Rapport Life / Part 1

Total Page:16

File Type:pdf, Size:1020Kb

Rapport Life / Part 1 Investigating Life in Extreme Investigating Life in Extreme Environments • European Science Foundation Environments A European Perspective SETTING SCIENCE AGENDAS FOR EUROPE www.esf.org European Science Foundation (ESF) European Medical Research Councils (EMRC) The European Science Foundation (ESF) was Set up in 1971, the EMRC evolved into one of the established in 1974 to create a common European five Standing Committees of the ESF in 1975. The platform for cross-border cooperation in all aspects EMRC membership is composed of delegates with of scientific research. a high scientific profile who are nominated by their With its emphasis on a multidisciplinary and pan- ESF Member Organisations involved in biomedical European approach, the Foundation provides the sciences, together with observers from Canada, leadership necessary to open new frontiers in Israel, New Zealand, USA,, WHO-Europe, the European science. European Commission and the ESF Standing Its activities include providing science policy advice Committee for Life, Earth and Environmental (Science Strategy); stimulating co-operation Sciences (LESC). Thirty-five representatives of 39 between researchers and organisations to explore Member Organisations participate in the annual new directions (Science Synergy); and the plenary meetings of the EMRC. An Executive administration of externally funded programmes Group composed of eight members is responsible (Science Management). These take place in the for the follow-up of EMRC policies between annual following areas: Physical and engineering sciences; meetings. For more information see: Medical sciences; Life, earth and environmental http://www.esf.org/emrc sciences; Humanities; Social sciences; Polar; Marine; Space; Radio astronomy frequencies; ESF Standing Committee for the Humanities Nuclear physics. (SCH) Headquartered in Strasbourg with offices in Established in 1978, SCH consists of Brussels, the ESF’s membership comprises 75 representatives of ESF member research councils national funding agencies, research performing and academies, with subject specialists to agencies and academies from 30 European complement ordinary membership. Observers nations. attend from the ESF Standing Committee for the The Foundation’s independence allows the ESF to Social Sciences (SCSS), the COST Technical objectively represent the priorities of all these Committee (TC) in Social Sciences and Humanities, members. For more information see: the European Commission, the US National http://www.esf.org Endowment for the Humanities, the Canadian Social Sciences and Humanities Research Council, ESF Standing Committee for Life, Earth and and the Israel Academy of Sciences and Environmental Sciences (LESC) Humanities. SCH has a policy of encouraging LESC encompasses a number of disciplines such interdisciplinary work and sees its main task as the as biology, biotechnology, agriculture, Earth independent evaluation of collaborative research sciences, glaciology, oceanography, meteorology, proposals emanating from the academic and other life and environmental sciences. The community. SCH also has a proactive function in committee is composed of leading scientists the identification of priority research areas. For mandated to represent the ESF Member more information see: http://www.esf.org/sch Organisations. Observers from other ESF committees/expert groups or external organisations are also invited to attend committee meetings, as are guests from the COST Technical Committees. For more information see: http://www.esf.org/lesc Cover Page Credits : King penguins – © CNRS Photothèque/Pierre Katell Water ice on Mars – ESA/DLR/FU Berlin (G. Neukum) Physonect siphonophore from the Arctic Ocean – © Kevin Raskoff Sand dune in Marocco – © CNRS Photothèque/Raguet Hubert Deep sea shrimp – © Ifremer/Campagne Biozaire 2 – 2001 Hydrothermal vent sampling – © Ifremer/ Campagne Phare 2002 Jupiter’s icy moon Europa – NASA Acidic water, Rio Tinto – J. Segura 2 Investigating Life in Extreme Environments Marine Board-ESF (MB-ESF) The Marine Board-ESF is one of ESF’s expert boards focus on science policy and strategy. It was established in 1995 to facilitate enhanced coordination between European marine science organisations (both research institutes and funding agencies) and the development of strategies for marine science in Europe. The Marine Board has 23 Member Organisations from 16 countries and operates by: i) creating a forum for its member organisations; ii) identifying strategic scientific issues; iii) providing a voice for European marine science; and iv) promoting synergy in the management of both national programmes and research infrastructure facilities and investments. For more information see: http://www.esf.org/marineboard European Polar Board (EPB) EPB is one of ESF’s expert boards focus on science policy and strategy. It is Europe’s advisory body on science policy in the polar regions. It is concerned with major strategic priorities in the Arctic and Antarctic. EPB has 29 members from 19 countries. It acts to ensure high-level collaboration and coordination between European national funding agencies, national polar institutes, research organisations and the European Commission. For more information see: http://www.esf.org/epb European Space Sciences Committee (ESSC) Created in 1975, ESSC is one of ESF’s expert boards focus on science policy and strategy. It deals with space research and covers all related aspects; i.e. space physical science, Earth observation, and life and physical sciences in space. ESSC investigates and presents the view of the scientific community in Europe on space research issues and provides an independent voice on European space science policy. For more information see: http://www.esf.org/essc Investigating Life in Extreme Environments 3 Context and background information on the As a broad spectrum of the European scientific activity community expressed interest in the initiative, the In February 2004, in the context of promoting workshop was organised around seven sessions interdisciplinary research on topics of common (detailed below), three of which dealt with interest, the European Science Foundation’s (ESF) interdisciplinary issues: Standing Committee for Life, Earth and Environmental Sciences (LESC) and three of ESF’s 1. Defining and characterising the boundary Expert Committees, the Marine Board-ESF (MB- conditions of extreme environments - ESF), the European Space Science Committee (cross-disciplinary) (ESSC) and the European Polar Board (EPB), 2. Molecular adaptation and stability in extreme issued a common call for Expressions of Interest environments - (cross-disciplinary) (EoI) on the topic ‘Investigating Life in Extreme 3. Microbial life in extreme environments Environments’. ESF Standing Committee for the Humanities (SCH) and the European Medical 4. Life strategies of plants in extreme Research Councils (EMRC) joined the initiative. environments 5. Life strategies of animals in extreme Subsequent to this call, 282 Expressions of Interest environments from 27 countries were received. The main 6. Human adaptation to extreme environments contributors were from: Germany (18%), UK (16%), 7. Enabling technologies and applications - Italy (14%) and France (9%). There was also (cross-disciplinary) significant participation from the Russia (12 EoIs) and from eastern European countries (25 EoIs). In addition to the presentation sessions, working Concerning the topics covered, 33% of the EoIs groups were established around five topics: dealt with the marine environment, 22% with the polar environment and 16% with the space environment. 1. Microbial life in extreme environments 2. Life strategies of plants in extreme Given the EoIs received, and with the support of environments ESF and LESC, the Steering Committee of the 3. Life strategies of animals in extreme initiative recommended that a large-scale environments workshop dealing with the topic Investigating Life in Extreme Environments (ILEE) be organised in order 4. Human adaptation to extreme environments to debate and put forward research priorities and 5. Enabling technologies and applications explore the recommendations of the community involved. The coordination was tasked to the This report results from this workshop and a further Marine Board unit of ESF. This workshop, involving one held in March 2006 in Strasbourg, the latter 128 participants, was held in November 2005 in gathering the Steering Committee set up for this Sant Feliu de Guixols (Spain). The workshop was initiative as well as the sessions’ chairpersons and chaired by Daniel Prieur (IUEM University of Brest, rapporteurs. This report synthesises points of view France) with Ricardo Amils (CBMSO Universidad regarding priorities and recommendations as Autónoma de Madrid and Centro de Astrobiología, expressed by the scientific community involved in Madrid, Spain) as rapporteur. this ESF initiative. Investigating Life in Extreme Environments - A European Perspective Editor: Nicolas Walter • Contributors: Ricardo Amils, Arnoldus Blix, Michael Danson, Christine Ebel, Cynan Ellis-Evans, Françoise Gaill, Helmut Hinghofer-Szalkay, Kai-Uwe Hinrichs, Francesco Loreto, Daniel Prieur, Farzam Ranjbaran, Klaus Valentin, Elisabeth Vestergaard, Nicolas Walter • Acknowledgement: The European Science Foundation would like to thank the following scientists who provided valuable comments and inputs on the present report: Stéphane Blanc, Charles Cockell, Terry Callaghan, Horst Felbeck, Claude Gharib, Yvon le Maho,
Recommended publications
  • Microbial Interactions with Arsenite, Hydrogen and Sulfide In
    MICROBIAL INTERACTIONS WITH ARSENITE, HYDROGEN AND SULFIDE IN AN ACID-SULFATE-CHLORIDE GEOTHERMAL SPRING by Seth D’Imperio A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana April, 2008 ©COPYRIGHT by Seth D’Imperio 2008 All Rights Reserved ii APPROVAL of a dissertation submitted by Seth D’Imperio This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education. Dr. Timothy R. McDermott Approved for the Department Land Resources and Environmental Science Dr. Jon M. Wraith Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this dissertation in partial fulfillment of the requirements for a doctoral degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this dissertation should be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted “the exclusive right to reproduce and distribute my dissertation in and from microform along with the non- exclusive right to reproduce and distribute my abstract in any format in whole or in part.” Seth D’Imperio April 2008 iv ACKNOWLEDGEMENTS Firstly, I would like to thank Dr.
    [Show full text]
  • Role of Chemolithoautotrophic Microorganisms Involved in Nitrogen and Sulfur Cycling in Coastal Marine Sediments
    Role of chemolithoautotrophic microorganisms involved in nitrogen and sulfur cycling in coastal marine sediments Yvonne Antonia Lipsewers THIS RESEARCH WAS FINANCIALLY SUPPORTED BY DARWIN CENTER FOR BIOGEOSCIENCES NIOZ – ROYAL NETHERLANDS INSTITUTE FOR SEA RESEARCH ISBN: 978-90-6266-492-4 Cover photos: S. Rampen, L. Villanueva, M. van der Meer Printed by Ipskamp Printing, The Netherlands Role of chemolithoautotrophic microorganisms involved in nitrogen and sulfur cycling in coastal marine sediments De rol van chemolithoautotrofe micro-organismen die deelnemen in de stikstof- en zwavelcyclus in mariene kustsedimenten (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op dinsdag 5 december 2017 des ochtends te 10.30 uur door Yvonne Antonia Lipsewers geboren op 18 juli 1977 te Salzkotten, Duitsland Promotor: Prof. dr. ir. J.S. Sinninghe Damsté Copromotor: Dr. L. Villanueva „Hinterher ist man immer schlauer…“ Für meine Familie Table of contents Chapter 1 – Introduction .....................................................................................................1 Chapter 2 – Seasonality and depth distribution of the abundance and activity of am- monia oxidizing microorganisms in marine coastal sediments (North Sea) ..........23 Chapter 3 – Lack of 13C-label incorporation suggests low turnover rates of thaumar- chaeal intact
    [Show full text]
  • Access to Electronic Thesis
    Access to Electronic Thesis Author: Khalid Salim Al-Abri Thesis title: USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS Qualification: PhD This electronic thesis is protected by the Copyright, Designs and Patents Act 1988. No reproduction is permitted without consent of the author. It is also protected by the Creative Commons Licence allowing Attributions-Non-commercial-No derivatives. If this electronic thesis has been edited by the author it will be indicated as such on the title page and in the text. USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS By Khalid Salim Al-Abri Msc., University of Sultan Qaboos, Muscat, Oman Mphil, University of Sheffield, England Thesis submitted in partial fulfillment for the requirements of the Degree of Doctor of Philosophy in the Department of Molecular Biology and Biotechnology, University of Sheffield, England 2011 Introductory Pages I DEDICATION To the memory of my father, loving mother, wife “Muneera” and son “Anas”, brothers and sisters. Introductory Pages II ACKNOWLEDGEMENTS Above all, I thank Allah for helping me in completing this project. I wish to express my thanks to my supervisor Professor Milton Wainwright, for his guidance, supervision, support, understanding and help in this project. In addition, he also stood beside me in all difficulties that faced me during study. My thanks are due to Dr. D. J. Gilmour for his co-supervision, technical assistance, his time and understanding that made some of my laboratory work easier. In the Ministry of Regional Municipalities and Water Resources, I am particularly grateful to Engineer Said Al Alawi, Director General of Health Control, for allowing me to carry out my PhD study at the University of Sheffield.
    [Show full text]
  • And Thermo-Adaptation in Hyperthermophilic Archaea: Identification of Compatible Solutes, Accumulation Profiles, and Biosynthetic Routes in Archaeoglobus Spp
    Universidade Nova de Lisboa Osmo- andInstituto thermo de Tecnologia-adaptation Química e Biológica in hyperthermophilic Archaea: Subtitle Subtitle Luís Pedro Gafeira Gonçalves Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. OH OH OH CDP c c c - CMP O O - PPi O3P P CTP O O O OH OH OH OH OH OH O- C C C O P O O P i Dissertation presented to obtain the Ph.D degree in BiochemistryO O- Instituto de Tecnologia Química e Biológica | Universidade Nova de LisboaP OH O O OH OH OH Oeiras, Luís Pedro Gafeira Gonçalves January, 2008 2008 Universidade Nova de Lisboa Instituto de Tecnologia Química e Biológica Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. This dissertation was presented to obtain a Ph. D. degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. By Luís Pedro Gafeira Gonçalves Supervised by Prof. Dr. Helena Santos Oeiras, January, 2008 Apoio financeiro da Fundação para a Ciência e Tecnologia (POCI 2010 – Formação Avançada para a Ciência – Medida IV.3) e FSE no âmbito do Quadro Comunitário de apoio, Bolsa de Doutoramento com a referência SFRH / BD / 5076 / 2001. ii ACKNOWNLEDGMENTS The work presented in this thesis, would not have been possible without the help, in terms of time and knowledge, of many people, to whom I am extremely grateful. Firstly and mostly, I need to thank my supervisor, Prof. Helena Santos, for her way of thinking science, her knowledge, her rigorous criticism, and her commitment to science.
    [Show full text]
  • The Thermal Limits to Life on Earth
    International Journal of Astrobiology 13 (2): 141–154 (2014) doi:10.1017/S1473550413000438 © Cambridge University Press 2014. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence http://creativecommons.org/licenses/by/3.0/. The thermal limits to life on Earth Andrew Clarke1,2 1British Antarctic Survey, Cambridge, UK 2School of Environmental Sciences, University of East Anglia, Norwich, UK e-mail: [email protected] Abstract: Living organisms on Earth are characterized by three necessary features: a set of internal instructions encoded in DNA (software), a suite of proteins and associated macromolecules providing a boundary and internal structure (hardware), and a flux of energy. In addition, they replicate themselves through reproduction, a process that renders evolutionary change inevitable in a resource-limited world. Temperature has a profound effect on all of these features, and yet life is sufficiently adaptable to be found almost everywhere water is liquid. The thermal limits to survival are well documented for many types of organisms, but the thermal limits to completion of the life cycle are much more difficult to establish, especially for organisms that inhabit thermally variable environments. Current data suggest that the thermal limits to completion of the life cycle differ between the three major domains of life, bacteria, archaea and eukaryotes. At the very highest temperatures only archaea are found with the current high-temperature limit for growth being 122 °C. Bacteria can grow up to 100 °C, but no eukaryote appears to be able to complete its life cycle above *60 °C and most not above 40 °C.
    [Show full text]
  • Alvinella Pompejana) Accepted: 18-04-2020
    International Journal of Fauna and Biological Studies 2020; 7(3): 25-32 ISSN 2347-2677 www.faunajournal.com IJFBS 2020; 7(3): 25-32 Adaptation in extreme underwater vent ecosystem: A Received: 16-03-2020 case study on Pompeii worm (Alvinella pompejana) Accepted: 18-04-2020 Joyanta Bir (1). Khulna University, School of Joyanta Bir, Md Rony Golder and SM Ibrahim Khalil Life Science, Fisheries and Marine Resources Technology Abstract Discipline, 9208, Khulna, Bangladesh The deep-sea habitats such as cold seeps and hydrothermal vents are very challenging environments (2). University of Basque displaying a high biomass compared to the adjacent environment at comparable depth. Because of the Country, Marine Environment high pressure, the high temperature, massive concentrations of toxic compounds and the extreme and Resources (MER), Bilbao, physico-chemical gradients makes the lives very extreme in vent environment. Hypoxia is one of the Spain challenges that these species face to live there. Therefore, most of the dwellers here lives in a highly integrated symbiosis with sulfide-oxidizing chemoautotrophic bacteria. Very few species belonging to Md Rony Golder annelids and crustaceans can survive in this ecosystem through developing specific adaptations of their Khulna University, School of respiratory system, the morphological, physiological and biochemical levels. Here, we review specific Life Science, Fisheries and adaptations mechanisms of a prominent vent dweller Pompeii Worm (Alvinella pompejana) in order to Marine Resources Technology know their morphological, physiological biochemical levels to cope with thrilling hypoxic vent Discipline, 9208, Khulna, environment. Most often Pompeii worm develop ventilation and branchial surfaces to assistance with Bangladesh oxygen extraction, and an increase in excellently tuned oxygen obligatory proteins to help with oxygen stowage and conveyance.
    [Show full text]
  • Alvinella Pompejana (Annelida)
    MARINE ECOLOGY - PROGRESS SERIES Vol. 34: 267-274, 1986 Published December 19 Mar. Ecol. Prog. Ser. Tubes of deep sea hydrothermal vent worms Riftia pachyptila (Vestimentif era) and Alvinella pompejana (Annelida) ' CNRS Centre de Biologie Cellulaire, 67 Rue Maurice Gunsbourg, 94200 Ivry sur Seine, France Department of Biological Sciences, University of Lancaster, Bailrigg. Lancaster LA1 4YQ. England ABSTRACT: The aim of this study was to compare the structure and chemistry of the dwelling tubes of 2 invertebrate species living close to deep sea hydrothermal vents at 12"48'N, 103'56'W and 2600 m depth and collected during April 1984. The Riftia pachyptila tube is formed of a chitin proteoglycan/ protein complex whereas the Alvinella pompejana tube is made from an unusually stable glycoprotein matrix containing a high level of elemental sulfur. The A. pompejana tube is physically and chemically more stable and encloses bacteria within the tube wall material. INTRODUCTION the submersible Cyana in April 1984 during the Biocy- arise cruise (12"48'N, 103O56'W). Tubes were pre- The Pompeii worm Alvinella pompejana, a poly- served in alcohol, or fixed in formol-saline, or simply chaetous annelid, and Riftia pachyptila, previously rinsed and air-dried. considered as pogonophoran but now placed in the Some pieces of tubes were post-fixed with osmium putative phylum Vestimentifera (Jones 1985), are tetroxide (1 O/O final concentration) and embedded in found at a depth of 2600 m around deep sea hydrother- Durcupan. Thin sections were stained with aqueous mal vents. R. pachyptila lives where the vent water uranyl acetate and lead citrate and examined using a (anoxic, rich in hydrogen sulphide, temperatures up to Phillips EM 201 TEM at the Centre de Biologie 15°C) mixes with surrounding seawater (oxygenated, Cellulaire, CNRS, Ivry (France).
    [Show full text]
  • Extremophiles — Link Between Earth and Astrobiology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals Zbornik Matice srpske za prirodne nauke / Proc. Nat. Sci, Matica Srpska Novi Sad, ¥ 114, 5—16, 2008 UDC 133.52:57 Dejan B. Stojanoviã1 , Oliver O. Fojkar2 , Aleksandra V. Drobac-Åik1 , Kristina O. Åajko3 , Tamara I. Duliã1 ,ZoricaB.Sviråev1 1 Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradoviãa 2, 21000 Novi Sad, Serbia 2 Institute for nature conservation of Serbia, Radniåka 20A, 21000 Novi Sad, Serbia 3 Faculty of Sciences, Department of Physics, Trg Dositeja Obradoviãa 4, 21000 Novi Sad, Serbia EXTREMOPHILES — LINK BETWEEN EARTH AND ASTROBIOLOGY ABSTRACT: Astrobiology studies the origin, evolution, distribution and future of life in the universe. The most promising worlds in Solar system, beyond Earth, which may har- bor life are Mars and Jovian moon Europa. Extremophiles are organisms that thrive on the edge of temperature, hypersalinity, pH extremes, pressure, dryness and so on. In this paper, some extremophile cyanobacteria have been discussed as possible life forms in a scale of astrobiology. Samples were taken from solenetz and solonchak types of soil from the Voj- vodina region. The main idea in this paper lies in the fact that high percentage of salt found in solonchak and solonetz gives the possibility of comparison these types of soil with “soil" on Mars, which is also rich in salt. KEYWORDS: Astrobiology, extremophiles, cyanobacteria, halophiles 1. INTRODUCTION 1.1. About astrobiology Astrobiology studies the origin, evolution, distribution and future of life in the universe.
    [Show full text]
  • Alvinella Pompejana Is an Endemic Inhabitant Tof Deep-Sea Hydrothermal Vents Located from 21°N to 32°S Latitude on the East Pacific Rise (1)
    Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility Joseph J. Grzymskia,1, Alison E. Murraya,1, Barbara J. Campbellb, Mihailo Kaplarevicc, Guang R. Gaoc,d, Charles Leee, Roy Daniele, Amir Ghadirif, Robert A. Feldmanf, and Stephen C. Caryb,d,2 aDivision of Earth and Ecosystem Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512; bCollege of Marine and Earth Studies, University of Delaware, Lewes, DE 19958; cDelaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19702; dElectrical and Computer Engineering, University of Delaware, 140 Evans Hall, Newark, DE 19716; eDepartment of Biological Sciences, University of Waikato, Hamilton, New Zealand; fSymBio Corporation, 1455 Adams Drive, Menlo Park, CA 94025 Edited by George N. Somero, Stanford University, Pacific Grove, CA, and approved September 17, 2008 (received for review March 20, 2008) Hydrothermal vent ecosystems support diverse life forms, many of the thermal tolerance of a structural protein biomarker (5) which rely on symbiotic associations to perform functions integral supports the assertion that A. pompejana is likely among the to survival in these extreme physicochemical environments. Epsi- most thermotolerant and eurythermal metazoans on Earth lonproteobacteria, found free-living and in intimate associations (6, 7). with vent invertebrates, are the predominant vent-associated A. pompejana is characterized by a filamentous microflora that microorganisms. The vent-associated polychaete worm, Alvinella forms cohesive hair-like projections from mucous glands lining pompejana, is host to a visibly dense fleece of episymbionts on its the polychaete’s dorsal intersegmentary spaces (8). The episym- dorsal surface. The episymbionts are a multispecies consortium of biont community is constrained to the bacterial subdivision, Epsilonproteobacteria present as a biofilm.
    [Show full text]
  • Pyrolobus Fumarii Type Strain (1A)
    Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of the hyperthermophilic chemolithoautotroph Pyrolobus fumarii type strain (1A). Permalink https://escholarship.org/uc/item/89r1s0xt Journal Standards in genomic sciences, 4(3) ISSN 1944-3277 Authors Anderson, Iain Göker, Markus Nolan, Matt et al. Publication Date 2011-07-01 DOI 10.4056/sigs.2014648 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2011) 4:381-392 DOI:10.4056/sigs.2014648 Complete genome sequence of the hyperthermophilic chemolithoautotroph Pyrolobus fumarii type strain (1AT) Iain Anderson1, Markus Göker2, Matt Nolan1, Susan Lucas1, Nancy Hammon1, Shweta Deshpande1, Jan-Fang Cheng1, Roxanne Tapia1,3, Cliff Han1,3, Lynne Goodwin1,3, Sam Pitluck1, Marcel Huntemann1, Konstantinos Liolios1, Natalia Ivanova1, Ioanna Pagani1, Konstantinos Mavromatis1, Galina Ovchinikova1, Amrita Pati1, Amy Chen4, Krishna Pala- niappan4, Miriam Land1,5, Loren Hauser1,5, Evelyne-Marie Brambilla2, Harald Huber6, Montri Yasawong7, Manfred Rohde7, Stefan Spring2, Birte Abt2, Johannes Sikorski2, Reinhard Wirth6, John C. Detter1,3, Tanja Woyke1, James Bristow1, Jonathan A. Eisen1,8, Victor Markowitz4, Philip Hugenholtz1,9, Nikos C. Kyrpides1, Hans-Peter Klenk2, and Alla Lapidus1* 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos,
    [Show full text]
  • Life in Extreme Environments
    insight review articles Life in extreme environments Lynn J. Rothschild & Rocco L. Mancinelli NASA Ames Research Center, Moffett Field, California 94035-1000, USA (e-mail: [email protected]; [email protected]) Each recent report of liquid water existing elsewhere in the Solar System has reverberated through the international press and excited the imagination of humankind. Why? Because in the past few decades we have come to realize that where there is liquid water on Earth, virtually no matter what the physical conditions, there is life. What we previously thought of as insurmountable physical and chemical barriers to life, we now see as yet another niche harbouring ‘extremophiles’. This realization, coupled with new data on the survival of microbes in the space environment and modelling of the potential for transfer of life between celestial bodies, suggests that life could be more common than previously thought. Here we examine critically what it means to be an extremophile, and the implications of this for evolution, biotechnology and especially the search for life in the Universe. ormal is passé; extreme is chic. While thriving in biological extremes (for example, nutritional Aristotle cautioned “everything in extremes, and extremes of population density, parasites, moderation”, the Romans, known for their prey, and so on). excesses, coined the word ‘extremus’, the ‘Extremophile’ conjures up images of prokaryotes, yet the superlative of exter (‘being on the outside’). taxonomic range spans all three domains. Although all NBy the fifteenth century ‘extreme’ had arrived, via Middle hyperthermophiles are members of the Archaea and French, to English. At the dawning of the twenty-first Bacteria, eukaryotes are common among the psychrophiles, century we know that the Solar System, and even Earth, acidophiles, alkaliphiles, piezophiles, xerophiles and contain environmental extremes unimaginable to the halophiles (which respectively thrive at low temperatures, low ‘ancients’ of the nineteenth century.
    [Show full text]
  • Alvinella Pompejana – 2 Patents for Collagen for Recombinant Gelatins
    Marine genetic resources – Current uses and schemes for benefit-sharing Marjo Vierros, UNU-IAS Diversity of deep sea habitats Hydrothermal vents 1977 Cold water corals – first Scientific work around 1979 • Only 1-2 percent of pre-clinical candidates become commercial products 12-5-5 DiversityMarine genetic of species resources • ~0.7 -1.0 million marine species (Appeltans, 2012) • ~2,000 new species described per year (World Register of Marine Species) – New areas for discovery: microbial ocean, deep sea • Long evolutionary history compared to terrestrial species • Many of actual or potential interest for biotechnology • No universally accepted definition for “marine genetic resource” • The CBD and Nagoya Protocol definition for genetic resources: genetic material of actual or potential value • CBD definitions provide a starting point • Our understanding of genetics is developing fast, including new tools for analysis - this evolving understanding will need to be reflected in any potential Photos from Graham Shimmield future definition Why are marine genetic resources of interest to biotechnology? • The ratio of potentially useful natural compounds is likely higher in marine than terrestrial organisms • There is a higher probability of commercial success with marine-sourced material – potential high financial rewards • This has translated to increasing interest in marine organisms • High investment costs of collecting marine organisms from the deep sea – only a few countries have the capacity to access and undertake R&D • Products (e.g.
    [Show full text]