Baseball Science Fun Sheets

Total Page:16

File Type:pdf, Size:1020Kb

Baseball Science Fun Sheets WASHINGTON NATIONALS BASEBALL SCIENCE FUN SHEETS E SID AC T T U I V O I T Aerodynamics Y INTRODUCTION What is the difference between a curveball, fastball and cutter? In this lesson, students will KEY WORDS learn about the aerodynamic properties of a ball • Axis of Rotation in flight and the influence of spin on its trajectory. • Magnus Effect OBJECTIVES • Curveball • Determine the trajectory of different pitches. • Simulate different types of pitches using a ball. • Fastball • Explain why baseballs curve (Magnus Effect). KEY CONCEPTS • Aerodynamics is about the way something FOCUS STANDARDS moves when passing through air. In this Relates to Line of Symmetry: activity, students will measure the effect of changing the way a ball moves through air by CCSS.MATH.CONTENT.4.G.A.3 where it ends up. • Draw lines of symmetry of a ball. Relates to Coordinate Graphs: • Plot the distance a ball curves from the center CCSS.MATH.CONTENT.5.G.A.2 line. MATERIALS • Worksheet • Ball (beachball if available) • Tape Measure • Coins & Tape Aerodynamics PROCEDURE 1. Show a Magnus Effect video to engage the students. 2. Provide students with paper and tape. Roll the paper to create a hollow cylinder. 3. On a tilted platform, release the roll of paper. 4. The rotation of the paper and Magnus Effect will cause the cylinder to spin as it falls towards the floor. PROCEDURE 5. Draw a line1. S hofow symmetry the Magnus E fonfect thevideo ball to understand the rotational axis (vertical vs. horizontal). a. Provide students with paper and tape. Roll the paper to create a hollow cylinder. a. If a ball has top spin or backspin, it is rotating along its horizontal axis; if a ball has side spin, it is rotating along its verticalb. b. On aaxis. tilted platform, release the roll of paper. b. The spin cwill. The berota moretion of texaggeratedhe paper and Mag ifnu as Ecoinffect wisil ltaped cause t htoe c yonelinde rside to sp iofn a sthe it f aball.lls towards the floor. 6. Students2. willDra wtry a l icurvingne of symm theetry o balln the byball applyingto understan dspin the r ototat ition andal axi sobserving (vertical vs. h itsoriz oeffectntal) on the trajectory of the ball path. 7. Set up a line of tape about 30’ long. This will serve as the reference line. 8. Have students throw the ball parallel to the line. 3. If a ball has top spin or backspin, it is rotating along its horizontal axis. 9. The throw should deliberately apply spin to the ball to recreate the Magnus Effect. a. If a ball has side spin, it is rotating along its vertical axis. a. The spin will be more exaggerated if a coin is taped to one side of the ball. b. The spin will be more exaggerated if a coin is taped to one side of the ball. 11. Measure how many inches the ball curves along the horizontal plane and record the results in the Worksheet.4. Students will try curving the beach ball by applying spin to it and observing its effect on the trajectory of the ball path. a. Set up a line of tape about 30’ long. This will serve as the reference line. 12.The example provided shows two throws, the first throw curves four feet left and the second throw curves b. Have students throw the beach ball parallel to the line. two feet right. c. The throw should deliberately apply spin to the beach ball to recreate the Magnus Effect. (The spin will be more 13.Observe how the ball curves along the horizontal axis by throwing a fastball (backspin) and a exaggerated if a coin is taped to one side of the ball.) curveball (topspin). d. Measure how many inches the beach ball curves along the horizontal plane and record the results in the Worksheet. 14. Observe how ( Tthehe e xballample curves provided alongshows tw theo th rverticalows, the fir saxist thro byw cu throwingrves 4 feet le aft cutterand the s (sideecond t hspin).row curves 2 feet right.) 15. After three5. O trialsbserve ofhow each the be ofach three ball cu rdifferentves along the typeshorizon taofl athrows,xis by thro wtheseing a f achangesstball (bac ksarepin ) plottedand a cur vebona lla (tcoordinateopspin) chart using zero6. asObs theerve hcenterow the b lineeach bandall cu wholerves alo nnumberg the verti cpositiveal axis by t handrowin negativeg a slider (s iintegersde spin) as measures for the curves. FASTBALL CURVEBALL SLIDER # Aerodynamics ADDITIONAL SUPPORT • Explore the concept of a line of symmetry by folding and marking an 8 ½ x 11 standard piece of paper horizontally and then vertically. Both creases are lines of symmetry. Then try to fold it diagonally to notice that mirror image sides are NOT created. • Use a variety of objects to demonstrate rotational axis of spheres. (i.e., bead on a string) • Support making accurate measurements by placing tape intervals with inches already marked on the tape (negative and positive) on either side of the designated center line (or zero line) for the activity. ONLINE RESOURCES What Is The Magnus Force? (3:46) – https://tinyurl.com/ycmvgmwx – Engaging introduction and demonstration of the Magnus Force that is behind how and why a thrown baseball will curve left or right, sink, or move unpredictably. How to Curve a Baseball (4:06) – https://tinyurl.com/y87x245d – A continuation from the previous video that shows exactly how a ball, when modified with weights, shows the different movements a thrown ball will make. Clear and informative for all levels. Sports Balls Vs. Magnus Effect (5:17) – https://tinyurl.com/y9nfqo8u – A dramatic example of the Magnus Force using an extreme ball drop with six different types of balls (baseball at 3:02 sec) at an outdoor venue. POTENTIAL EXTENSIONS Extension Idea #1 – From a safe and secure location, try to replicate the Magnus effect seen in the videos. Aerodynamics WORKSHEET STUDENT NAME INSTRUCTIONS: Want to pitch like Max Scherzer? In groups, practice throwing a ball with differentSTUD EspinsNT NA MtoE: show how it affects trajectory. After each throw, measure the distance the ball from the center line. TOPSPIN Throw # Horizontal distance from center line (inches) 1 2 Center line 3 BACKSPIN Throw # Horizontal distance from center line (inches) -8 -6 -4 -2 0 2 4 6 8 1 2 3 SIDESPIN Throw # Horizontal distance from center line (inches) 1 2 3 #.
Recommended publications
  • Describing Baseball Pitch Movement with Right-Hand Rules
    Computers in Biology and Medicine 37 (2007) 1001–1008 www.intl.elsevierhealth.com/journals/cobm Describing baseball pitch movement with right-hand rules A. Terry Bahilla,∗, David G. Baldwinb aSystems and Industrial Engineering, University of Arizona, Tucson, AZ 85721-0020, USA bP.O. Box 190 Yachats, OR 97498, USA Received 21 July 2005; received in revised form 30 May 2006; accepted 5 June 2006 Abstract The right-hand rules show the direction of the spin-induced deflection of baseball pitches: thus, they explain the movement of the fastball, curveball, slider and screwball. The direction of deflection is described by a pair of right-hand rules commonly used in science and engineering. Our new model for the magnitude of the lateral spin-induced deflection of the ball considers the orientation of the axis of rotation of the ball relative to the direction in which the ball is moving. This paper also describes how models based on somatic metaphors might provide variability in a pitcher’s repertoire. ᭧ 2006 Elsevier Ltd. All rights reserved. Keywords: Curveball; Pitch deflection; Screwball; Slider; Modeling; Forces on a baseball; Science of baseball 1. Introduction The angular rule describes angular relationships of entities rel- ative to a given axis and the coordinate rule establishes a local If a major league baseball pitcher is asked to describe the coordinate system, often based on the axis derived from the flight of one of his pitches; he usually illustrates the trajectory angular rule. using his pitching hand, much like a kid or a jet pilot demon- Well-known examples of right-hand rules used in science strating the yaw, pitch and roll of an airplane.
    [Show full text]
  • Investigation of the Factors That Affect Curved Path of a Smooth Ball
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by TED Ankara College IB Thesis Oğuz Kökeş D1129‐063 Physics Extended Essay Investigation Of The Factors That Affect Curved Path Of A Smooth Ball Oğuz Kökeş D1129‐063 School: TED Ankara Collage Foundation High School Supervisor: Mr. Özgül Kazancı Word Count: 3885 1 Oğuz Kökeş D1129‐063 Abstract This essay is focused on an investigation of spin(revolution per second) of a ball and its effect on the ball’s curved motion in the air. When a ball is hit and spinning in the air, it leaves its straight route and follows a curved path instead. In the following experiment the reasons and results of this curved path (deflection) is examined. In the experiment, the exerted force on the ball and its application point on the ball is changed. The ball was hit by 3 different tension levels of a spring mechanism and their deflection values were measured. Spin of the ball was also recorded via a video camera. Likewise, the location of the spring mechanism was also changed to hit from close to the end and the geometric center of the ball. The spin of the ball was also recorded and its deflection was measured. By analysing this experiment, one can see that the spin of a ball is an important factor in its curve. The curve of a ball can be increased by spinning it more in the air. So to create more spin one can increase the exerted force on the ball or apply the force close to the end of the ball.
    [Show full text]
  • Computational Turbulent Incompressible Flow
    This is page i Printer: Opaque this Computational Turbulent Incompressible Flow Applied Mathematics: Body & Soul Vol 4 Johan Hoffman and Claes Johnson 24th February 2006 ii This is page iii Printer: Opaque this Contents I Overview 4 1 Main Objective 5 2 Mysteries and Secrets 7 2.1 Mysteries . 7 2.2 Secrets . 8 3 Turbulent flow and History of Aviation 13 3.1 Leonardo da Vinci, Newton and d'Alembert . 13 3.2 Cayley and Lilienthal . 14 3.3 Kutta, Zhukovsky and the Wright Brothers . 14 4 The Navier{Stokes and Euler Equations 19 4.1 The Navier{Stokes Equations . 19 4.2 What is Viscosity? . 20 4.3 The Euler Equations . 22 4.4 Friction Boundary Condition . 22 4.5 Euler Equations as Einstein's Ideal Model . 22 4.6 Euler and NS as Dynamical Systems . 23 5 Triumph and Failure of Mathematics 25 5.1 Triumph: Celestial Mechanics . 25 iv Contents 5.2 Failure: Potential Flow . 26 6 Laminar and Turbulent Flow 27 6.1 Reynolds . 27 6.2 Applications and Reynolds Numbers . 29 7 Computational Turbulence 33 7.1 Are Turbulent Flows Computable? . 33 7.2 Typical Outputs: Drag and Lift . 35 7.3 Approximate Weak Solutions: G2 . 35 7.4 G2 Error Control and Stability . 36 7.5 What about Mathematics of NS and Euler? . 36 7.6 When is a Flow Turbulent? . 37 7.7 G2 vs Physics . 37 7.8 Computability and Predictability . 38 7.9 G2 in Dolfin in FEniCS . 39 8 A First Study of Stability 41 8.1 The linearized Euler Equations .
    [Show full text]
  • A Review of the Magnus Effect in Aeronautics
    Progress in Aerospace Sciences 55 (2012) 17–45 Contents lists available at SciVerse ScienceDirect Progress in Aerospace Sciences journal homepage: www.elsevier.com/locate/paerosci A review of the Magnus effect in aeronautics Jost Seifert n EADS Cassidian Air Systems, Technology and Innovation Management, MEI, Rechliner Str., 85077 Manching, Germany article info abstract Available online 14 September 2012 The Magnus effect is well-known for its influence on the flight path of a spinning ball. Besides ball Keywords: games, the method of producing a lift force by spinning a body of revolution in cross-flow was not used Magnus effect in any kind of commercial application until the year 1924, when Anton Flettner invented and built the Rotating cylinder first rotor ship Buckau. This sailboat extracted its propulsive force from the airflow around two large Flettner-rotor rotating cylinders. It attracted attention wherever it was presented to the public and inspired scientists Rotor airplane and engineers to use a rotating cylinder as a lifting device for aircraft. This article reviews the Boundary layer control application of Magnus effect devices and concepts in aeronautics that have been investigated by various researchers and concludes with discussions on future challenges in their application. & 2012 Elsevier Ltd. All rights reserved. Contents 1. Introduction .......................................................................................................18 1.1. History .....................................................................................................18
    [Show full text]
  • Numerical Investigation of the Magnus Effect on Dimpled Spheres
    NUMERICAL INVESTIGATION OF THE MAGNUS EFFECT ON DIMPLED SPHERES Nikolaos Beratlis Elias Balaras Mechanical and Aerospace Engineering Department of Mechanical Arizona State University and Aerospace Enginering Tempe, AZ, USA George Washington University [email protected] Washington, DC, USA [email protected] Kyle Squires Mechanical and Aerospace Enginering Arizona State University Tempe, AZ, USA [email protected] ABSTRACT 0.5 An efficient finite-difference, immersed-boundary, k 0.4 3 k2 Navier-Stokes solver is used to carry out a series of sim- k1 ulations of spinning dimpled spheres at three distinct flow 0.3 D regimes: subcritical, critical and supercritical. Results exhibit C 0.2 all the qualitative flow features that are unique in each regime, golf ball smooth namely the drag crisis and the alternation of the Magnus 0.1 effect. 0 5 6 10 Re 10 Figure 1. Variation of CD vs Re for a smooth sphere Achen- INTRODUCTION bach (1972), –; spheres with sand-grained roughness Achen- Golf ball aerodynamics are of particular importance not −5 −5 bach (1972), −− (k1 = k=d = 1250×10 , k2 = 500×10 , only due to the quest for improved performance of golf balls − k = 150 × 10 5); golf ball Bearman & Harvey (1976), ·−. but also because of the fundamental phenomena associated 3 with the drag reduction due to dimples. Dimples are known to lower the critical Reynolds number at which a sudden drop in the drag is observed. Figure 1, for example, shows the tion caused by dimples. Using hot-wire anemometry they drag coefficient, CD, as a function of the Reynolds number, measured the streamwise velocity within individual dimples Re = UD=n, (where D is the diameter of the golf ball, U the and showed that the boundary layer separates locally within velocity and n the kinematic viscosity of the air) for a golf ball the dimples.
    [Show full text]
  • Karlstad University Faculty for Health, Science and Technology Mathematics of Football Free Kicks Analytic Mechanics FYGB08
    Karlstad University Faculty for Health, Science and Technology Robin Lundström February 4, 2019 Mathematics of football free kicks Analytic Mechanics FYGB08 Abstract A direct free kick is a method of restarting play in a game of football that is awarded to a team following a foul from the opposing team. Free kicks are situations that professional footballers have been practicing daily, with world class coaches, for the majority of their life, however the conversion rate of a free kick is somewhere between 0 − 10% depending on where the free kick is taken. In this report the physics of free kicks was investigated by analyzing a ball of which gravitational force, drag force and the Magnus force were acting on the ball. The purposes of the report were to both describe the trajectory of a football and to investigate the low conversion rate of direct free kicks. The mathematics of free kicks was implemented in MatLab and simulations are consistent with the physical intuition experienced when watching a game. It was concluded that small deviations of the initial conditions made a great impact on the trajectory. 1 Contents 1 Introduction 2 2 Theory 2 2.1 Declaration of variables and notation.....................................2 2.2 Gravitational force...............................................3 2.3 Drag force....................................................4 2.4 The Magnus effect...............................................4 3 Method 5 4 Results 5 4.1 Implementing forces in Matlab........................................5 4.2 Implementing a football freekick in Matlab.................................7 4.2.1 The wall.................................................7 4.2.2 The goalkeeper.............................................7 4.3 Simulation results...............................................7 4.3.1 Different models............................................8 4.4 Monte Carlo simulations............................................8 5 Discussion 11 5.1 Conclusion..................................................
    [Show full text]
  • Subsonic Flow Study and Analysis on Rotating Cylinder Airfoil
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 06 | June 2018 www.irjet.net p-ISSN: 2395-0072 SUBSONIC FLOW STUDY AND ANALYSIS ON ROTATING CYLINDER AIRFOIL Abhishek Sharma1, Tejas Mishra2, Sonia Chalia3, Manish K. Bharti4 1, 2 Student, Department of Aerospace Engineering, Amity University Haryana, Haryana, India 3, 4 Assistant Professor, Department of Aerospace Engineering, Amity University Haryana, Haryana, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - The concept of moving surface- boundary layer The major theory behind the generation of lift over an control is explored in this paper. A planned study was carried airfoil is that, when a flow passes over a surface of an airfoil a out on a conventional symmetrical airfoil 0012, of 100mm pressure difference is generated due to which lift is chord length. The study was complemented by numerical generated. For positive lift generation i.e. upward force the analysis and Computational fluid dynamics analysis through pressure over the upper surface has to be low compare with simulation. The moving surface was provided by rotating lower surface of an airfoil [1]. cylinder, located at C/8 and C/4 (where C is the chord length) This pressure gradient or difference is made, either by distances from the leading edge. The diameters taken for the varying AOA in symmetrical airfoil or by using camber airfoil. case were 13mm and 15mm respectively. The presence of Mainly the airfoil’s designing is done by observing the rotating cylinder in a 0012 affects the airfoil lift changes in parameters like lift, drag, pressure, temperature, characteristics. It provided the proper pressure variation and velocity etc.
    [Show full text]
  • Impact of the Drag Force and the Magnus Effect on the Trajectory of a Baseball
    World Journal of Mechanics, 2015, 5, 49-58 Published Online April 2015 in SciRes. http://www.scirp.org/journal/wjm http://dx.doi.org/10.4236/wjm.2015.54006 Impact of the Drag Force and the Magnus Effect on the Trajectory of a Baseball Haiduke Sarafian The Pennsylvania State University, University College, York, PA, USA Email: [email protected] Received 10 March 2015; accepted 10 April 2015; published 14 April 2015 Copyright © 2015 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract We consider the impact of drag force and the Magnus effect on the motion of a baseball. Quantita- tively we show how the speed-dependent drag coefficient alters the trajectory of the ball. For the Magnus effect we envision a scenario where the rotation of the ball confines the Magnus force to the vertical plane; gravity, drag force and the Magnus force make a trio-planar system. We inves- tigate the interplay of these forces on the trajectories. Keywords Drag Force, Magnus Effect, Spinning Ball, Baseball, Nonlinear Physics, Mathematica 1. Motivation and Introduction In introductory physics, engineering and math courses, undergraduate students are traditionally introduced to the concept of projectile motion such that a projectile is thrown at an angle in a vertical plane in a vacuum. The mo- tion in the vacuum is analyzed because in the absence of air, utilizing the Newton’s second law yields to a set of two independent second-order linear ODEs. The trivial solution of these equations provides information about the kinematics of the projectile, such as the trajectory, range, time of flight, etc.
    [Show full text]
  • Comparing the Aerodynamic Behaviour of Real Footballs to a Smooth Sphere Using Tomographic PIV †
    Proceedings Comparing the Aerodynamic Behaviour of Real Footballs to a Smooth Sphere Using Tomographic † PIV Matthew Ward 1,*, Martin Passmore 1, Adrian Spencer 1, Andy Harland 2, Henry Hanson 3 and Tim Lucas 3 1 Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, UK 2 Sports Technology Institute, Loughborough University, Loughborough LE11 3TU, UK 3 Adidas FUTURE team, Adidas AG, Adi-Dassler-Strasse, 91074 Herzogenaurach, Germany * Correspondence: [email protected]; Tel.: +447742922624 † Presented at the 13th conference of the International Sports Engineering Association, Online, 22–26 June 2020. Published: 15 June 2020 Abstract: Many studies have investigated the forces acting on a football in flight and how these change with the introduction or modification of surface features; however, these rarely give insight into the underlying fluid mechanics causing these changes. In this paper, force balance and tomographic particle image velocimetry (PIV) measurements were taken on a smooth sphere and a real Telstar18 football at a range of airspeeds. This was done under both static and spinning conditions utilizing a lower support through the vertical axis of the ball. It was found that the presence of the seams and texturing on the real ball were enough to cause a change from a reverse Magnus effect on the smooth ball to a conventional Magnus on the real ball in some conditions. The tomographic PIV data showed the traditional horseshoe-shaped wake structure behind the sphere and how this changed with the type of Magnus effect. It was found that the positioning of these vortices compared well with the measured side forces.
    [Show full text]
  • International Journal of Computer Science and Intelligent Computing
    DESIGN AND ANALYSIS OF ROTATING AEROFOIL BY USING MAGNUS EFFECT A.Animhons1, Prof.A.Sankaran2, N.Maheswaran3 and S.Tamilselvan4 1,2,3,4 Department of Aeronautical Engineering, Hindusthan Institute of Technology, Coimbatore Abstract-In an aircraft there so many advanced techniques in the development of high speed airfoil. The lift of the main wing depends upon an aircraft with depends on selection of airfoil. In our project we introduce a simple rotating airfoil which creates a positive lift. However the study of a rotating airfoil to generate more lift, under a “kutta –joukowski” and “Magnus effect”. The main concept of Magnus effect could be applied only over symmetrical bodies like spinning ball or cylinder or disk. We analyzed that this effect can also be applied to symmetrical airfoil. This study will explain the condition and the design of such a wing using the rotating airfoil concept that will have high performance and high cruise speed. In our thesis we introduce rotating airfoil at leading edge instead of a rigid body airfoil. We carried out the rotating airfoil concept using the software Ansys CFD. From the analysis the concept of rotating airfoil gives an additional increment of lift than the rigid body airfoil. Keywords-Rotating Aerofoil, Magnus Effect, kutta-joukowski, Symmetrical Aerofoil, Ansys CFD I. INTRODUCTION A fixed-wing aircraft's wings, horizontal, and vertical stabilizers are built with airfoil-shaped cross sections, as are helicopter rotor blades. Airfoils are also found in propellers, fans, compressors and turbines. Sails are also airfoils, and the underwater surfaces of sailboats, such as the centerboard and keel, are similar in cross-section and operate on the same principles as airfoils.
    [Show full text]
  • Biomedical Engineering Online Biomed Central
    BioMedical Engineering OnLine BioMed Central Research Open Access Mathematical model describing erythrocyte sedimentation rate. Implications for blood viscosity changes in traumatic shock and crush syndrome Rovshan M Ismailov*1, Nikolai A Shevchuk2,3 and Higmat Khusanov4 Address: 1Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA, 2Center for Cancer and Immunology Research, Children's Research Institute, Washington, DC, USA, 3Institute for Biomedical Sciences/Program in Molecular and Cellular Oncology, Washington, DC, USA and 4Institute of Mechanics and Seismic Stability of Structures, Academy of Science of Uzbekistan, Tashkent, Uzbekistan Email: Rovshan M Ismailov* - [email protected]; Nikolai A Shevchuk - [email protected]; Higmat Khusanov - [email protected] * Corresponding author Published: 04 April 2005 Received: 24 January 2005 Accepted: 04 April 2005 BioMedical Engineering OnLine 2005, 4:24 doi:10.1186/1475-925X-4-24 This article is available from: http://www.biomedical-engineering-online.com/content/4/1/24 © 2005 Ismailov et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The erythrocyte sedimentation rate (ESR) is a simple and inexpensive laboratory test, which is widespread in clinical practice, for assessing the inflammatory or acute response. This work addresses the theoretical and experimental investigation of sedimentation a single and multiple particles in homogeneous and heterogeneous (multiphase) medium, as it relates to their internal structure (aggregation of solid or deformed particles).
    [Show full text]
  • A Computational Study of the Aerodynamics of a Spinning Cylinder in a Crossflow of High Reynolds Number
    28TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES A COMPUTATIONAL STUDY OF THE AERODYNAMICS OF A SPINNING CYLINDER IN A CROSSFLOW OF HIGH REYNOLDS NUMBER E. R. Gowree and S. A. Prince Centre of Aeronautics, City University London [email protected]; [email protected] Abstract ambient wind speed the cylinder’s performance was vulnerable, and due to the large availability A Computational Fluid Dynamics (CFD) and low cost of fuel in that era the idea was analysis of the high Reynolds number (Re § 94k) rendered redundant. flow around a quasi-2D spinning cylinder in a The UAV (unmanned aerial vehicle) or crossflow, using a high resolution 3D time MAV (micro air vehicle) industry is currently marching unsteady Navier-Stokes solver was expanding due to these crafts ability to operate conducted. The lift coefficients predicted were in hostile and inhospitable environments. An in fair agreement with experimental results elaborate feasibility study conducted by C. except in the Inverse Magnus Effect region (0.4 Badalamenti [2] during his Doctoral research < ȍ < 0.7). The fact that these simulations were has demonstrated that spinning cylinders can be computed as purely laminar boundary layer an alternative for conventional fixed wings flows, and failed to resolve any evidence of the when high lift to drag ratio is required. In Inverse Magnus Effect, would tend to support addition, unlike conventional wings spinning the proposition that the Inverse Magnus Effect cylinders are not constrained by stall and is associated with boundary layer transition. therefore could therefore offer increased The trends in the experimentally measured payload capability.
    [Show full text]