The Moon Is Shown Glowing from the Heat of the Asteroid and Comet Impacts That Shaped Its Surface. of Course, These Impac

Total Page:16

File Type:pdf, Size:1020Kb

The Moon Is Shown Glowing from the Heat of the Asteroid and Comet Impacts That Shaped Its Surface. of Course, These Impac Above: The Moon is shown glowing from the heat of the asteroid and comet impacts that shaped its surface. Of course, these impacts were scattered over time, but concentrated in the Moon’s first billion years. Yet these impacts continue to this day, at a greatly reduced pace. While there have been relatively few articles on asteroids and comets in the pages of MMM over the years, their significance for the Moon’s future is as great as it has been for the Moon’s past. There is a good sampling of asteroidal materials mixed into the Moon’s rock powder surface blanket, 2-5 yards/~meters thick, and of comets as well, in the icy deposits to be found in north and south polar craters that have seen no sunlight for eons. Asteroids and comets are thus logical sources of the rare elements we find in the “regolith” blanket but in insufcient amounts to meet the Lunar Frontier’s industrial and biospheric needs. We will include articles on Phobos and Deimos, the two small moonlets of Mars, which some have felt may be captured asteroids of carbonaceous chondrite composition. If so, these two small bodies could be major sources of volatiles for the Moon. The development of these resources could conveniently piggyback on a regular and ever increasing Earth-Moon <> Mars trafc. So their collocation with Mars puts them at the top of the list for ease and regularity of access. While Earth<>Mars launch windows are 25.5 months apart, solar sails could establish a virtual pipeline from Mars to the Moon with liquid methane CH4 and ammonia NH3 always going into the “pipeline” at Mars and always coming out of the faucet at the lunar end. Comets, quite diferent in composition and origin from asteroids, are also small bodies that abound in the solar system and have in the past endowed the Moon with valuable resources. And there are “depleted” comets that pose as asteroids. So we also include them in this issue. Near Earth asteroids may be relatively nearby and require little fuel expenditure and “Delta V” to reach, but there is a double Catch-22 involved, with inconveniences that counterbalance the conveniences, and we will deal with that issue also. Some of the larger asteroids, notably Ceres, Pallas, and Vesta, may someday host settlements. Their material resources and cultures will be quite diferent from those of settlements on the Moon and on Mars. But the more diversity for humanity, the better. CHRONOLOGICAL INDEX MMM THEMES: Asteroids and Comets MMM # 6 "M" is for Missing volatiles; Methane, 'Mmonia, Minimization of cost of Importing Methane, Ammonia, etc. Mars-PHOBOS-Deimos MMM # 19 Seizing the Reins of the Mars Bandwagon (excerpts) Mars: Option to Stay Telling Time on Phobos and Deimos MMM #24 Asteroid Theme Issue: colonist's Quiz on Asteroids; Ceres Pallas Vesta MMM #25 Asteroid Odds & Ends MMM #28 Asteroid Types MMM #35 Ports of Pardon Wildcatting Comet Crude Feudalism in the Asteroid Belt? Tea & Sugar Supply ships MMM #39 Oortfoam MMM #46 Footloose among the Asteroids MMM #58 “Xities” Serving Asteroid Miners; a Plethora of asteroid moonlets MMM #70 Asteroid Base Design Workshop at ISDC 1993: A Tale of 3 Asteroids: 1. Main Belt Service Center on Ceres MMM #71 Asteroid Workshop: 2. A Mining Outpost on Gaspra Astroblemes MMM #72 Asteroid Workshop 3: Mass Driver Rig on small astrochunk Why Tether Braking at Gaspra will work MMM #86 Tapping Near Earth Asteroids Reality Check MMM #153 Automatic Near Earth Asteroid Collision Monitoring MMM #160 Killer Asteroids vs. Killer Debris (Kokh) MMM #161 Killer Asteroids vs. Killer Debris (Friesen) MMM #183 Asteroid Impact Computer Simulation MMM #188 Japan’s Asteroid Sample Return MMM #189 New Genesis: Tame Asteroids, Move Planets, McGown MMM #196 Ceres: largest asteroid or mini-planet? MMM #197 Moon Base? Mars Base? Farther Out!; Challenges of Migration into the Outer Solar System MMM #204 Killer Asteroids Editorial, By Peter Kokh MMM #214 Tagging Asteroid Apophis MMM #230 Augustine Commission Recommendations Flybys of Asteroids, Mars, may help the Moon MMM #239 New Asteroid hunting telescope array in Chile Best Place to Mine Astroids on the Moon? An Asteroid Mission that makes Sense MMM #265 The Stage is Set: Mining Asteroids - or Dormant Comets? Pros & Cons - Peter Kokh SUB-THEME INDEX: MMM THEMES: ASTEROIDS ASTEROID DESCRIPTIONS MMM #25 Asteroid Odds & Ends MMM #28 Asteroid Types MMM #46 Footloose among the Asteroids MMM #58 a Plethora of asteroid moonlets MMM #71 Astroblemes ASTEROID RESOURCES & USES MMM #24 Asteroid Theme Issue: colonist's Quiz on Asteroids; MMM #35 Ports of Pardon Feudalism in the Asteroid Belt? Tea & Sugar Supply ships MMM #86 Tapping Near Earth Asteroids Reality Check MMM #239 Best Place to Mine Astroids on the Moon? An Asteroid Mission that makes Sense ASTEROIDS SETTLEMENTS MMM #46 Footloose among the Asteroids MMM #58 “Xities” Serving Asteroid Miners; a Plethora of asteroid moonlets MMM #197 Moon Base? Mars Base? Farther Out: Challenges of Migration into the Outer Solar System MAJOR ASTEROIDS Ceres: MMM #24 MMM #70 Asteroid Base Design Workshop at ISDC 1993: A Tale of 3 Asteroids: Main Belt Service Center on Ceres MMM #196 Ceres: largest asteroid or mini-planet? Pallas MMM #24 Vesta NNN #24 Gapra: MMM #71 Asteroid Workshop: A Mining Outpost on Gaspra Why Tether Braking at Gaspra will work MARS ASTEROID-LIKE MOONS: DEIMOS & PHOBOS MMM # 6 "M" is for Missing volatiles; Methane, 'Mmonia, Minimization of cost of Importing Methane, Ammonia, etc.; Mars-PHOBOS-Deimos MMM # 19 Seizing the Reins of the Mars Bandwagon (excerpts); Telling Time on Phobos and Deimos ASTEROID TRANSPORTATION ISSUES MMM #197 Moon Base? Mars Base? Farther Out!; Challenges of Migration into the Outer Solar System NEAR EARTH ASTEROID THREATS MMM #86 Tapping Near Earth Asteroids Reality Check MMM #153 Automatic Near Earth Asteroid Collision Monitoring MMM #160 Killer Asteroids vs. Killer Debris (Kokh) MMM #161 Killer Asteroids vs. Killer Debris (Friesen)_ MMM #204 Killer Asteroids Editorial, By Peter Kokh MMM #214 Tagging Asteroid Apophis MMM #230 Augustine Commission Recommendations Flybys of Asteroids, Mars, may help the Moon COMETS MMM #35 “Wildcatting Comet Crude” p. 4 MMM #39 Oortfoam PRIVATE ENTERPRISE AMONG THE ASTEROIDS MMM # 6 "M" is for Missing volatiles; Methane, 'Mmonia, Minimization of cost of Importing Methane, Ammonia, etc. Mars-PHOBOS-Deimos MMM #35 Ports of Pardon; Wildcatting Comet Crude; Feudalism in the Asteroid Belt?; Tea & Sugar Supply ships MMM #58 “Xities” Serving Asteroid Miners; a Plethora of asteroid moonlets MMM #70 Asteroid Base Design Workshop at ISDC 1993: A Tale of 3 Asteroids: 1. Main Belt Service Center on Ceres MMM #71 Asteroid Workshop: 2. A Mining Outpost on Gaspra MMM #86 Tapping Near Earth Asteroids Reality Check MMM #239 Best Place to Mine Astroids on the Moon? MMM #265 The Stage is Set: Mining Asteroids - or Dormant Comets? Pros & Cons MMM #6 June 1987 M IS FOR MISSING VOLATILES: The Moon, as compared to our bountiful Earth, is very poor in elements with low boiling points, especially hydrogen (and thus water), nitrogen, and carbon (volatile in its usual form as carbon monoxide and/or carbon dioxide.) Other relatively volatile elements, like sodium and phosphorus, for examples, while present in usable and probably sufcient quantities, are less abundant than on Earth. This volatile depletion is one of the tests to which any theory of the Moon's origin must be put. More importantly, this depletion sets constraints on what is economically possible on the Moon. 1. Any Lunar civilization must import the bulk of the hydrogen (barring polar permashade ice fields*), carbon, and nitrogen it needs for biomass and life-support. 2. Such a civilization must seek to find inorganic substitutes for non-life related uses to which these elements are put on Earth: wood, paper, plastics, coatings, adhesives, oil, and grease, etc. [This was written eleven years before the exciting confirmation by the Lunar Prospector orbiting geochemical mapper that such polar ice reserves do, in fact, exist. But even at "billions of tons" this is a very limited resource which must be used wisely only for recyclable purposes. - Ed.] M is for METHANE & 'MMONIA: poetic license) The easiest way to ship the missing volatiles is to combine them as methane (CH4) and ammonia (NH3) which are easier to liquefy and handle than liquid hydrogen, especially. But any excess needed hydrogen* would have to be imported in the pure form. (Some hydrochloric acid and hydrofluoric acid might be shipped to co-import any needed chlorine -- to combine with Lunar sodium to make salt -- and fluorine. Both may be needed to endow recycling ore extraction processes.) To increase import efciency to 100%, containers can be used which are made exclusively of elements the Moon needs to import. Such usable "tare" could be of metal, like copper, or of easily reduced solid hydro-carbons like polypropylene, (-CH(CH3)CH2-)^n. *[Actually, of H, C, and N, it is Nitrogen which will probably be in shortest supply in comparison to the amounts we will need, solely as a bufer gas used with oxygen for breathable "air". Nitrogen can be conserved by reducing the interior air pressure to half sea- level normal, but with the same amount or partial pressure of oxygen, reduced nitrogen accounting for all of the reduced air pressure. If indeed this shortage does turn out to be critical, it will be a strong incentive to keep ceilings low, thus reducing the cubic volume of air needed per square foot of inhabited space. Goodbye visions of high-domed megastructures for the time being! - Editor.] M IS FOR MINIMIZATION OF THE COST OF IMPORTING METHANE, AMMONIA, HYDROGEN, ETC.
Recommended publications
  • ESO's VLT Sphere and DAMIT
    ESO’s VLT Sphere and DAMIT ESO’s VLT SPHERE (using adaptive optics) and Joseph Durech (DAMIT) have a program to observe asteroids and collect light curve data to develop rotating 3D models with respect to time. Up till now, due to the limitations of modelling software, only convex profiles were produced. The aim is to reconstruct reliable nonconvex models of about 40 asteroids. Below is a list of targets that will be observed by SPHERE, for which detailed nonconvex shapes will be constructed. Special request by Joseph Durech: “If some of these asteroids have in next let's say two years some favourable occultations, it would be nice to combine the occultation chords with AO and light curves to improve the models.” 2 Pallas, 7 Iris, 8 Flora, 10 Hygiea, 11 Parthenope, 13 Egeria, 15 Eunomia, 16 Psyche, 18 Melpomene, 19 Fortuna, 20 Massalia, 22 Kalliope, 24 Themis, 29 Amphitrite, 31 Euphrosyne, 40 Harmonia, 41 Daphne, 51 Nemausa, 52 Europa, 59 Elpis, 65 Cybele, 87 Sylvia, 88 Thisbe, 89 Julia, 96 Aegle, 105 Artemis, 128 Nemesis, 145 Adeona, 187 Lamberta, 211 Isolda, 324 Bamberga, 354 Eleonora, 451 Patientia, 476 Hedwig, 511 Davida, 532 Herculina, 596 Scheila, 704 Interamnia Occultation Event: Asteroid 10 Hygiea – Sun 26th Feb 16h37m UT The magnitude 11 asteroid 10 Hygiea is expected to occult the magnitude 12.5 star 2UCAC 21608371 on Sunday 26th Feb 16h37m UT (= Mon 3:37am). Magnitude drop of 0.24 will require video. DAMIT asteroid model of 10 Hygiea - Astronomy Institute of the Charles University: Josef Ďurech, Vojtěch Sidorin Hygiea is the fourth-largest asteroid (largest is Ceres ~ 945kms) in the Solar System by volume and mass, and it is located in the asteroid belt about 400 million kms away.
    [Show full text]
  • Solar System Science by Gaia Observations
    Solar System science by Gaia observations P. Tanga Observatoire de la Côte d’Azur Paolo Tanga Gaia and the Solar System… • Asteroids (~400.000 – most known) – Mainly Main Belt Asteroids (MBA) – Several NEOs – Other populations (trojans, Centaurs,..) • Comets – Primitive material from the outer Solar System • « Small » planetary satellites – « regular » – « irregular » (retrograde orbits) • Gaia will probably NOT collect observations of « large » bodies (>600 mas?) – Main Planets, large satellites – A few largest asteroids Paolo Tanga, Gaia Solar System Science – Pisa May 4-6 2011 The scanning law Rotation axis movement Scan path in 4 days Scan path 4 days Spin axis trajectory Spin axis 4 rotations/day 4 days 45° Sun trajectory, 4 months Sole Spin axis trajectory, 4 months Paolo Tanga, Gaia Solar System Science – Pisa May 4-6 2011 Observable region on the ecliptic unobservable ~ 60 detections/ 5 years for Main Belt asteroids ~ 1 SSO object in the FOV every second around the ecliptic Sun • Discovery space: – Low elongations (~45-60°) Gaia – Inner Earth Objects (~unknown) – Other NEOs unobservable Paolo Tanga, Gaia Solar System Science – Pisa May 4-6 2011 How many asteroids with Gaia? • Evolution of the number of entries H < Hlim margin for discovery H < 16 Nknown H <16 ~ 250 000 Probable total number Nnew H <16 ~ 150 000 Gaia detection limit Paolo Tanga, Gaia Solar System Science – Pisa May 4-6 2011 5 Gaia data for asteroids •Astrometric Field – Main source of photometric and astrometric data – Read-on window assigned on board around each
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • 1620 Geographos and 433 Eros: Shaped by Planetary Tides?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server 1620 Geographos and 433 Eros: Shaped by Planetary Tides? W. F. Bottke, Jr. Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853-6801 D. C. Richardson Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 P. Michel Osservatorio Astronomico di Torino, Strada Osservatorio 20, 10025 Pino Torinese (TO), Italy and S. G. Love Jet Propulsion Laboratory, California Institute of Technology, M/S 306-438, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 Received 23 September 1998; accepted 10 December 1998 –2– ABSTRACT Until recently, most asteroids were thought to be solid bodies whose shapes were determined largely by collisions with other asteroids (Davis et al., 1989). It now seems that many asteroids are little more than rubble piles, held together by self-gravity (Burns 1998); this means that their shapes may be strongly distorted by tides during close encounters with planets. Here we report on numerical simulations of encounters between a ellipsoid-shaped rubble-pile asteroid and the Earth. After an encounter, many of the simulated asteroids develop the same rotation rate and distinctive shape (i.e., highly elongated with a single convex side, tapered ends, and small protuberances swept back against the rotation direction) as 1620 Geographos. Since our numerical studies show that these events occur with some frequency, we suggest that Geographos may be a tidally distorted object. In addition, our work shows that 433 Eros, which will be visited by the NEAR spacecraft in 1999, is much like Geographos, which suggests that it too may have been molded by tides in the past.
    [Show full text]
  • The 4 Major Asteroids and Chiron Report For
    The 4 Major Asteroids and Chiron Report for Brad Roberts 10 January 1964 6:33 AM Winnipeg, Manitoba,Canada Calculated for: Standard time, Time Zone 6 hours West Latitude: 49 N 53 Longitude: 97 W 09 Positions of Planets at Birth: Sun 19 Cap 18 Asc. 20 Sag 35 Moon 1 Sag 21 MC 21 Lib 49 Mercury 6 Cap 24 2nd cusp 0 Aqu 56 Venus 21 Aqu 54 3rd cusp 17 Pis 07 Mars 27 Cap 52 5th cusp 15 Tau 45 Jupiter 11 Ari 42 6th cusp 4 Gem 07 Saturn 21 Aqu 25 Ceres 9 Sag 44 Uranus 9 Vir 47 Pallas 20 Sco 12 Neptune 17 Sco 47 Juno 23 Sco 36 Pluto 14 Vir 47 Vesta 4 Cap 54 True Node11 Can 47 Chiron 11 Pis 23 Aspects and orbs: Conjunction : 7 Deg 00 Min Trine : 5 Deg 00 Min Opposition : 6 Deg 00 Min Sextile : 3 Deg 00 Min Square : 4 Deg 00 Min Interpretations by astrologer Dave Campbell Report and Text Copyright By Cosmic Patterns Software, Inc. The contents of this report are protected by Copyright law. By purchasing this report you agree to comply with this Copyright. Libra Moon, Inc www.libramoonastrology.com www.zodiac-reports.com Chapter 1: Ceres Ceres in Sagittarius: You nurture people with your generosity cheerfulness and encouragement. Giving them the optimism and openness they need. You aim to inspire them and make them feel like they are it. Your honest disposition and behavior is also a gift for them to know your devotion to them. All of these things are exactly what you need in order to feel cared for.
    [Show full text]
  • Adaptive Optics Observations of Asteroid (216) Kleopatra
    A&A 394, 339–343 (2002) Astronomy DOI: 10.1051/0004-6361:20021094 & c ESO 2002 Astrophysics Research Note Adaptive optics observations of asteroid (216) Kleopatra D. Hestroffer1,F.Marchis2,, T. Fusco3, and J. Berthier1 1 IMCCE, UMR CNRS 8028, Paris Observatory, 77 Av. Denfert Rochereau, 75014 Paris, France 2 CFAO/University of California, Dept. of Astronomy, 601 Campbell Hall, Berkeley, CA 94720, USA 3 ONERA, DOTA-E, BP 72, 92322 Chˆatillon, France Received 22 March 2002 / Accepted 11 July 2002 Abstract. The large main-belt asteroid (216) Kleopatra has been for long suspected to be a binary object, mainly due to its large lightcurve amplitude. However, recent observations suggest that it is a single “bone-shaped” or bi-lobated body (Ostro et al. 2000; Tanga et al. 2001). We present results obtained from ground-based adaptive optics observations, and in agreement with the radar raw-observations, the images show two prominent lobes. Making use of the MISTRAL deconvolution technique, the restored images yield a well-separated binary object. Nevertheless, the spatial resolution of the 3.6 m ESO telescope is limited and a dumbbell-shaped body could yield similar features. Further simulations show that adaptive optics observations with an 8-meter class telescope analyzed with the powerful MISTRAL deconvolution technique could overcome this limitation. Key words. instrumentation: adaptive optics – minor planets, asteroids 1. Introduction provide additional constraints on collisional-evolution and binary-formation models. At the beginning of last century, by analyzing the asteroid Direct or indirect imaging of Kleopatra in the past showed (433) Eros, Andr´e made the hypothesis that asteroids could it to be a very elongated body but was not able to conclusively have satellites (Andr´e 1901).
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • February 14, 2015 7:00Pm at the Herrett Center for Arts & Science Colleagues, College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Saturday, February 14, 2015 7:00pm at the Herrett Center for Arts & Science Colleagues, College of Southern Idaho. Public Star Party Follows at the It’s that time of year when obstacles appear in the sky. In particular, this year is Centennial Obs. loaded with fog. It got in the way of letting us see the dance of the Jovian moons late last month, and it’s hindered our views of other unique shows. Still, members Club Officers reported finding enough of a clear sky to let us see Comet Lovejoy, and some great photos by members are popping up on the Facebook page. Robert Mayer, President This month, however, is a great opportunity to see the benefit of something [email protected] getting in the way. Our own Chris Anderson of the Herrett Center has been using 208-312-1203 the Centennial Observatory’s scope to do work on occultation’s, particularly with asteroids. This month’s MVAS meeting on Feb. 14th will give him the stage to Terry Wofford, Vice President show us just how this all works. [email protected] The following weekend may also be the time the weather allows us to resume 208-308-1821 MVAS-only star parties. Feb. 21 is a great window for a possible star party; we’ll announce the location if the weather permits. However, if we don’t get that Gary Leavitt, Secretary window, we’ll fall back on what has become a MVAS tradition: Planetarium night [email protected] at the Herrett Center.
    [Show full text]
  • The Hamburg Meteorite Fall: Fireball Trajectory, Orbit and Dynamics
    The Hamburg Meteorite Fall: Fireball trajectory, orbit and dynamics P.G. Brown1,2*, D. Vida3, D.E. Moser4, M. Granvik5,6, W.J. Koshak7, D. Chu8, J. Steckloff9,10, A. Licata11, S. Hariri12, J. Mason13, M. Mazur3, W. Cooke14, and Z. Krzeminski1 *Corresponding author email: [email protected] ORCID ID: https://orcid.org/0000-0001-6130-7039 1Department of Physics and Astronomy, University of Western Ontario, London, Ontario, N6A 3K7, Canada 2Centre for Planetary Science and Exploration, University of Western Ontario, London, Ontario, N6A 5B7, Canada 3Department of Earth Sciences, University of Western Ontario, London, Ontario, N6A 3K7, Canada ( 4Jacobs Space Exploration Group, EV44/Meteoroid Environment Office, NASA Marshall Space Flight Center, Huntsville, AL 35812 USA 5Department of Physics, P.O. Box 64, 00014 University of Helsinki, Finland 6 Division of Space Technology, Luleå University of Technology, Kiruna, Box 848, S-98128, Sweden 7NASA Marshall Space Flight Center, ST11, Robert Cramer Research Hall, 320 Sparkman Drive, Huntsville, AL 35805, USA 8Chesapeake Aerospace LLC, Grasonville, MD 21638, USA 9Planetary Science Institute, Tucson, AZ, USA 10Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, USA 11Farmington Community Stargazers, Farmington Hills, MI, USA 12Department of Physics and Astronomy, Eastern Michigan University, Ypsilanti, MI, USA 13Orchard Ridge Campus, Oakland Community College, Farmington Hills, MI, USA 14NASA Meteoroid Environment Office, Marshall Space Flight Center, Huntsville, Alabama 35812, USA Accepted to Meteoritics and Planetary Science, June 19, 2019 85 pages, 4 tables, 15 figures, 1 appendix. Original submission September, 2018. 1 Abstract The Hamburg (H4) meteorite fell on January 17, 2018 at 01:08 UT approximately 10km North of Ann Arbor, Michigan.
    [Show full text]
  • Observations from Orbiting Platforms 219
    Dotto et al.: Observations from Orbiting Platforms 219 Observations from Orbiting Platforms E. Dotto Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino M. A. Barucci Observatoire de Paris T. G. Müller Max-Planck-Institut für Extraterrestrische Physik and ISO Data Centre A. D. Storrs Towson University P. Tanga Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino and Observatoire de Nice Orbiting platforms provide the opportunity to observe asteroids without limitation by Earth’s atmosphere. Several Earth-orbiting observatories have been successfully operated in the last decade, obtaining unique results on asteroid physical properties. These include the high-resolu- tion mapping of the surface of 4 Vesta and the first spectra of asteroids in the far-infrared wave- length range. In the near future other space platforms and orbiting observatories are planned. Some of them are particularly promising for asteroid science and should considerably improve our knowledge of the dynamical and physical properties of asteroids. 1. INTRODUCTION 1800 asteroids. The results have been widely presented and discussed in the IRAS Minor Planet Survey (Tedesco et al., In the last few decades the use of space platforms has 1992) and the Supplemental IRAS Minor Planet Survey opened up new frontiers in the study of physical properties (Tedesco et al., 2002). This survey has been very important of asteroids by overcoming the limits imposed by Earth’s in the new assessment of the asteroid population: The aster- atmosphere and taking advantage of the use of new tech- oid taxonomy by Barucci et al. (1987), its recent extension nologies. (Fulchignoni et al., 2000), and an extended study of the size Earth-orbiting satellites have the advantage of observing distribution of main-belt asteroids (Cellino et al., 1991) are out of the terrestrial atmosphere; this allows them to be in just a few examples of the impact factor of this survey.
    [Show full text]
  • Deliverable H2020 COMPET-05-2015 Project "Small
    Deliverable H2020 COMPET-05-2015 project "Small Bodies: Near And Far (SBNAF)" Topic: COMPET-05-2015 - Scientific exploitation of astrophysics, comets, and planetary data Project Title: Small Bodies Near and Far (SBNAF) Proposal No: 687378 - SBNAF - RIA Duration: Apr 1, 2016 - Mar 31, 2019 WP WP5 Del.No D5.3 Title Occultation candidates for 2018 Lead Beneficiary CSIC Nature Report Dissemination Level Public Est. Del. Date 20 Dec 2017 Version 1.0 Date 20 Dec 2017 Lead Author Pablo Santos-Sanz, Instituto de Astrofísica de Andalucía-CSIC, [email protected] WP5 Ground based observations Objectives: The main objective of WP5 is to execute observations from ground- based telescopes with the goal to acquire more data on the SBNAF targets. One of the scheduled observations is the occultation of a star by a Main Belt Asteroid (MBA), a Centaur or a Trans-Neptunian Object (TNO). For this particular stellar occultation technique the main tasks are: i) to predict the stellar occultation, ii) to coordinate the observations, and iii) to produce results on physical parameters of the MBAs, Centaurs and TNOs (i.e. sizes, shapes, albedos, densities, etc). Description of deliverable D5.3 The potential occultation candidates for 2018 are presented. This deliverable follows deliverables D5.1 and D5.2, and is related to milestones MS5 “Occultation predictions with 10 mas accuracy”, and MS12 “25 successful TNO occultation measurements”. In this document, we first give a short state of the art of the stellar occultation technique (Section 1), then we discuss about the expected goal to reach ~10 mas accuracy in the prediction of stellar occultations by TNOs (Section 2).
    [Show full text]
  • ~XECKDING PAGE BLANK WT FIL,,Q
    1,. ,-- ,-- ~XECKDING PAGE BLANK WT FIL,,q DYNAMICAL EVIDENCE REGARDING THE RELATIONSHIP BETWEEN ASTEROIDS AND METEORITES GEORGE W. WETHERILL Department of Temcltricrl kgnetism ~amregie~mtittition of Washington Washington, D. C. 20025 Meteorites are fragments of small solar system bodies (comets, asteroids and Apollo objects). Therefore they may be expected to provide valuable information regarding these bodies. How- ever, the identification of particular classes of meteorites with particular small bodies or classes of small bodies is at present uncertain. It is very unlikely that any significant quantity of meteoritic material is obtained from typical ac- tive comets. Relatively we1 1-studied dynamical mechanisms exist for transferring material into the vicinity of the Earth from the inner edge of the asteroid belt on an 210~-~year time scale. It seems likely that most iron meteorites are obtained in this way, and a significant yield of complementary differec- tiated meteoritic silicate material may be expected to accom- pany these differentiated iron meteorites. Insofar as data exist, photometric measurements support an association between Apollo objects and chondri tic meteorites. Because Apol lo ob- jects are in orbits which come close to the Earth, and also must be fragmented as they traverse the asteroid belt near aphel ion, there also must be a component of the meteorite flux derived from Apollo objects. Dynamical arguments favor the hypothesis that most Apollo objects are devolatilized comet resiaues. However, plausible dynamical , petrographic, and cosmogonical reasons are known which argue against the simple conclusion of this syllogism, uiz., that chondri tes are of cometary origin. Suggestions are given for future theoretical , observational, experimental investigations directed toward improving our understanding of this puzzling situation.
    [Show full text]