Mouse Nlgn3 Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Nlgn3 Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Nlgn3 Knockout Project (CRISPR/Cas9) Objective: To create a Nlgn3 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Nlgn3 gene (NCBI Reference Sequence: NM_172932 ; Ensembl: ENSMUSG00000031302 ) is located on Mouse chromosome X. 7 exons are identified, with the ATG start codon in exon 2 and the TAG stop codon in exon 7 (Transcript: ENSMUST00000065858). Exon 2~4 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygous null mice show impaired context and cued conditioning, hyperactivity, altered social behavior, less vocalization, smaller brains, and impaired olfaction. Males carrying a knock-in allele show impaired social interaction, and enhanced spatial learning and inhibitory synaptic transmission. Exon 2 starts from the coding region. Exon 2~4 covers 26.59% of the coding region. The size of effective KO region: ~7122 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 7 Legends Exon of mouse Nlgn3 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of Exon 4 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 9 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(18.6% 372) | C(26.4% 528) | T(28.95% 579) | G(26.05% 521) Note: The 2000 bp section upstream of Exon 2 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(25.9% 518) | C(27.8% 556) | T(29.65% 593) | G(16.65% 333) Note: The 2000 bp section downstream of Exon 4 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 9 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chrX + 101299985 101301984 2000 browser details YourSeq 69 475 565 2000 92.9% chr14 - 19964611 19964958 348 browser details YourSeq 68 475 562 2000 94.9% chr1 + 35922733 35922869 137 browser details YourSeq 65 479 582 2000 78.0% chr8 + 99770124 99770204 81 browser details YourSeq 65 479 560 2000 92.2% chr14 + 64115905 64116029 125 browser details YourSeq 64 478 560 2000 93.4% chrX - 115071106 115071218 113 browser details YourSeq 64 479 562 2000 86.9% chr14 - 115207852 115207932 81 browser details YourSeq 64 475 562 2000 94.4% chr12 + 34609233 34609320 88 browser details YourSeq 62 520 592 2000 93.2% chr4 + 140494136 140494210 75 browser details YourSeq 60 479 562 2000 87.0% chr10 + 57465640 57465718 79 browser details YourSeq 59 479 560 2000 86.6% chrY - 80815975 80816057 83 browser details YourSeq 59 479 560 2000 86.6% chrY - 80015645 80015727 83 browser details YourSeq 59 479 560 2000 86.6% chrY - 65494325 65494407 83 browser details YourSeq 59 479 560 2000 86.6% chrY - 52896665 52896747 83 browser details YourSeq 57 479 560 2000 87.9% chrY + 36320169 36320257 89 browser details YourSeq 56 478 565 2000 80.6% chr12 - 27057131 27057209 79 browser details YourSeq 56 486 1007 2000 66.7% chr1 + 92700284 92700532 249 browser details YourSeq 55 480 1004 2000 65.1% chr17 - 10481083 10481154 72 browser details YourSeq 54 479 558 2000 93.3% chrY - 78316769 78316847 79 browser details YourSeq 53 490 573 2000 88.3% chr11 + 45582739 45582844 106 Note: The 2000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chrX + 101308908 101310907 2000 browser details YourSeq 57 564 1173 2000 64.2% chr15 - 78071037 78071251 215 browser details YourSeq 55 1903 1984 2000 81.1% chr5 - 137355044 137355123 80 browser details YourSeq 54 862 1209 2000 69.4% chr1 - 89257573 89257747 175 browser details YourSeq 53 1790 1983 2000 82.7% chr12 - 76267965 76268157 193 browser details YourSeq 49 1918 1984 2000 86.6% chr18 - 7878714 7878780 67 browser details YourSeq 46 1912 1985 2000 81.1% chr12 - 100244024 100244097 74 browser details YourSeq 46 1919 1986 2000 83.9% chr1 - 138644324 138644391 68 browser details YourSeq 45 1921 1984 2000 90.0% chr8 - 72216852 72216914 63 browser details YourSeq 43 1453 1943 2000 80.0% chr11 - 119313519 119314001 483 browser details YourSeq 43 1919 1985 2000 82.1% chr12 + 76720201 76720267 67 browser details YourSeq 42 1912 1979 2000 80.9% chr13 - 44457283 44457350 68 browser details YourSeq 42 1921 1986 2000 84.0% chr1 + 136567081 136567145 65 browser details YourSeq 41 1921 1983 2000 82.6% chr10 - 42144554 42144616 63 browser details YourSeq 40 1912 1981 2000 78.6% chr1 - 104201862 104201931 70 browser details YourSeq 40 1921 1986 2000 80.4% chr4 + 41281268 41281333 66 browser details YourSeq 40 1921 1982 2000 82.3% chr1 + 21964761 21964822 62 browser details YourSeq 39 1921 1984 2000 81.0% chr7 + 101654668 101654733 66 browser details YourSeq 38 1921 1980 2000 81.7% chr12 + 24268236 24268295 60 browser details YourSeq 37 1921 1965 2000 91.2% chr15 - 31398540 31398584 45 Note: The 2000 bp section downstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. Page 5 of 9 https://www.alphaknockout.com Gene and protein information: Nlgn3 neuroligin 3 [ Mus musculus (house mouse) ] Gene ID: 245537, updated on 17-Sep-2019 Gene summary Official Symbol Nlgn3 provided by MGI Official Full Name neuroligin 3 provided by MGI Primary source MGI:MGI:2444609 See related Ensembl:ENSMUSG00000031302 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as NL3; HNL3; NLG3; A230085M13Rik Expression Biased expression in whole brain E14.5 (RPKM 20.3), CNS E18 (RPKM 19.2) and 11 other tissues See more Orthologs human all Genomic context Location: X; X D See Nlgn3 in Genome Data Viewer Exon count: 7 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) X NC_000086.7 (101299179..101321350) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) X NC_000086.6 (98494520..98516689) Chromosome X - NC_000086.7 Page 6 of 9 https://www.alphaknockout.com Transcript information: This gene has 6 transcripts Gene: Nlgn3 ENSMUSG00000031302 Description neuroligin 3 [Source:MGI Symbol;Acc:MGI:2444609] Gene Synonyms A230085M13Rik, HNL3, NL3, NLG3 Location Chromosome X: 101,299,168-101,325,963 forward strand. GRCm38:CM001013.2 About this gene This gene has 6 transcripts (splice variants), 233 orthologues, 25 paralogues, is a member of 1 Ensembl protein family and is associated with 35 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Nlgn3-201 ENSMUST00000065858.2 8465 825aa ENSMUSP00000066304.2 Protein coding CCDS30313 Q8BYM5 TSL:1 GENCODE basic APPRIS P2 Nlgn3-206 ENSMUST00000151528.7 8541 845aa ENSMUSP00000123283.1 Protein coding - A2AGI2 TSL:5 GENCODE basic APPRIS ALT1 Nlgn3-202 ENSMUST00000118111.7 8004 711aa ENSMUSP00000113863.1 Protein coding - A2AGI3 TSL:5 GENCODE basic Nlgn3-203 ENSMUST00000130555.7 1852 510aa ENSMUSP00000122213.1 Protein coding - A2AGI0 CDS 3' incomplete TSL:5 Nlgn3-205 ENSMUST00000147443.1 747 No protein - lncRNA - - TSL:5 Nlgn3-204 ENSMUST00000144860.1 636 No protein - lncRNA - - TSL:2 Page 7 of 9 https://www.alphaknockout.com 46.80 kb Forward strand 101.29Mb 101.30Mb 101.31Mb 101.32Mb 101.33Mb Genes (Comprehensive set... Med12-204 >protein coding Nlgn3-202 >protein coding Med12-203 >protein coding Nlgn3-203 >protein coding Med12-202 >protein coding Nlgn3-206 >protein coding Med12-201 >protein coding Nlgn3-201 >protein coding Med12-208 >retained intron Nlgn3-205 >lncRNA Nlgn3-204 >lncRNA Med12-205 >lncRNA Gm21986-201 >lncRNA Med12-206 >lncRNA Contigs AL683892.12 > Regulatory Build 101.29Mb 101.30Mb 101.31Mb 101.32Mb 101.33Mb Reverse strand 46.80 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding merged Ensembl/Havana Ensembl protein coding Non-Protein Coding processed transcript RNA gene Page 8 of 9 https://www.alphaknockout.com Transcript: ENSMUST00000065858 26.75 kb Forward strand Nlgn3-201 >protein coding ENSMUSP00000066... Transmembrane heli... MobiDB lite Low complexity (Seg) Cleavage site (Sign... Superfamily Alpha/Beta hydrolase fold Prints Neuroligin Pfam Carboxylesterase, type B PROSITE patterns Carboxylesterase type B, conserved site PANTHER Neuroligin-3 PTHR43903 Gene3D Alpha/Beta hydrolase fold All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend splice region variant synonymous variant Scale bar 0 80 160 240 320 400 480 560 640 720 825 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC.
Recommended publications
  • Screening of a Clinically and Biochemically Diagnosed SOD Patient Using Exome Sequencing: a Case Report with a Mutations/Variations Analysis Approach
    The Egyptian Journal of Medical Human Genetics (2016) 17, 131–136 HOSTED BY Ain Shams University The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net www.sciencedirect.com CASE REPORT Screening of a clinically and biochemically diagnosed SOD patient using exome sequencing: A case report with a mutations/variations analysis approach Mohamad-Reza Aghanoori a,b,1, Ghazaleh Mohammadzadeh Shahriary c,2, Mahdi Safarpour d,3, Ahmad Ebrahimi d,* a Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran b Research and Development Division, RoyaBioGene Co., Tehran, Iran c Department of Genetics, Shahid Chamran University of Ahvaz, Ahvaz, Iran d Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran Received 12 May 2015; accepted 15 June 2015 Available online 22 July 2015 KEYWORDS Abstract Background: Sulfite oxidase deficiency (SOD) is a rare neurometabolic inherited disor- Sulfite oxidase deficiency; der causing severe delay in developmental stages and premature death. The disease follows an auto- Case report; somal recessive pattern of inheritance and causes deficiency in the activity of sulfite oxidase, an Exome sequencing enzyme that normally catalyzes conversion of sulfite to sulfate. Aim of the study: SOD is an underdiagnosed disorder and its diagnosis can be difficult in young infants as early clinical features and neuroimaging changes may imitate some common diseases. Since the prognosis of the disease is poor, using exome sequencing as a powerful and efficient strat- egy for identifying the genes underlying rare mendelian disorders can provide important knowledge about early diagnosis, disease mechanisms, biological pathways, and potential therapeutic targets.
    [Show full text]
  • Environmental and Genetic Factors in Autism Spectrum Disorders: Special Emphasis on Data from Arabian Studies
    International Journal of Environmental Research and Public Health Review Environmental and Genetic Factors in Autism Spectrum Disorders: Special Emphasis on Data from Arabian Studies Noor B. Almandil 1,† , Deem N. Alkuroud 2,†, Sayed AbdulAzeez 2, Abdulla AlSulaiman 3, Abdelhamid Elaissari 4 and J. Francis Borgio 2,* 1 Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; [email protected] 2 Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; [email protected] (D.N.A.); [email protected] (S.A.) 3 Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; [email protected] or [email protected] 4 Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, F-69622 Lyon, France; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +966-13-333-0864 † These authors contributed equally to this work. Received: 26 January 2019; Accepted: 19 February 2019; Published: 23 February 2019 Abstract: One of the most common neurodevelopmental disorders worldwide is autism spectrum disorder (ASD), which is characterized by language delay, impaired communication interactions, and repetitive patterns of behavior caused by environmental and genetic factors. This review aims to provide a comprehensive survey of recently published literature on ASD and especially novel insights into excitatory synaptic transmission. Even though numerous genes have been discovered that play roles in ASD, a good understanding of the pathophysiologic process of ASD is still lacking.
    [Show full text]
  • Excess of Rare Novel Loss-Of-Function Variants in Synaptic Genes in Schizophrenia and Autism Spectrum Disorders
    Molecular Psychiatry (2014) 19, 872–879 & 2014 Macmillan Publishers Limited All rights reserved 1359-4184/14 www.nature.com/mp ORIGINAL ARTICLE Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders EM Kenny1,3, P Cormican1,3, S Furlong1,3, E Heron1, G Kenny1, C Fahey1, E Kelleher1, S Ennis2, D Tropea1, R Anney1, AP Corvin1, G Donohoe1, L Gallagher1, M Gill1 and DW Morris1 Schizophrenia (SZ) and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders that may share an underlying pathology suggested by shared genetic risk variants. We sequenced the exonic regions of 215 genes in 147 ASD cases, 273 SZ cases and 287 controls, to identify rare risk mutations. Genes were primarily selected for their function in the synapse and were categorized as: (1) Neurexin and Neuroligin Interacting Proteins, (2) Post-synaptic Glutamate Receptor Complexes, (3) Neural Cell Adhesion Molecules, (4) DISC1 and Interactors and (5) Functional and Positional Candidates. Thirty-one novel loss-of-function (LoF) variants that are predicted to severely disrupt protein-coding sequence were detected among 2 861 rare variants. We found an excess of LoF variants in the combined cases compared with controls (P ¼ 0.02). This effect was stronger when analysis was limited to singleton LoF variants (P ¼ 0.0007) and the excess was present in both SZ (P ¼ 0.002) and ASD (P ¼ 0.001). As an individual gene category, Neurexin and Neuroligin Interacting Proteins carried an excess of LoF variants in cases compared with controls (P ¼ 0.05). A de novo nonsense variant in GRIN2B was identified in an ASD case adding to the growing evidence that this is an important risk gene for the disorder.
    [Show full text]
  • Sequence and Functional Analysis of Schistosoma
    MINING FOR CONSERVED MOTIFS AND SIGNIFICANT FUNCTIONS IN S. MANSONI CERCARIAL SECRETIONS Amy L. Schmidbauer Submitted to the faculty of the School of Informatics in partial fulfillment of the requirements for the degree Master of Science in Bioinformatics, Indiana University December 30, 2006 ii Accepted by the Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Master of Science in Bioinformatics. (Committee Chair’s signature)_______________________ Sean D. Mooney, Ph.D., Chair Master’s Thesis Committee (Second member’s signature)________________________ Xiaoman Shawn Li, Ph.D. (Third member’s signature)__________ _______________ William J. Sullivan, Ph.D. ii © 2006 Amy L. Schmidbauer All Rights Reserved iii ACKNOWLEDGMENTS This project would not have been possible without the guidance and support of many people including faculty, advisors, colleagues, friends and family. I am extremely grateful to my advisor, Dr. Sean Mooney, for welcoming me into his laboratory as a graduate student, and for providing, not only computing resources, but continued support, suggestions, and guidance as, what started out as an independent study project, grew into what became this thesis. I extend my sincere appreciation to Dr. Giselle Knudsen, an honorary member of my thesis committee, for the original project inspiration, for her enthusiastic encouragement, insight, and direction throughout the project, and for her thoughtful review of this thesis. I would like also like to extend a heartfelt thank you to Dr. William Sullivan and Dr. Xiaoman Li for their willingness to lend their time to reviewing my thesis and for the insightful feedback they provided. For statistical expertise and support I would like to extend my deepest appreciation to Dr.
    [Show full text]
  • Neuroligin3 Splice Isoforms Shape Mouse Hippocampal Inhibitory Synaptic Function
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.22.915801; this version posted January 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Accelerated Communication Title Neuroligin3 Splice Isoforms Shape Mouse Hippocampal Inhibitory Synaptic Function Running Title Nlgn3 expression and function in mouse hippocampal neurons Motokazu Uchigashima1,2,5, Ming Leung3,5, Takuya Watanabe1,5, Amy Cheung1, Masahiko Watanabe2, Yuka Imamura Kawasawa3,4 and Kensuke Futai1* 1Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, LRB-706 Worcester, MA 01605-2324, USA 2Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan 3Department of Biochemistry and Molecular Biology and Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA 4Department of Pharmacology Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA 5These authors contributed equally *Corresponding author: [email protected] Tel: 1-774-455-4318 KEYWORDS Neuron, trans-synaptic cell adhesion, excitatory and inhibitory balance, hippocampus bioRxiv preprint doi: https://doi.org/10.1101/2020.01.22.915801; this version posted January 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Synapse formation is a dynamic process essential for neuronal circuit development and maturation. At the synaptic cleft, trans-synaptic protein-protein interactions constitute major biological determinants of proper synapse efficacy.
    [Show full text]
  • Advances in Autism Genetics: on the Threshold of a New Neurobiology
    REVIEWS Advances in autism genetics: on the threshold of a new neurobiology Brett S. Abrahams and Daniel H. Geschwind Abstract | Autism is a heterogeneous syndrome defined by impairments in three core domains: social interaction, language and range of interests. Recent work has led to the identification of several autism susceptibility genes and an increased appreciation of the contribution of de novo and inherited copy number variation. Promising strategies are also being applied to identify common genetic risk variants. Systems biology approaches, including array-based expression profiling, are poised to provide additional insights into this group of disorders, in which heterogeneity, both genetic and phenotypic, is emerging as a dominant theme. Gene association studies Autistic disorder is the most severe end of a group of into the ASDs. This work, in concert with important A set of methods that is used neurodevelopmental disorders referred to as autism technical advances, made it possible to carry out the to determine the correlation spectrum disorders (ASDs), all of which share the com- first candidate gene association studies and resequenc- (positive or negative) between mon feature of dysfunctional reciprocal social interac- ing efforts in the late 1990s. Whole-genome linkage a defined genetic variant and a studies phenotype of interest. tion. A meta-analysis of ASD prevalence rates suggests followed, and were used to identify additional that approximately 37 in 10,000 individuals are affected1. loci of potential interest. Although
    [Show full text]
  • Mirna Regulons Associated with Synaptic Function
    miRNA Regulons Associated with Synaptic Function Maria Paschou1, Maria D. Paraskevopoulou2, Ioannis S. Vlachos2, Pelagia Koukouraki1, Artemis G. Hatzigeorgiou2,3, Epaminondas Doxakis1* 1 Basic Neurosciences Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece, 2 Institute of Molecular Oncology, Biomedical Sciences Research Center ‘‘Alexander Fleming’’ Vari, Greece, 3 Department of Computer and Communication Engineering, University of Thessaly, Volos, Greece Abstract Differential RNA localization and local protein synthesis regulate synapse function and plasticity in neurons. MicroRNAs are a conserved class of regulatory RNAs that control mRNA stability and translation in tissues. They are abundant in the brain but the extent into which they are involved in synaptic mRNA regulation is poorly known. Herein, a computational analysis of the coding and 39UTR regions of 242 presynaptic and 304 postsynaptic proteins revealed that 91% of them are predicted to be microRNA targets. Analysis of the longest 39UTR isoform of synaptic transcripts showed that presynaptic mRNAs have significantly longer 39UTR than control and postsynaptic mRNAs. In contrast, the shortest 39UTR isoform of postsynaptic mRNAs is significantly shorter than control and presynaptic mRNAs, indicating they avert microRNA regulation under specific conditions. Examination of microRNA binding site density of synaptic 39UTRs revealed that they are twice as dense as the rest of protein-coding transcripts and that approximately 50% of synaptic transcripts are predicted to have more than five different microRNA sites. An interaction map exploring the association of microRNAs and their targets revealed that a small set of ten microRNAs is predicted to regulate 77% and 80% of presynaptic and postsynaptic transcripts, respectively.
    [Show full text]
  • No Evidence for Involvement of Genetic Variants in the X-Linked
    American Journal of Medical Genetics Part B (Neuropsychiatric Genetics) 147B:535–537 (2008) Brief Research Communication No Evidence for Involvement of Genetic Variants in the X-Linked Neuroligin Genes NLGN3 and NLGN4X in Probands With Autism Spectrum Disorder on High Functioning Level Anne-Kathrin Wermter,1* Inge Kamp-Becker,2 Konstantin Strauch,3 Gerd Schulte-Ko¨ rne,2 and Helmut Remschmidt2 1Clinical Research Group, Department of Child and Adolescent Psychiatry and Psychotherapy, Philipps-University of Marburg, Marburg, Germany 2Department of Child and Adolescent Psychiatry and Psychotherapy, Philipps-University of Marburg, Marburg, Germany 3Institute of Medical Biometry and Epidemiology, Philipps University of Marburg, Marburg, Germany Several lines of evidence indicate a role of in the X-Linked Neuroligin Genes NLGN3 and NLGN4X mutations in the two X-linked genes neuroligin in Probands With Autism Spectrum Disorder on High 3(NLGN3) and neuroligin 4 (NLGN4X) in the Functioning Level. Am J Med Genet Part B 147B:535–537. etiology of autistic spectrum disorders. To ana- lyze whether genetic variants in the NLGN3 and NLGN4X genes occurs in patients with autistic Autism spectrum disorders (ASD) are a family of neuro- disorders on high functioning level, we perform- developmental disorders characterized by early-onset delays ed a mutation screen of both genes using SSCP and deviance in the development of social, communicative in 107 probands with Asperger syndrome, high- skills and restricted, stereotyped pattern of interests and functioning autism and atypical autism. We iden- activities [Volkmar et al., 2004]. Despite the fact that there are tified four polymorphisms (rs2290488, rs7049300, many similarities within the spectrum of autistic disorders rs3747333, rs3747334) and one novel synonymous the condition is characterized by great variability of clinical variant (A558) in the NLGN4X.
    [Show full text]
  • Mutations in Neuroligin-3 in Male Mice Impact Behavioral Flexibility but Not Relational Memory in a Touchscreen Test of Visual Transitive Inference Rebecca H
    Norris et al. Molecular Autism (2019) 10:42 https://doi.org/10.1186/s13229-019-0292-2 RESEARCH Open Access Mutations in neuroligin-3 in male mice impact behavioral flexibility but not relational memory in a touchscreen test of visual transitive inference Rebecca H. C. Norris1, Leonid Churilov2,3, Anthony J. Hannan1,4,5 and Jess Nithianantharajah1,4* Abstract Cognitive dysfunction including disrupted behavioral flexibility is central to neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). A cognitive measure that assesses relational memory, and the ability to flexibly assimilate and transfer learned information is transitive inference. Transitive inference is highly conserved across vertebrates and disrupted in cognitive disorders. Here, we examined how mutations in the synaptic cell-adhesion molecule neuroligin-3 (Nlgn3) that have been documented in ASD impact relational memory and behavioral flexibility. We first refined a rodent touchscreen assay to measure visual transitive inference, then assessed two mouse models of Nlgn3 dysfunction (Nlgn3−/y and Nlgn3R451C). Deep analysis of touchscreen behavioral data at a trial level established we could measure trajectories in flexible responding and changes in processing speed as cognitive load increased. We show that gene mutations in Nlgn3 do not disrupt relational memory, but significantly impact flexible responding. Our study presents the first analysis of reaction times in a rodent transitive inference test, highlighting response latencies from the touchscreen system are useful indicators of processing demands or decision-making processes. These findings expand our understanding of how dysfunction of key components of synaptic signaling complexes impact distinct cognitive processes disrupted in neurodevelopmental disorders, and advance our approaches for dissecting rodent behavioral assays to provide greater insights into clinically relevant cognitive symptoms.
    [Show full text]
  • With Autism Spectrum Disorders in a Chinese Han Cohort Jindan Yu1, Xue He1, Dan Yao1, Zhongyue Li2, Hui Li3 and Zhengyan Zhao1*
    Yu et al. Behavioral and Brain Functions 2011, 7:13 http://www.behavioralandbrainfunctions.com/content/7/1/13 RESEARCH Open Access A sex-specific association of common variants of neuroligin genes (NLGN3 and NLGN4X) with autism spectrum disorders in a Chinese Han cohort Jindan Yu1, Xue He1, Dan Yao1, Zhongyue Li2, Hui Li3 and Zhengyan Zhao1* Abstract Background: Synaptic genes, NLGN3 and NLGN4X, two homologous members of the neuroligin family, have been supposed as predisposition loci for autism spectrum disorders (ASDs), and defects of these two genes have been identified in a small fraction of individuals with ASDs. But no such rare variant in these two genes has as yet been adequately replicated in Chinese population and no common variant has been further investigated to be associated with ASDs. Methods: 7 known ASDs-related rare variants in NLGN3 and NLGN4X genes were screened for replication of the initial findings and 12 intronic tagging single nucleotide polymorphisms (SNPs) were genotyped for case-control association analysis in a total of 229 ASDs cases and 184 control individuals in a Chinese Han cohort, using matrix- assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Results: We found that a common intronic variant, SNP rs4844285 in NLGN3 gene, and a specific 3-marker haplotype XA-XG-XT (rs11795613-rs4844285-rs4844286) containing this individual SNP were associated with ASDs and showed a male bias, even after correction for multiple testing (SNP allele: P = 0.048, haplotype:P = 0.032). Simultaneously, none of these 7 known rare mutation of NLGN3 and NLGN4X genes was identified, neither in our patients with ASDs nor controls, giving further evidence that these known rare variants might be not enriched in Chinese Han cohort.
    [Show full text]
  • Dimerization of Postsynaptic Neuroligin Drives Synaptic Assembly Via Transsynaptic Clustering of Neurexin
    Dimerization of postsynaptic neuroligin drives synaptic assembly via transsynaptic clustering of neurexin Seth L. Shipmana,b and Roger A. Nicolla,1 aDepartment of Cellular and Molecular Pharmacology and Physiology and bNeuroscience Graduate Program, University of California, San Francisco, CA 94158 Contributed by Roger A. Nicoll, October 9, 2012 (sent for review May 5, 2012) The transsynaptic complex of neuroligin (NLGN) and neurexin forms Like the synapse, the neuroligin/neurexin complex is itself asym- a physical connection between pre- and postsynaptic neurons that metric. Neuroligin exists natively as a dimer, whereas neurexin, in an occurs early in the course of new synapse assembly. Both neuroligin unbound state, is monomeric (10). The complex, then, is an asym- and neurexin have, indeed, been proposed to exhibit active, in- metric tetramer consisting of a neuroligin dimer and two neurexin structive roles in the formation of synapses. However, the process by molecules—the neurexin molecules brought in close proximity to which these instructive roles play out during synaptogenesis is not each other via their interaction with the neuroligin dimer (10–12). well understood. Here, we examine one aspect of postsynaptic As stated above, in vitro evidence suggests that neurexin clustering neuroligin with regard to its synaptogenic properties: its basal state may be an early step in the differentiation of an axon segment into as a constitutive dimer. We show that dimerization is required for a presynaptic terminal (13). Such clustering could be achieved by the the synaptogenic properties of neuroligin and likely serves to induce monomeric-to-dimeric conversion of neurexin upon neuroligin presynaptic differentiation via a transsynaptic clustering of neu- binding.
    [Show full text]
  • ABSTRACT SHU, XIAOMEI. Pathogenesis and Host Response
    ABSTRACT SHU, XIAOMEI. Pathogenesis and Host Response During Infection of Maize Kernels by Aspergillus flavus and Fusarium verticillioides. (Under the direction of Dr. Gary A. Payne.) Developing maize kernels are vulnerable to colonization by microbes. When colonization allows proliferation of the microbe at the expense of the host, disease occurs. The ascomycete fungal pathogens Aspergillus flavus and Fusarium verticillioides are capable of colonizing maize kernels, causing ear rots and contamination of the kernel with mycotoxins. These diseases lead to significant losses of crop yield and quality, and constitute a threat to food safety and human health. Thus, the significance of these diseases has prompted extensive research efforts to understand these plant-parasite interactions. However, pathogenesis and resistance mechanisms remain poorly characterized, hampering the development of effective control strategies. No commercial maize lines are completely resistant to these fungi. We applied an integrated approach consisting of histology, in situ gene expression and transcriptional profiling to better understand the nature of the interactions that occur between maize kernels and these fungi. Maize inbred line B73 was hand pollinated and inoculated with either A. flavus or F. verticillioides by wounding the kernel with a needle bearing conidia. Histological staining of the kernel sections revealed fungal mycelium in kernels adjacent to the inoculation site by 48 hours post inoculation (hpi), and in all tissues at 96 hpi. Compared with F. verticillioides, A. flavus more aggressively colonized kernel tissue and formed a unique biofilm-like structure around the scutellum. Transcriptome profiling using RNA-sequencing (RNA-seq) coupled with pathway analysis showed that these fungi were recognized by the kernel tissues prior to visible colonization.
    [Show full text]