A Case for SIP in Javascript", IEEE Communications Magazine , Vol

Total Page:16

File Type:pdf, Size:1020Kb

A Case for SIP in Javascript Copyright © IEEE, 2013. This is the author's copy of a paper that appears in IEEE Communications Magazine. Please cite as follows: K.Singh and V.Krishnaswamy, "A case for SIP in JavaScript", IEEE Communications Magazine , Vol. 51, No. 4, April 2013. A Case for SIP in JavaScript Kundan Singh Venkatesh Krishnaswamy IP Communications Department IP Communications Department Avaya Labs Avaya Labs Santa Clara, USA Basking Ridge, USA [email protected] [email protected] Abstract —This paper presents the challenges and compares the applications independent of the specific SIP extensions alternatives to interoperate between the Session Initiation supported in the vendor's gateway. Protocol (SIP)-based systems and the emerging standards for the Web Real-Time Communication (WebRTC). We argue for an We observe that decoupled development across services , end-point and web-focused architecture, and present both sides tools and applications promotes interoperability. Today, the of the SIP in JavaScript approach. Until WebRTC has ubiquitous web developers can build applications independent of a cross-browser availability, we suggest a fall back strategy for web particular service (Internet service provider) or vendor tool developers — detect and use HTML5 if available, otherwise fall (browser, web server). Unfortunately, many existing SIP back to a browser plugin. systems are closely integrated and have overlap among two or more of these categories, e.g., access network provider Keywords- SIP; HTML5; WebRTC; Flash Player; web-based (service) wants to control voice calling (application), or three communication party calling (application) depends on your telephony provider (service). The main motivation of the endpoint approach (also I. INTRODUCTION known as SIP in JavaScript) is to separate the applications In the past, web developers have resorted to browser (various SIP extensions and telephony features) from the plugins such as Flash Player to do audio and video calls in the specific tools (browsers or proxies) or VoIP service providers. browser and to interoperate with the legacy voice-over-IP In practice, this is not guaranteed because the web site may (VoIP) systems from the web. To avoid the third-party plugin restrict the hosted SIP-in-JavaScript application to only connect dependency, new standards for web real-time communication to its own proxy server. Moreover, several challenges make (WebRTC) are emerging to support the devices, codecs and this approach nearly impossible to work in practice. communication primitives natively in the browser. While the global voice communications use the Session Initiation The paper is organized as follows. Section II gives a Protocol (SIP) [1] for signaling, the HTML5 standard as part of background on related technologies. Section III compares the the WebRTC effort [2][3][4] keeps the signaling part outside two alternatives to interoperate between SIP and WebRTC. We the scope of the browser. present an implementation in Section IV. Section V describes the fall back strategy of using the Flash Player plugin by the Traditional voice systems are built around a business model web developers while WebRTC is being incrementally adopted that requires universal reach hence interoperability among by the browser vendors. Finally, we present our conclusions in multiple VoIP vendors and services is crucial. By contrast, Section VI. web based services are experimenting with business models capturing as many users within a single domain as possible. II. BACKGROUND AND RELATED WORK For instance, a user on a social networking web site is likely to Before describing the interoperability between SIP and communicate with others on that web site, but not on another WebRTC, we give a brief background on these systems and web site. Thus, every web site can choose its own rendezvous their differences from the interoperability point of view. (or signaling) protocol without worrying about interoperating with other web sites. We only need interoperability among a A. What is SIP? few browser vendors for the media path. SIP [1] is the IETF standard for establishing, managing and terminating Internet sessions including voice and video calls In practice, interoperability with legacy VoIP and telephone and conferences. As shown in Fig.1 (a), a SIP system uses systems is crucial. This is done in either the end-point browser other standards such as SDP (Session Description Protocol) for or a network gateway attached to the web server. In the former offer/answer of session negotiation, RTP (Real-time Transport end-point approach, the SIP stack runs in JavaScript in the Protocol) for media path transport, RTCP (Real-time Transport browser while using WebRTC for media path to connect with Control Protocol) for feedback and control of media path, another SIP device. In the latter approach, if the client-server optionally SRTP (secure RTP) with keys negotiated in SDP for signaling is standardized, the same web application or the media path security, and optionally ICE (Interactive gateway can be reused with mix-and-match interoperability on Connectivity Establishment) for traversal through intermediate several web sites. For the endpoint approach, the signaling is NATs and firewalls. The dotted red-line separates what is using SIP, whereas for the gateway approach, a custom programmed by the application developer and what is provided protocol maps to SIP in the backend. We argue for the endpoint by the platform. approach because it keeps the web developers build application application to connect to the service infrastructure. We compare these two approaches in the next section. SDP JSON codecs WebRTC API developer SIP SIP XML SDP TABLE I. INTEROPERABILITY DIFFERENCES IN SIP VS WEB RTC. (O) SRTP Codecs MEANS OPTIONAL ICE ICE SIP RTCP WS SRTP RTP ICE RTCP RTCP Property SIP WebRTC HTTP RTP Media transport RTP, SRTP (o) SRTP, new RTP profiles TCP UDP TCP UDP Session negotiation SDP, offer/answer SDP, trickle (a) Typical SIP end-point platform (b) Typical WebRTC end-point STUN (o), TURN (o), ICE (includes STUN, NAT traversal Figure 1. Comparision of typical SIP vs WebRTC application stack ICE (o) TURN) Media transport Separate: audio/video, Same path with all media path/connection RTP vs RTCP and control B. What is WebRTC? User trusts device and User trusts browser but Security model WebRTC represents the family of emerging standards service provider not web site Typically G.711, Mandatory Opus and within the WebRTC working group in W3C [3] and the IETF Audio codecs RTCWEB working group [2] to enable end-to-end browser G.729, G.722, Speex G.711, optionally others Typically H.261, Undefined yet but likely Video codecs communication for real-time media. Please refer to [4] for an H.263, H.264 VP8 and/or H.264 overview of WebRTC. It reuses existing standards such as mandatory SRTP (Secure RTP) for media transport, and mandatory ICE (Interactive Connectivity Establishment) for Even though the media path uses the same set of protocols, traversal through NATs and firewalls. The signaling messages achieving true media path interoperability between a SIP user are browser independent and are left to the application agent and a WebRTC capable browser is a challenge. Table I developer who would typically use HTTP (Hyper-Text summarizes the main differences between SIP and WebRTC Transfer Protocol) and WebSocket (WS) [5] for exchanging for interoperability based on the discussions in the IETF. call control and session description information among the WebRTC requires new RTP profiles to send multiple RTP participants. Fig.1 compares the typical SIP and WebRTC media streams as well as RTCP control packets multiplexed application stack. over the same transport path (or logical connection) so that the expensive step of negotiating an end-to-end path across The WebRTC API proposal [3] uses SDP, which enables an firewalls is done only once. SIP end-points use a variety of application developer to use it as is, or transform it to web- optional techniques for NAT traversal, whereas WebRTC friendly JSON (JavaScript Object Notation) or XML makes ICE mandatory. Instead of using the lock-step of SIP (eXtensible Markup Language). Optionally, the application can offer-answer, i.e., once an offer is made the end-point must include a SIP implementation in JavaScript and reuse all the wait for an answer before issuing another offer , WebRTC features provides by SIP. allows trickle or incremental change in the session description C. What is WebSocket? to promote incremental address gathering in ICE. WebSocket (WS) is an IETF protocol and an HTML5 API While there is some overlap in the mandatory audio codecs that allows creating a bi-directional client-server connection of WebRTC and the commonly used codecs in SIP systems, the from the JavaScript code in the browser to the web server. To working group is still undecided on the choice of mandatory traverse web proxies, it uses HTTP to initiate the first request video codecs. Moreover, the generic data channel proposed in and subsequently upgrades to a persistent connection via WebRTC has no clear equivalent in existing SIP systems. additional handshakes. Once the connection is established, it For the media path security, WebRTC requires SRTP. SIP allows sending any data with packet boundary in either systems using SRTP, while not ubiquitous, are nonetheless direction over TCP. increasing. The origin-based trust model suggests that the two D. Related Work in Interoperability browsers must be visiting (or share some content on) the same In the early days of WebRTC, the IETF rejected having SIP web site to establish a WebRTC session. Finally, the end-user in the browser and left the signaling to the application in can trust her browser, but not the web site she is visiting. JavaScript. Subsequent attempts to interwork between SIP Several open issues exist and are being debated in the IETF, systems and WebRTC enabled browsers fall in two categories: e.g., the choice of mandatory codecs and the granularity of the translation at the gateway or implementing SIP in JavaScript.
Recommended publications
  • FOSDEM 2017 Schedule
    FOSDEM 2017 - Saturday 2017-02-04 (1/9) Janson K.1.105 (La H.2215 (Ferrer) H.1301 (Cornil) H.1302 (Depage) H.1308 (Rolin) H.1309 (Van Rijn) H.2111 H.2213 H.2214 H.3227 H.3228 Fontaine)… 09:30 Welcome to FOSDEM 2017 09:45 10:00 Kubernetes on the road to GIFEE 10:15 10:30 Welcome to the Legal Python Winding Itself MySQL & Friends Opening Intro to Graph … Around Datacubes Devroom databases Free/open source Portability of containers software and drones Optimizing MySQL across diverse HPC 10:45 without SQL or touching resources with my.cnf Singularity Welcome! 11:00 Software Heritage The Veripeditus AR Let's talk about The State of OpenJDK MSS - Software for The birth of HPC Cuba Game Framework hardware: The POWER Make your Corporate planning research Applying profilers to of open. CLA easy to use, aircraft missions MySQL Using graph databases please! 11:15 in popular open source CMSs 11:30 Jockeying the Jigsaw The power of duck Instrumenting plugins Optimized and Mixed License FOSS typing and linear for Performance reproducible HPC Projects algrebra Schema Software deployment 11:45 Incremental Graph Queries with 12:00 CloudABI LoRaWAN for exploring Open J9 - The Next Free It's time for datetime Reproducible HPC openCypher the Internet of Things Java VM sysbench 1.0: teaching Software Installation on an old dog new tricks Cray Systems with EasyBuild 12:15 Making License 12:30 Compliance Easy: Step Diagnosing Issues in Webpush notifications Putting Your Jobs Under Twitter Streaming by Open Source Step. Java Apps using for Kinto Introducing gh-ost the Microscope using Graph with Gephi Thermostat and OGRT Byteman.
    [Show full text]
  • Smart Communication Platforms for Prototyping Smart City Applications
    Competence Center NGNI Fraunhofer FOKUS Keynote at National Research Council of Thailand (NRCT) Annual Meeting, Bangkok, Thailand, August 25, 2013 Smart Communication Platforms for Prototyping Smart City Applications Prof. Dr. Thomas Magedanz Fraunhofer FOKUS / TU Berlin [email protected] www.fokus.fraunhofer.de/go/ngni Competence Center NGNI Fraunhofer FOKUS Agenda Smart Cities as Future Internet Show Case Smart City communication infrastructures requirements The Role of IP Multimedia Subsystem, Machine Type Communication, Evolved Packet Core and related Open APIs within emerging Smart City SDPs FOKUS Toolkits and practical examples Summary Q&A Competence Center NGNI Fraunhofer FOKUS Main Messages of the Talk Convergence of fixed and mobile networks plus internet technologies was the driver for Next Generation Network (NGN) IMS (plus an SDP) is the common control platform of the NGN today Over the top (OTT) services challenge operators and IMS platforms Future Internet (FI) is a hot research topic and equates to emerging Smart City (SC) ICT platforms and applications Smart Cities relate to the domains of Internet of Things ( M2M) and Internet of Services ( SDP) Smart Cities are driving even more convergence of networks and control platforms Evolved Packet Core (EPC) and Machine Type Communication (MTC) platforms are becoming key pillars around IP Multimedia System (IMS) in the context of emerging Smart City ICT platforms Nevertheless Open APIs will abstract from the specifics of the platforms FOKUS tools
    [Show full text]
  • Mivoice Border Gateway Engineering Guidelines
    MiVoice Border Gateway Engineering Guidelines January, 2017 Release 9.4 1 NOTICE The information contained in this document is believed to be accurate in all respects but is not warranted by Mitel Networks™ Corporation (MITEL®). The information is subject to change without notice and should not be construed in any way as a commitment by Mitel or any of its affiliates or subsidiaries. Mitel and its affiliates and subsidiaries assume no responsibility for any errors or omissions in this document. Revisions of this document or new editions of it may be issued to incorporate such changes. No part of this document can be reproduced or transmitted in any form or by any means - electronic or mechanical - for any purpose without written permission from Mitel Networks Corporation. Trademarks The trademarks, service marks, logos and graphics (collectively "Trademarks") appearing on Mitel's Internet sites or in its publications are registered and unregistered trademarks of Mitel Networks Corporation (MNC) or its subsidiaries (collectively "Mitel") or others. Use of the Trademarks is prohibited without the express consent from Mitel. Please contact our legal department at [email protected] for additional information. For a list of the worldwide Mitel Networks Corporation registered trademarks, please refer to the website: http://www.mitel.com/trademarks. Product names mentioned in this document may be trademarks of their respective companies and are hereby acknowledged. MBG - Engineering Guidelines Release 9.4 January, 2017 ®,™ Trademark of Mitel Networks
    [Show full text]
  • A Flexible and Scalable Media Centric Webrtc
    An Oracle White Paper May 2014 Towards a Flexible and Scalable Media Centric WebRTC Towards a Flexible and Scalable Media Centric WebRTC Introduction Web Real Time Communications (WebRTC) transforms any device with a browser into a voice, video, and screen sharing endpoint, without the need of downloading, installing, and configuring special applications or browser plug-ins. With the almost ubiquitous presence of browsers, WebRTC promises to broaden the range of communicating devices to include game consoles and set-top boxes in addition to laptops, smartphones, tablets, etc. WebRTC has been described as a transformative technology bridging the worlds of telephony and web. But what does this bridging really imply and have the offerings from vendors fully realized the possibilities that WebRTC promises? In this paper we discuss the importance of WebRTC Service Enablers that help unlock the full potential of WebRTC and the architectures that these elements make possible in this new era of democratization. New Elements in the WebRTC Network Architecture While web-only communications mechanisms would require nothing more than web browsers and web servers, the usefulness of such web-only networks would be limited. Not only is there a need to interwork with existing SIP1 and IMS2 based networks, there is also a need to provide value added services. There are several products in the marketplace that attempt to offer this functionality. But most of the offerings are little more than basic gateways. Such basic gateways perform simple protocol conversions where messages are translated from one domain to another. Such a simplistic gateway would convert call signaling from JSON3, XMPP4, or SIP over WebSockets, to SIP, and might also provide interoperability between media formats.
    [Show full text]
  • The Security of Webrtc Ben Feher, Lior Sidi, Asaf Shabtai, Rami Puzis Ben-Gurion University of the Negev {Feherb, Liorsid, Shabtaia, Puzis}@Bgu.Ac.Il
    The Security of WebRTC Ben Feher, Lior Sidi, Asaf Shabtai, Rami Puzis Ben-Gurion University of the Negev {feherb, liorsid, shabtaia, puzis}@bgu.ac.il ABSTRACT primarily browser–based (though not all browsers support WebRTC is an API that allows users to share streaming WebRTC) we focus our analysis on WebRTC browser-based information, whether it is text, sound, video or files. It is impelmetations. A quick look at browser usage statistics reveals supported by all major browsers and has a flexible underlying that currently, Chrome and Firefox dominate the browser market infrastructure. In this study we review current WebRTC structure by a significant margin. In addition, these browsers also support and security in the contexts of communication disruption, key features of WebRTC technology which makes them prime modification and eavesdropping. In addition, we examine candidates for our tests. WebRTC security in a few representative scenarios, setting up and Another point for consideration in the security analysis involves simulating real WebRTC environments and attacks. the communication restrictions of the current security measure (e.g., deep packet inspection Firewalls), as well as the availability General Terms of existing tools for analyzing the WebRTC traffic. Security, Network. 2. WHAT IS WebRTC? Keywords In General, a WebRTC communication is composed of two WebRTC, DTLS-SRTP, Signaling, P2P. stages: a signaling and a communication stage. 1. INTRODUCTION 2.1 Signaling Stage Web Real-Time Communication (WebRTC) is an API aimed to The signaling stage is the conversation setup. When two clients support browser-to-browser communication. This solution is wish to communicate, they must arrange a common information designed to unify the fragmented solution cluster that has been channel.
    [Show full text]
  • Cisco Remote Expert Mobile 10.6(3) Design Guide
    Cisco Remote Expert Mobile 10.6(3) Design Guide First Published: 2015-07-31 Last Updated: 2016-01-13 Cisco Systems, Inc. www.cisco.com 1 Design Guide THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the UniVersity of California, Berkeley (UCB) as Part of UCB’s Public domain version of the UNIX oPerating system. All rights reserVed. CoPyright © 1981, Regents of the UniVersity of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
    [Show full text]
  • Krivenko Eugene
    Krivenko Eugene city: Kiev E-mail: [email protected] CONTACT Website: https://www.linkedin.com/in/eugen- krivenko Phone: +380632141113 OBJECTIVE I'm a Front-end developer seeking an opportunity to participate in an interesting project and to become a part of a great team. Desire to work with React, NodeJS etc. Love for minimalizm, optimisation, clean code, structuring, best practices. PROFESSIONAL SKILLS Javascript, Typescript React, AngularJS, Angular2 Redux, RxJS Webpack, Gulp WebSockets (socket.io, signalR, sip.js) Node.JS (Hapi, Express) Bootstrap, HTML, CSS, SCSS, SASS, Angular Material D3.js SEO understanding WORK EXPERIENCE Maxitech 04.2019 — 03.2021 Frontend developer Responsibilities: Implement new features and improve existing ones Improve Redux store structure Improve components architecture Code review Bug fixing Interview new candidates Mentoring Environment: React, Redux, Redux Toolkit, RxJS, signalR, socket.io, Express, Typescript, Git, PostCSS, Jest, Webpack Krivenko Eugene 1 MWDN 09.2017 — 03.2019 Frontend developer Responsibilities: Implement new features and improve existing ones Maintain existing projects AngularJs/React Migrate project from AngularJS to React Refactoring Code review Bug fixing Interview new candidates Environment: React, AngularJS, Git, SASS, CSSinJS, Redux, Webpack, MobX, ES6, Typescript, Jenkins, Hapi.js, MongoDB, D3, Jira Evoplay 09.2016 — 08.2017 Frontend developer Lead Responsibilities: Create new project from scratch Implement new features and improve existing ones Participate in project
    [Show full text]
  • MRTC Gateway Can Be Hosted on Any Windows Version
    2021 MRTC Documentation MizutechMRTC WebRTC -SIPGateway gateway User Guide Mizutech WebRTC-SIP Gateway –User Guide Connecting WebRTC clients to SIP servers Mizutech 6/3/2021 Contents About ......................................................................................................................................................................................................... 3 Features ............................................................................................................................................................................................. 3 Requirements .................................................................................................................................................................................... 4 How It Works ..................................................................................................................................................................................... 4 Legal Agreement ............................................................................................................................................................................... 4 Setup and configuration ............................................................................................................................................................................ 5 Install ................................................................................................................................................................................................
    [Show full text]
  • Implementation and Evaluation of Security on a Gateway for Web-Based Real-Time Communication
    Tuukka Koistinen Implementation and Evaluation of Security on a Gateway for Web-based Real-Time Communication School of Electrical Engineering Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 22.5.2014 Thesis supervisor: Prof. Jörg Ott Thesis advisor: M.Sc. (Tech.) Tuomas Erke aalto university abstract of the school of electrical engineering master’s thesis Author: Tuukka Koistinen Title: Implementation and Evaluation of Security on a Gateway for Web-based Real-Time Communication Date: 22.5.2014 Language: English Number of pages:8+65 Department of Communications and Networking Professorship: Networking Technology Code: S-38 Supervisor: Prof. Jörg Ott Advisor: M.Sc. (Tech.) Tuomas Erke Web Real-Time Communication (WebRTC) is a set of standards that are being developed, aiming to provide native peer-to-peer multimedia communication be- tween browsers. The standards specify the requirements for browsers, including a JavaScript Application Programming Interface (API) for web developers, as well as the media plane protocols to be used for connection establishment, media transportation and data encryption. In this thesis, support for Interactive Connectivity Establishment (ICE) and media encryption was implemented to an existing gateway prototype. The gateway was originally developed to connect the novel WebRTC possibilities with existing IP Multimedia Subsystem (IMS) services, but it was lacking the necessary security functionalities. The performance of the gateway was measured and analyzed in different call scenarios between WebRTC clients. Two key elements, CPU load of the gateway and packet delay, were considered in the analysis. In addition to single call scenarios, the tests included relaying of ten simultaneous HD video calls, and relaying of ten simultaneous audio calls.
    [Show full text]
  • Webrtc 2 Voip Flowroute Dids Now Support Web Originated Calls
    ClueCon 2019 WebRTC 2 VoIP Flowroute DIDs now support web originated calls Julien Chavanton Lead software engineer - voice routing - flowroute.com presentation agenda : WebRTC 2 VoIP and share some insights about the design and features. ➔ How we are using Kamailio to do our web edge-proxies, providing SIP over WebSockets, Topology hiding and SDP normalization. (With sipwise RTP-engine) ➔ JS libraries, to help our customers integrate WebRTC for inbound audio calls on Flowroute DIDs using JSSIP, we will look at our provided Javascript libraries jssip_client and jssip_ui ➔ How we are monitoring QoS stats for audio sessions and audio streams with G.711 and Opus. ➔ The current state of our platform and how we were able to reuse our multiple point of presences and APIs to enable new possibilities for our customers. Addition to carrier infrastructure using Kamailio sip-proxy Kamailio SIP over websocket rfc7118 https://kamailio.org/docs/modules/stable/modules/websocket.html 5.1. ws_handle_handshake() This function checks an HTTP GET request for the required headers and values, and (if successful) upgrades the connection from HTTP to WebSocket. Below is an example of a WebSocket handshake in which the client requests the WebSocket SIP subprotocol support from the server: GET / HTTP/1.1 Host: sip-ws.example.com Upgrade: websocket Connection: Upgrade Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ== Origin: http://www.example.com Sec-WebSocket-Protocol: sip Sec-WebSocket-Version: 13 The handshake response from the server accepting the WebSocket SIP subprotocol would look as follows: HTTP/1.1 101 Switching Protocols Upgrade: websocket Connection: Upgrade Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo= Sec-WebSocket-Protocol: sip Once the negotiation has been completed, the WebSocket connection is established and can be used for the transport of SIP requests and responses.
    [Show full text]
  • Load Testing of SIP and Webrtc Infrastructures Webrtc SIP and Webrtc Browsers Selenium Native Solutions Servers Lorenzo Miniero
    KamailioWorld L. Miniero Intro SIP Testing SIPp Load Testing of SIP and WebRTC Infrastructures WebRTC SIP and WebRTC Browsers Selenium Native solutions Servers Lorenzo Miniero Questions @elminiero Kamailio World 8th May 2017, Outline KamailioWorld L. Miniero 1 A brief introduction Intro SIP Testing SIPp 2 Load Testing of SIP Infrastructures WebRTC SIPp: a SIP protocol test tool SIP and WebRTC Browsers Selenium Native solutions 3 Bringing WebRTC into the picture Servers The problem: getting SIP and WebRTC to like each other Questions Testing the “pane e puparuoli” way: tabs tabs tabs! A cluster of browsers: SeleniumHQ , Native solutions: a look at Jattack Can WebRTC compliant servers help? 4 Questions/Comments You may remember me from last year! KamailioWorld L. Miniero Intro SIP Testing SIPp WebRTC SIP and WebRTC Browsers Selenium Native solutions Servers Questions What’s Meetecho? KamailioWorld L. Miniero • A company born in 2009 as an academic spin-off • Intro University research efforts brought to the market SIP Testing • Proudly brewed in sunny Napoli, Italy SIPp , WebRTC • Focus on real-time multimedia applications SIP and WebRTC Browsers • Web conferencing only, at first Selenium Native solutions • Then widened the scope to multimedia in general Servers Questions • Strong perspective on standardization and open source • WebRTC rulez! • Several activities • Consulting services • Commercial support & licenses • Streaming of live events (e.g., IETF, ACM SIGCOMM, ...) • Products (conferencing, webinar, ...) What’s Meetecho? KamailioWorld
    [Show full text]
  • Webrtc-Based Video Quality of Experience Evalua on of the Janus
    Linköping University | Department of Computer and Information Science Master thesis, 30 ECTS | Datavetenskap 2018 | LIU-IDA/LITH-EX-A--18/049--SE WebRTC-based Video Quality of Experience Evaluaon of the Janus Streaming Plugin – Integrang Video Door Systems and WebRTC-Supported Browsers Videoutvärdering av Janus streamingmodul med fokus på WebRTC-baserad Quality of Experience Raymond Leow Examiner : Niklas Carlsson External supervisor : Johan Åberg Linköpings universitet SE–581 83 Linköping +46 13 28 10 00 , www.liu.se Upphovsrä Dea dokument hålls llgängligt på Internet – eller dess framda ersäare – under 25 år från pub- liceringsdatum under förutsäning a inga extraordinära omständigheter uppstår. Tillgång ll doku- mentet innebär llstånd för var och en a läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och a använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsräen vid en senare dpunkt kan inte upphäva dea llstånd. All annan användning av doku- mentet kräver upphovsmannens medgivande. För a garantera äktheten, säkerheten och llgäng- ligheten finns lösningar av teknisk och administrav art. Upphovsmannens ideella rä innefaar rä a bli nämnd som upphovsman i den omfaning som god sed kräver vid användning av dokumentet på ovan beskrivna sä samt skydd mot a dokumentet ändras eller presenteras i sådan form eller i så- dant sammanhang som är kränkande för upphovsmannens lierära eller konstnärliga anseende eller egenart. För yerligare informaon om Linköping University Electronic Press se förlagets hemsida hp://www.ep.liu.se/. Copyright The publishers will keep this document online on the Internet – or its possible replacement – for a period of 25 years starng from the date of publicaon barring exceponal circumstances.
    [Show full text]