTheoryoftheAutogyro”,R.&M.No1111,BritishA.R.C., 1926.

[23] Lock,C.N.H.,“FurtherDevelopmentofAutogyroTheory–PartsIandII”,R.&M. No.1127,BritishA.R.C.,1928.

[24] Bailey,F.J.Jr., AStudyoftheTorqueEquilibriumofanAutogiroRotor ,Langley MemorialAeronauticalLaboratory,NACAReportNo.623,1938.

[25] Bailey,F.J.Jr.,F.B.Gustafson, Observations in Flight of the Region of Stalled Flow Over the Blades of an Autogiro Rotor , Langley Memorial Aeronautical Laboratory,NACAReportNo.741,1939.

[26] Bailey, F.J. Jr., Flight Investigation of ControlStick Vibration of the YG1B Autogiro ,LangleyMemorialAeronauticalLaboratory,NACAReportNo.764.

147 [27] Wheatley, John B., The Aerodynamic Analysis of the Gyroplane RotatingWing System , Langley Memorial Aeronautical Laboratory, NACA technical Note 492, 1934.

[28] Wheatley, John B., An Aerodynamic Analysis of the Autogiro Rotor with a Comparison Between Calculated and Experimental Results , Langley Memorial AeronauticalLaboratory,NACAReportNo.487,1934.

[29] Wheatley, John B., Manley J. Hood, FullScale WindTunnel Tests of a PCA2 AutogiroRotor ,LangleyMemorialAeronauticalLaboratory,NACAReportNo.515, 1935.

[30] Wheatley, John B., The Influence of Wing Setting of the Wing load and Rotor Speed of a PCA2 Autogiro as Determined in Flight , Langley Memorial AeronauticalLaboratory,NACAReportNo.523,1934.

[31] Wheatley, John B., Carlton Bioletti, WindTunnel Tests of a 10FootDiameter Gyroplane Rotor , Langley Memorial Aeronautical Laboratory, NACA Report No. 536,1934.

[32] Wheatley,JohnB.,AnAnalyticalandExperimentalStudyoftheEffectofPeriodic Blade Twist on the Thrust, Torque, and Flapping Motion of an Autogiro Rotor , LangleyMemorialAeronauticalLaboratory,NACAReportNo.591,1937.

[33] Schrenk, M., Static Longitudinal Stability and Longitudinal Control of Autogiro Rotors ,NACAReportNo.879,1938.

[34] Hohenemser, K., Performance of RotatingWing Aircraf t, NACA TM 871, December1937.

[35] Bennett, J.A.J., The Flight of an Autogiro at High Speed , NACA Technical MemorandumNo.729,1933.

[36] Breguet, Louis, The Gyroplane – Its Principles and its Possibilities , NACA TechnicalMemorandumNo.816,1936.

[37] Houston,S.S.,“RotorWakeModelingforSimulationofHelicopterFlightMechanics in Autorotation”,JournalofAircraft,Sep/Oct2003Vol.40,Issue5,p938.

[38] Houston, S.S., “Modeling and Analysis of Helicopter Flight Mechanics in Autorotation”,JournalofAircraft,Jul/Aug,Vol.40,Issue4,p675,Aug,2003.

[39] Houston, S.S., “Identification of Autogyro Longitudinal Stability and Control Characteristics”, JournalofGuidance,Control,andDynamics Vol.21,No.3,May June1998.

[40] Houston,S.S.,“IdentificationofGyroplaneLateral/DirectionalStabilityandControl CharacteristicsfromFlightTest”, Proc.Inst.Mech.Engrs,PartG,Vol.212No.G4, pp.271285(1998).

148 [41] Deal, P.L., Jenkins, J.L.,J.R., National Aeronautics and Space Administration. Langley Research Center, Hampton, VA 1970, Investigation of levelflight and maneuvering characteristics of a hingelessrotor compound helicopter , WASHINGTON.NASATND5602;L6661.

[42] Deal, P.L., Jenkins, J.L.,J.R. Flight investigation of the wingrotor liftsharing characteristicsofahingelessrotorcompoundhelicopter ,NationalAeronauticsand SpaceAdministration.LangleyResearchCenter,Hampton,VA1968.

[43] Van Wyckhouse, J.F., HighPerformance UH1 Compound Helicopter Maneuver FlightTestProgramFinalReport,BellHelicopterCo.,FortWorth,TX,1966,BHC 533099025;USAAVLABSTR6617.

[44] Blackburn, W.E., Rita, A.D., Flight Research Program to Evaluate Methods of ImprovingCompoundHelicopterManeuverCapabilityFinalReport, KamanAircraft Corp.,Bloomfield,CT,R622A;USAAVLABSTR6759.

[45] Orchard, M, S Newman, “The Fundamental Configuration and Design of the Compound Helicopter ”, Proceedings of the Institution of Mechanical Engineers, PartG:JournalofAerospaceEngineering, vol.217,no6,2003.

[46] Leishman, J. Gordon, “Development of the Autogiro: A Technical Perspective”, JournalofAircraft,Vol.41,No.4,JulyAugust2004.

[47] Hohenemser, K., Hingeless Rotorcraft Flight Dynamics , AGARD No. 174, September1974.

[48] Bielawa, Richard L., Rotary Wing Structural Dynamics and Aeroelasticity, AIAA EducationalSeries,Washington,DC,1992.

[49] Tischler,MarkB.,RobertK.Remple, AircraftandRotorcraftSystemIdentification , AmericanInstituteofAeronauticsandAstronauticsEducationSeries,Reston,VA, 2006.

[50] Johnson,Wayne, HelicopterTheory ,DoverPublications,NewYork,1980.

[51] Leishman,J.Gordon, PrinciplesofHelicopterAerodynamics ,Cambridgeuniversity Press,NewYork,NY,2000.

[52] Padfield, Gareth D., Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling , AIAA Educational Series, Washington, DC,1996.

[53] AdvancedRotorcraftTechnology,Inc.,1330CharlestonRoad,MountainView,CA, 94043.

[54] US Army Materiel Command, Engineering Design Handbook: Helicopter Engineering, Part Two, Detail Design, AMC Pamphlet AMCP 706202, January 1976.

149 [55] Manumala,Binoy,DanielWalker,GarethPadfield,“RotorcraftSimulationModelling andValidationforControlDesignandLoadPrediction”,31 st EuropeanRotorcraft Forum,Florence,Italy,September1315,2005.

[56] Heffley, Robert K., Simon M. Bourne, Howard C. Curtiss, Jr., William Hindson, Ronald A. Hess, Study of Helicopter Roll Control Effectiveness Criteria , NASA ContractReport177404,April1986.

[57] Kuczynski, W.A., G. J. Sissingh, “Characteristics of Hingeless Rotors with Hub Moment Feedback Controls Including Experimental Frequency Response”, LockheedCalifornia Company, Burbank, California, Contract NAS 25419, AccessionNumber72N18024,January1972.

[58] CIFER ® Software Program, Aeroflightdynamics Directorate, U.S. Army Aviation andTroopCommand,AmesResearchCenter,MoffettField,CA.

[59] Rigsby,James,J.V.R.Prasad,“StabilityandControlIssuesAssociatedwithLight LoadedRotors,AutorotatingatHighAdvanceRatio”,Presentedatthe64 th Annual ForumoftheAmericanHelicopterSociety,Montreal,Canada,May2008.

[60] Bramwell,A.R.S.,GeorgeDone,DavidBalmford,Bramwell’sHelicopterDynamics , AmericanInstituteofAeronauticsandAstronautics,Reston,VA,2001.

[61] Gessow,Alfred,GarryC.Meyers,Jr., AerodynamicsoftheHelicopter ,Frederick UngarPublishingCo.,NewYork,NewYork,1952.

150