US2415792.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

US2415792.Pdf Patented Feb. 11, 1947 2,415,792 UNITED STATES PATENT OFFICE 2,415,792 PSEPARATION OF POTASSUV FEERRCYANDE Rogers Gravel, Linden, N.J., assignor to Ameri can Cyanamid Company, New York, N. Y., a. corporation of Maine Application September 19, 1945, Serial No. 6,262 2 Clains. (CI. 23-2) The present invention relates to the prepara 2 tion of alkali metal ferri and ferrocyanides and details as hereinafter more fully described and specifically to K2Na25e(CN)6, KaNa,Fe(CN)6 and shown in the drawing in which the single figure Ese (CN)6 or any of then. is a flow sheet showing the preferred method The principal object of the invention is the of carrying out the invention. preparation of one or more of the above Sub 5 Referring now to the flow sheet, crude calcium stances from a cheap source of raw materials cyanide is placed in a heated extraction vessel as a complete cyclic process without undue waste to which water or wash liquor from a previous and without relying upon any other or related batch is added, in either case with the addi process to take values which would otherwise tion of an aqueous solution of ferrous sulfate be lost. 0 (FeSO4.7H2O), a 30 to 40% solution being pre The alkali metal ferri and ferrocyanides are ferred.place: As a result, the following reaction takes of particular value in the industry in that they are used extensively as photographic reagents and as intermediates in the production of iron blue complexes for pigments or the like. Considerable heat is developed as the reaction These complex iron cyanides may be readily progresses So that Only a small quantity of steam prepared from a cyanogen compound Such as is required to bring the temperature of the ex crude calcium cyanide and ferrous sulfate but traction menstruum to about 200 F. Which is due to the chemical afinity of the Fe(CN)6 radi 20 desired in order to bring about a complete and cal for the calcium, difficulty has heretofore been adequate extraction. The resulting slurry is encountered in forming the alkali metal salt. It filtered on a continuous filter of the Oliver type has been discovered that by judicious choice of or the like and the calcium sulfate sludge washed the intermediate alkali or alkaline earth metal with water at about 120° F. The Wash Water ferrocyanide, paying particular attention to its 25 from the cake may be returned to the extraction ease of formation and insolubility in the men Wessel for an additional cycle. Where desired stuum in which it is formed, a perfect and op and in order to improve the speed of filtration, erative process resultS. a small amount of calcium carbonate sludge, ob For instance, calciurn ferrocyanide may readily tained later in the process, may be added to the be formed by reacting a Solution of calcium 30 slurry before filtration although this is not cyanide with ferrous sulfate. One of the cal ?eCeSSaty. cium atoms only may be readily replaced by po This calcium ferrocyanide liquor contains some tassium through reaction with potassium chlo undesirable sulfate, usually about 0.3% calcu ride, for instance. The other calcium aton Can lated as potassium Sulfate. Since the sulfate not be replaced as Such with potassium even content of such liquors should be reduced to a though large quantities of potassium chloride are minimum to produce good final products, the added at this stage. On the contrary, however, liquors may be passed to a treating tank, sufi this remaining calciun aton may be readily re cient barium chloride added to precipitate the placed With sodium as by reaction with soda, ash Sulfate as barium Sulfate, and the sludge removed to form KNa2Fe(CN)6. This material may as by filtering. either be recovered as such in solid form or one The thus purified calcium ferrocyanide is then of its sodium atons may be then knocked Out transferred to a precipitation tank, heated to With chlorine to for in KgNa:Fe(CN)6 or this latter boiling with a steam coil and treated with an material may have its single Sodium aton re excess of solid potassium chloride with agita placed with potassium through reaction with tion. The calcium ferrocyanide liquor added to potassium chloride to fornia K3Fe(CN)6. While the precipitation tank contains about 6% of at first, blush this would appear to be a round calcium ferrocyanide and from 6 to 7% sodium about method of arriving at an end product, yet chloride, the latter having been present as an by so doing advantage is taken of the ability iiipurity in the crude calcium cyanide. of one material to replace another in a ferro At this stage, there may also be added the or ferricyanide while at the same time choosing mother liquor containing substantial quantities a material to be formed at that stage, which is of K3 Fe(CN)6 from a later part of the process more insoluble in the menstruum than the by and for the purpose of recovering values therein. products or impurities present there. Under the circumstances, approximately 20% of the ferrocyanide present at this stage may con The invention further contemplates additional 55 sist of ferrocyanide which has thus been recycled. 2,415,792 4. 3. to reoxidize any ferricyanide which may have The quantity of KCl added represents an excess been reduced to ferrocyanide in the evaporation of about 30% above the theoretical required for proceSS. The mother liquor contains about 12% the calcium ferrocyanide liquor used, based on of total chloride calculated as chlorine. The the following reaction: evaporated liquor, containing any crystals which have separated during the evaporation, is then The calcium ferrocyanide liquor contains re cooled under vacuum to about 60° F. and the re ducing substances which ordinarily will reduce Sulting slurry filtered so as to collect the crude most of the ferricyanide to the ferro state. Any crystals of KaNa,Fe(CN)6. They may be further ferricyanide not so reduced may be converted O purified by recrystallization from water if desired. by adding amounts of sodium hydrosulfide solu The crude crystals contain only about 4% water tion as required. The bulk of the ferrocyanide and Small amounts of chlorides and ferrocyanides is precipitated as the sparingly soluble calcium as impurities. When dried, the product contains potassium ferrocyanide and may be recovered by 102% to 103% of ferricyanide calculated as potas filtration, the cake being washed with a small 5 sium ferricyanide equivalent to 97 to 98% cal amount of Water. The washings and the filtrate culated as the double salt, with 0.3% to 0.6% containing the calcium chloride, the excess po chloride calculated as chlorine, and 0.3% to 0.6% tassium chloride and the Sodium chloride de ferrocyanide calculated as as Fe(CN)6. The rived from the crude cyanide and recycled mother liquor from the formation of crude and purified liquor, are discarded. 20 crystals of KaNa,Fe(CN)6 may be recycled, as pre The cake of calcium potassium ferrocyanide is viously mentioned, to the solution of calcium fer then transferred to a heated mixer equipped with rocyanide for recovery of the values therein. an agitator and silurried with weak liquor Ob Where it is not desired to produce crystals from tained from a previous mixer batch. Soda ash the K2NaFe(CN)6 liquor but on the contrary to Solution in slight excess as determined by test, is convert it to KFe(CN)6, the crude KNaFe(CN)6 added according to the following reaction: liquor Containing about 31% equivalent of K3Fe(CN)6 may be treated with 0.5 to 0.6 lb. of solid KCl to each pound of equivalent KFe(CN)6 present according to the following reaction: and the whole mass heated to boiling by means 30 of a steam coil or the like. The resulting slurry is filtered to recover the precipitated calcium car bonate which is washed with water sufficient to It may then be evaporated until about 6% of the yield the volume of weak liquor necessary for pre weight has been removed as water. The resulting paring the next batch. About 15% of the ferro Solution, including any Crystals which have sepa cyanide present in any batch at this stage con rated during the evaporation, is then Cooled to sists of liquor recirculated in this way. about 60° F. and the crystals of K3Fe(CN)6 sepa The mother liquor from the filtrate contains rated as by filtration. The product consists es K2Na2Fe(CN)6, having a content of about 31% sentially of K3Fe(CN)6 with about 4% of water Calculated as K3Fe(CN)6 and may be used as such 40 and small amounts of chlorides and ferrocyanides in the arts, or evaporated and the crystals re aS impurities. Actually it contains from 100 to COWered for use. 1.01% of ferricyanide calculated as K3Fe(CN)6, In the event that it is not desired to recover with 0.3 to 0.6% chloride calculated as chlorine, K2 Na2Fe(CN)6, this mother liquor may then be and 0.3 to 0.6% ferrocyanide calculated as transferred to a chlorinating tank, cooled to about 5 EFe(CN)6. Where desired, the crystals may be i00° F. and oxidized by passing chlorine therein further purified by recrystallization from water. to at such a rate that the temperature does not From the above it will be apparent that a self exceed 120° F. In the chlorinating tank, the foll contained process has been designed for the lowing reaction occurs: preparation of K2Na2Fe(CN)6, K2 NaFe(CN)6 and 50 K3Fe(CN)6 or any of them, recycling values into 4.
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Problem 11 the Prussian Blue the Prussian Blue Is a Component Of
    www.pianetachimica.it Problem 11 The Prussian blue The Prussian blue is a component of black and bluish inks for printing. The precipitate formed upon the dropwise addition of potassium ferrocyanide to the ferric chloride solution contains 34.9% (mass) of iron. 1. Give a formulae of the precipitate and write the chemical equation. 2. Using the crystal field theory show the d-orbital splitting pattern for all Fe atoms in the Prussian blue. 3. What causes the intense color of the pigment? 4. What product initially forms from potassium ferrocyanide and ferric chloride solution in the inverse- mixing-order route? Give the equation. Solution. 1. Let's write the chemical equation : 4 FeCl3 + 3 K4[Fe(CN)6] ® Fe4[Fe(CN)6]3 + 12 KCl where Fe4[Fe(CN)6]3 is the Prussian blue or Berlin blue. Problem is that adding drops of ferrocyanide to ferric chloride it could appear the precipitate of the form Fe4[Fe(CN)6]3 . aH2O (a = 14 up to 16) or even Fe4[Fe(CN)6-xClx]3 .a H2O. In the first case molecular mass is 859.23 +18a and contains 390.95 g Fe. So, a = (39095 - 859.23x34.9)/(18x34.9) = 14.5. Not acceptable because a is not integer. For the second case we have molar mass 859.23 +35.5x - 26x + 18a containing 390.95 g Fe. So, we have 39095- 859.23x34.9 = 34.9 x 9 x (X +2a) where x +2a = 29. Convenient are x =1 and a =14 or x = 3 and a = 13.
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Preparation of 15N-Labeled Potassium Ferrocyanide for Tracer Studies
    Environment and Pollution; Vol. 6, No. 2; 2017 ISSN 1927-0909 E-ISSN 1927-0917 Published by Canadian Center of Science and Education Preparation of 15N-labeled Potassium Ferrocyanide for Tracer Studies Tsvetelina Dimitrova1, Frank Repmann1 & Dirk Freese1 1 Chair of Soil Protection and Recultivation, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Wachsmann-Allee 6, D-03046 Cottbus, Germany Correspondence: Tsvetelina Dimitrova, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Wachsmann-Allee 6, D-03046 Cottbus, Germany. Tel: 49-355-69-4337. E-mail: [email protected] Received: August 4, 2017 Accepted: August 22, 2017 Online Published: September 29, 2017 doi:10.5539/ep.v6n2p41 URL: https://doi.org/10.5539/ep.v6n2p41 Abstract Isotopic labels are widely used to trace the fate and cycling of common environmental contaminants. Many of the labeled materials are not available commercially and, depending on the complexity of the substance, the label and the enrichment level, custom syntheses are costly. A simple, straightforward, and cost effective method for 15 15 the preparation of a highly enriched, N-labeled potassium ferrocyanide (K4[Fe(C N)6]*3H2O) has been developed to meet the requirements of related tracer experiments and minimize their costs. In this case, the 15N label was used to quantify iron cyanide detoxification (biodegradation and/or transformation) within soil-plant-systems. 15N-labeled potassium cyanide (KC15N) and a ferrous iron salt have been used for the synthesis. Extensive qualitative and quantitative analyses showed a product, entirely identical in its functional 15 and elemental components to commercial non-labeled K4[Fe(CN)6]*3H2O and in its N enrichment to the KC15N used for its synthesis.
    [Show full text]
  • Toxicological Profile for Cyanide
    CYANIDE 141 5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 5.1 PRODUCTION The demand for hydrogen cyanide in the United States during 2000 was 1.615 billion pounds, up slightly from 1.605 billion pounds in 1999 (CMR 2001). Production of hydrogen cyanide in 2003 was 2.019 billion pounds in the United States (FAS 2005). The demand for hydrogen cyanide was projected to be 1.838 billion pounds in 2004 (CMR 2001; NYSDOH 2005). Major producers of hydrogen cyanide are Adisseo USA, Inc. (Institute, West Virginia); Cyanco Co. (Winnemucca, Nevada); Cytec Industries (Waggoman, Louisiana); Degussa Corp. (Theodora, Alabama); The Dow Chemical Company (Freeport, Texas); E.I. du Pont de Neumours and Company (Memphis, Tennessee; Beaumont, Texas); Innovene (Green Lake, Texas and Lima, Ohio); Invista, Inc. (Orange, Texas and Victoria, Texas); Rhom and Haas Texas Inc. (Deer Park, Texas); Solutia, Inc. (Alvin, Texas); Sterling Chemicals, Inc. (Texas City, Texas); and Syngenta Crop Protection (St. Garbiel, Louisiana) (SRI 2005). The combined annual production capacity of these plants is approximately 2.036 billion pounds (SRI 2005). As of February 2005, the following companies produced other cyanide compounds in the United States (SRI 2005): ammonium Crompton, Taft, Louisiana; and Mallinckrodt, Inc., St. Louis, Missouri thiocyanate: cyanogen: Matheson Gas Products, Inc., Gloucester, Massachusetts potassium cyanide: DuPont Chemical Company, Memphis, Tennessee; and The Dow Chemical Company, Nashua, New Hampshire potassium silver Engelhard Corporation, Union, New Jersey; and Metalor Technologies USA, North cyanide: Attleboro, Massachusetts Facilities in the United States producing sodium cyanide and their annual capacity (in millions of pounds) in 2005 include: Cyanco Co., Winnemucca, Nevada (86); and E.I.
    [Show full text]
  • Acutely / Extremely Hazardous Waste List
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • MSDS Material Safety Data Sheet
    For RICCA, SpectroPure, Red Bird, and Solutions Plus Brands Emergency Contact(24 hr) -- CHEMTREC® Domestic: 800-424-9300 International: 703-527-3887 ZOBELL'S SOLUTION, APHA ORP Solution, and other ORP Standards MSDS Material Safety Data Sheet Section 1: Chemical Product and Company Identification Catalog Number: 5464.5, 9880, OX-905, PX-918, R5464510, S0932A, SZ117300 Product Identity: ZOBELL'S SOLUTION, APHA ORP Solution, and other ORP Standards Manufacturer's Name: Emergency Contact(24 hr) -- CHEMTREC® RICCA CHEMICAL COMPANY LLC Domestic: 800-424-9300 International: 703-527-3887 CAGE Code: 4TCW6, 0V553, 4XZQ2 Address: Telephone Number For Information: 448 West Fork Dr 817-461-5601 Arlington, TX 76012 Date Prepared: 11/9/98 Revision: 9 Last Revised: 01/24/2014 Date Printed: 03/25/2015 1:19:09 pm Section 2. Composition/Information on Ingredients Component CAS Registry # Concentration ACGIH TLV OSHA PEL < 0.2% (w/v) Not Available Not Available Potassium Ferricyanide 13746-66-2 Not Available Not Available < 0.5% (w/v) Not Available Not Available Potassium Ferrocyanide Trihydrate 14459-95-1 1 (as Fe) mg/m3 Not Available < 1% (w/v) Not Available Not Available Potassium Chloride 7447-40-7 Not Available Not Available Balance Not Available Not Available Water, Deionized 7732-18-5 Not Available Not Available Section 3: Hazard Identification Emergency Overview: Does not present any significant health hazards. Wash areas of contact with water. Target Organs: eyes, skin Eye Contact: May cause slight irritation. Inhalation: Not likely to be hazardous by inhalation. Skin Contact: May cause slight irritation. Ingestion: May cause nausea, vomiting, diarrhea and cramps.
    [Show full text]
  • Cyanide and Cyanide Complexes in the Gold
    CYANIDE AND CYANIDE COMPLEXES IN THE GOLD- MINE POLLUTED LAND IN THE EAST AND CENTRAL RAND GOLDFIELDS, SOUTH AFRICA. Elysee Bakatula Nsimba (0700692R) A dissertation submitted to the faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2009 CHAPTER ONE ─ INTRODUCTION 1.1 The history of mining on the Witwatersrand Basin The metropolis of Johannesburg, South Africa’s largest city and financial centre, owes its origin to the gold-bearing rocks of the Witwatersrand Basin (Figure 1.1). The basin-roughly oval in shape, approximately 350 km north east to south west direction and stretching over 150 km across-host seven major goldfields. Figure 1.1 The Witwatersrand basin (Viljoen and Reimold, 1999) 1 The gold-bearing conglomerate mined in the Witwatersrand Basin has a typical mineralogical composition of (Feather and Koen, 1975): • Quartz (70-90%); • Phyllosilicates (10-30%), consisting mainly of sericite, KAl 2(AlSi 3O10 )(OH) 2; • Accessory and minor minerals (1-5%). Some 70 different ore minerals have been identified in the conglomerates, the most abundant of which, after pyrite, are uranite (UO 2), brannerite (UTi 2O6), arsenopyrite (FeAsS), cobaltite (CoAsS), galena (PbS), pyrrhotite (FeS), gerdofite (NiAsS) and chromite (FeCr 2O4). Amalgamation Amalgamation was the principal gold recovery method used in South African gold mines at the start of mining in 1886. Crude amalgamation is still practiced by some artisanal gold miners in South Africa, mainly in the Mpumalanga Province. Unfortunately the method is in widespread use in some African countries (Sudan, Tanzania, D.R.
    [Show full text]
  • No, Potassium Ferrocyanide in Some Salt Brands Is Not at Toxic Levels
    Fact check: No, potassium ferrocyanide in some salt brands is not at toxic levels Shubashree Desikan JULY 02, 2019 Citing a report from U.S.-based West American Analytical Laboratories, Shiv Shankar Gupta, chairman of Godhum Grains and Food Products, accused some salt manufacturers in India of selling food-grade salt that contained high levels of potassium ferrocyanide. This caused a panic, which was aggravated by widespread sharing of the news item on social media. Indeed, potassium ferrocyanide is being used in salt to give it anti-caking properties. But the answer to whether it is toxic is no! Firstly, while potassium cyanide is a toxic substance and releases the cyanide anion when consumed by a person, potassium ferrocyanide is not. In potassium ferrocyanide, the cyanide anion is strongly bonded to ferrous ion and hence does not get hydrolysed. An image widely shared in social media. Secondly, there is the factor known as the LD50 value. This is expanded as “Lethal Dose 50%”. LD50 is the amount of any chemical that can cause death in 50% of the group of animals that it enters by consumption or absorption through the skin. According to inorganic chemist Dr. Sayam Sengupta of IISER Kolkata, the LD50 value for common salt — sodium chloride — for rats is greater than 3 gram per kilogram body weight of the animal. He points out that for potassium Ferrocyanide, LD 50 value is 3.6 gram per kilogram weight of the animal, when taken orally. As this indicates, the LD50 value of potassium ferrocyanide is almost the same as common salt.
    [Show full text]
  • The Light Triggered Dissolution of Gold Wires Using Potassium Ferrocyanide T Solutions Enables Cumulative Illumination Sensing ⁎ Weida D
    Sensors & Actuators: B. Chemical 282 (2019) 52–59 Contents lists available at ScienceDirect Sensors and Actuators B: Chemical journal homepage: www.elsevier.com/locate/snb The light triggered dissolution of gold wires using potassium ferrocyanide T solutions enables cumulative illumination sensing ⁎ Weida D. Chena, Seung-Kyun Kangb, Wendelin J. Starka, John A. Rogersc,d,e, Robert N. Grassa, a Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland b Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 334141, Republic of Korea c Departments of Materials Science and Engineering, Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA d Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA e Simpson Querrey Institute for Nano/Biotechnology, Northwestern University, Evanston, IL 60208, USA ARTICLE INFO ABSTRACT Keywords: Electronic systems with on-demand dissolution or destruction capabilities offer unusual opportunities in hard- Photochemistry ware-oriented security devices, advanced military spying and controlled biological treatment. Here, the dis- Cyanide solution chemistry of gold, generally known as inert metal, in potassium ferricyanide and potassium ferrocya- Sensor nide solutions has been investigated upon light exposure. While a pure aqueous solution of potassium Conductors ferricyanide–K3[Fe(CN)6] does not dissolve gold, an aqueous solution of potassium ferrocyanide–K4[Fe(CN)6] Diffusion limitation irradiated with ambient light is able to completely dissolve a gold electrode within several minutes. Photo Devices activation and dissolution kinetics were assessed at different initial pH values, light irradiation intensities and ferrocyanide concentrations.
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]
  • Potassium Ferrocyanide Wine Treatment: a Controversial, Yet Necessary Operation
    Scien. Tech. Bull-Chem. Food Sci. Eng., Vol. 14(XV), 2017, 4-8 POTASSIUM FERROCYANIDE WINE TREATMENT: A CONTROVERSIAL, YET NECESSARY OPERATION Ionel POPESCU-MITROI,* Dana RADU Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University, Romania, 2 Elena Dragoi St., Arad 310330, Romania Corresponding author email: [email protected] Abstract: This paper presents the method of iron removal from wine by using a potassium ferrocyanide treatment, a method implemented in Romania by oenologist Ştefan Teodorescu, which became official in 1973. Potassium ferrocyanide treatment is a controversial operation that poses safety and environmental protection problems, but is absolutely necessary for the efficient removal of iron from wines rich in this cation. Without iron removal, wines with over 10 mg/l of iron become susceptible to fearsome chemical defects, such as turning whiter, darker or bluisher. The paper presents a case study for the white wine Fetească Regală, obtained in the Recaş vineyard, harvested in 2016, in order to establish the theoretical and practical doses of potassium ferrocyanide based on microprobes, to remove the iron up to the safety threshold (4 mg Fe total/l of wine). The conclusions of the paper include some “good practices” for the success of the treatment and the prevention of toxicity problems. Keywords: potassium ferrocyanide, wine, microprobes, iron removal. INTRODUCTION and bluisher in color, which occurs both in By mineral nutrition, the wine accrues small white and red wines (Gheorghiţă et al., 2002). amounts of iron in grapes: 2-3 mg/kg. In In order to prevent the occurrence of these addition to the mineral substances derived from chemical defects and for a better stabilization grapes, wine is enriched with significant of the wine, it is necessary to remove the iron amounts of exogenous mineral substances from the wine.
    [Show full text]