THE CLOAK of the OAK by David J

Total Page:16

File Type:pdf, Size:1020Kb

THE CLOAK of the OAK by David J THE CLOAK OF THE OAK by David J. Ellis Live oaks (Quercus virginiana) are one of the most striking natural features in the landscape of the southeastern coastal plain. In most settings the majestic trees, often draped in a delicate mantle of silvery gray Spanish moss (Tillandsia usneoides), are cherished for their stolid strength and the graceful spread of their branches. But in swatnps and river bottoms, live oaks can take on a primeval, even eerie look, especially at dusk or when mist ri ses around the thick trunks and the bedewed moss dangles heavily from the boughs. Live oaks are evergreen oaks that thrive in the sandy soil and salt air of the coastal plain fron1 Virginia south to southern Florida and then west into Texas and north­ eastern Mexico. They are remarkable for having stubby, often buttressed trunks that quickly diverge into nearly horizontal branches, spreading up to 120 feet (33m) in diameter with a rounded crown to 50 feet (14 m) tall. The smooth­ edged, elliptical leaves are a dark, glossy green above and pale green beneath. The tree produces yearly crops of small, elongate, dark brown acorns. A metnber of Bromeliaceae, or the bromeliad fami ly, Spanish moss is an essen­ tially rootless epiphyte that takes its water and nutrients from the air. It is com­ monly seen clinging to trees, walls, and even power lines throughout its native range, which in North America parallels not only that of live oak but also extends south to Argentina and Chile. Usually found in clusters, individual Spanish moss plants are thread-like strands that can reach I 00 feet long. Each strand is punctuated at short intervals by nodes that bear a few nanow leaves and minuscule green to purple flowers with a subtle fragrance that can only be detected when they are blooming en masse. The spread­ ing of the tiny seeds is facilitated by inch-long silky threads with tiny barbs that help the seed cling to rough-barked trees. The plant is also spread through frag­ ments carried by wind or by birds, which used the moss for their nests. Although Spanish moss is seen on a variety of tree species, it seems to particu­ larly thrive on Quercus virginiana. Naturalists disagree about the reasons for this association, however, and also about whether Spanish moss can be detrimental to its tree hosts. "Some people say this is an example of a nonparasitic pathogen-­ that if you get too much moss on a tree it can block photosynthesis," says Don Gardner, Director of Savannah, Georgia's Park and Tree Department. "Maybe there have been instances where that has occuned, but I don't believe it's the case the majority of the tin1e. II Gardner believes the idea that moss can be detrimental to trees originates from an inverse conelation. "I think Spanish moss can be an indicator of vigor, but not a detenninant of vigor, II he says. "When a tree goes into decline, the leaves may get srnaller and fewer. The result is that the tree moves less in the wind and there is less opportunity for the moss to be shakerl out. II 4 jouRIInL OF rhe lnreN!1flTIO!!f7L Onk Sooe~y ISSUE 7 Craig Martin, a professor of botany at the University of Kansas in Lawrence who has been doing research on Tillandsia for about 20 years, believes the prin1ary · reasons Spanish moss has an affinity for Quercus virginiana are that the oaks' rough, gnarly bark allows the moss to take a firm hold on the tree, and that the moss may be taking up nutrients that leach out of the oaks' )eaves. "Epiphytes • rely totally on aerial input for their nutrients, which they get from dust particles and whatever leaks out of what they are growing on," he says. Martin states that trees with needle-like foliage, such as pines, lose fewer nutrients than oaks. Mat1in's ,. research has also shown that Spanish moss grows best in light shade. The dense overhand of live oak branches may provide more shade than is available on n1ore vertically structured trees. Quercus virginiana, often aided and abetted by their ornamenting tnoss, have a strong place in the history, literature, and lore of the South. Among the famous oaks are the Jefferson Davis Oak in Gulfport, Mississippi, under which the former president of the Confederacy is said to have made a speech in 1886 urging South­ erners to forget the past and work toward a united future. The Treaty Oak in Austin, Texas, is the last of a group of Quercus virginiana under which Native Americans held councils, dances and ceremonies, and under which city founder Stephen F. Austin was said to have made the first boundary line agreen1ent be­ tween Native Americans and settlers. The Austin tree made national news in 1989 following a deliberate poisoning incident from which the tree has never fu11y recovered. Live oaks are also connected with literature achievements. The Evangeline Oak in St. Martinsville, Louisiana, was named in honor the Henry Wadsworth LongfeJlow's poem, "Evangeline," which memorialized the plight of a group of French Canadians deported from Nova Scotia to Louisiana i_n 1755. Both species at one time had commercial value. The heavy timber of Jive oaks was prized by shipbuilders until the middle of the 19th century, and Spanish moss was used as a stuffing for mattresses and upholstery into the early part of this century. Other materials have come along to fiJI those niches, but Southern hor­ ticulturists say the charismatic combination of the Jive oak and Spanish moss is earning its keep by wowing first-time visitors to the Southeast.~ This article first appeared in the June 1995 issue of American Horticulturist (now known as The American Gardener), published by the American Horticultural So­ ciety. jouJ<I!Ill o;: r!Je lnreJ<nanonal Oak SocteT_JI ISSUE 7 5 .
Recommended publications
  • Spanish Moss and Ball Moss 1
    FOR52 Spanish Moss and Ball Moss 1 Nancy P. Arny2 Spanish moss (Tillandsia usneoides) and ball Bromeliads moss (T. recurvata) are common elements of the Florida landscape. They are two of Florida's native Like almost all members of the Bromeliaceae, members of the Bromeliaceae, also known as the Spanish moss and ball moss are perennial herbs. This pineapple family. This family includes species as means they do not have permanent woody stems diverse as pineapples, Spanish moss and a above ground, but that individual plants persist for carnivorous relative native to Australia. Bromeliads years and will reproduce without human intervention. are members of the plant division Like many other bromeliads, these plants are Magnoliophyta--the flowering plants. While most epiphytes or "air plants". This indicates that they do Floridians are at least vaguely familiar with Spanish not require soil to root in, but can survive and thrive moss, many have never seen it flower and may be growing above the ground hanging on branches of surprised at the beauty of its delicate blossom. Of trees or other structures. They are not parasites. course, the fact that both Spanish moss and ball moss Without soil as a source of nutrients, these plants produce flowers is proof that they are not truly have evolved the capacity to make use of minerals mosses at all. dissolved in the water which flows across leaves and down branches. This fact sheet will help the reader to distinguish between the two common Tillandsias . It also Spanish moss plants appear to vary in mineral provides basic information on the biology and content and it has been proven that they gain a ecology of these fascinating plants and provides significant portion of their nutrients from stem recommendations for their management in the home run-off from the trees on which they are anchored.
    [Show full text]
  • COMÚN INGLÉS COMÚN ESPAÑOL NOMBRE CIENTÍFICO Alder Aliso
    COMÚN INGLÉS COMÚN ESPAÑOL NOMBRE CIENTÍFICO Alder Aliso Alnus spp. Alligator juniper Tascate Juniperus deppeana Almond Almendro Prunus dulcis Anaqua Manzanillo Ehretia anacua Apricot Albaricoquero Prunus armeniaca Ash Fresno, plumero Fraxinus spp. Ashe juniper Sabino Juniperus ashei Basswood Tilo Tilia spp. Ball moss Gallitos Tillandsia recurvata Beech Haya Fagus spp. Birch Abedul Betula spp. Black cherry Cerezo Prunus serotina Black locust Algarrobo Robinia pseudoacacia Boxelder Negundo Acer negundo Buckeye Castaño de Indias Aesculus spp. Buckthorn Rhamnus Rhamnus spp. Bumelia Coma Bumelia spp. Catalpa Catalpa Catalpa spp. Catclaw acacia Uña de gato Acacia greggii Cedar Cedro Cedrus spp. Chestnut Castaño Castanea spp. Chinaberry Canelo, lila de China, paraiso, jaboncillo Melia azedarach Common apple Manzano Malus x domestica Common edible fig Higo Ficus carica Common olive Olivo Olea europaea Cottonwood/aspen Álamo/ álamo temblón Populus spp. Crape myrtle Crespón, reina de las flores Langerstroemia spp. Cypress Ciprés Cupressus spp. Desert willow Flor de mimbre Chilopsis linearis Dogwood Cornejo Cornus spp. Eastern red cedar Cedro rojo, enebro Juniperus virginiana Ebony Ébano Diospyros spp. Elm Olmo Ulmus spp. Eucalyptus Eucalipto Eucalyptus spp. Evergreen sumac Lantrisco, lentisco Rhus sempervirens Filbert nut tree Avellano Corylus avellana Fir Abeto Abies spp. Ginkgo, maidenhair Gingo Ginkgo biloba Grape Parra, uva Vitis spp. Hackberry Palo blanco Celtis spp. Hemlock Cicuta Tsuga spp. Hickory Nogal americano Carya spp. Holly Acebo Ilex spp. Juniper Enebro Juniperus spp. Larch Alerce Larix spp. Leadtree Tepeguaje Leucaena spp. Live oak Encino, tesmoli, texmol Quercus virginiana Loquat Níspero Eriobotrya japonica Madrone Madroño Arbutus spp. Magnolia Palo de cacique, magnolio Magnolia grandiflora Mahogany Caoba Swietenia spp.
    [Show full text]
  • ISB: Atlas of Florida Vascular Plants
    Longleaf Pine Preserve Plant List Acanthaceae Asteraceae Wild Petunia Ruellia caroliniensis White Aster Aster sp. Saltbush Baccharis halimifolia Adoxaceae Begger-ticks Bidens mitis Walter's Viburnum Viburnum obovatum Deer Tongue Carphephorus paniculatus Pineland Daisy Chaptalia tomentosa Alismataceae Goldenaster Chrysopsis gossypina Duck Potato Sagittaria latifolia Cow Thistle Cirsium horridulum Tickseed Coreopsis leavenworthii Altingiaceae Elephant's foot Elephantopus elatus Sweetgum Liquidambar styraciflua Oakleaf Fleabane Erigeron foliosus var. foliosus Fleabane Erigeron sp. Amaryllidaceae Prairie Fleabane Erigeron strigosus Simpson's rain lily Zephyranthes simpsonii Fleabane Erigeron vernus Dog Fennel Eupatorium capillifolium Anacardiaceae Dog Fennel Eupatorium compositifolium Winged Sumac Rhus copallinum Dog Fennel Eupatorium spp. Poison Ivy Toxicodendron radicans Slender Flattop Goldenrod Euthamia caroliniana Flat-topped goldenrod Euthamia minor Annonaceae Cudweed Gamochaeta antillana Flag Pawpaw Asimina obovata Sneezeweed Helenium pinnatifidum Dwarf Pawpaw Asimina pygmea Blazing Star Liatris sp. Pawpaw Asimina reticulata Roserush Lygodesmia aphylla Rugel's pawpaw Deeringothamnus rugelii Hempweed Mikania cordifolia White Topped Aster Oclemena reticulata Apiaceae Goldenaster Pityopsis graminifolia Button Rattlesnake Master Eryngium yuccifolium Rosy Camphorweed Pluchea rosea Dollarweed Hydrocotyle sp. Pluchea Pluchea spp. Mock Bishopweed Ptilimnium capillaceum Rabbit Tobacco Pseudognaphalium obtusifolium Blackroot Pterocaulon virgatum
    [Show full text]
  • Tillandsia Recurvata Is the Most Wide
    ZLATKO JANEBA Tillandsia recurvata illandsia recurvata is the most wide- even known to grow on roofs and power lines. spread bromeliad. It occurs in the T. recurvata is the type species of subgenus Dia- southern US, where it stretches phoranthema, which contains some 30 variable and from Florida all the way to Arizo- mostly miniature species that have small, incon- na, and as far south as as Argenti- spicuous flowers. Members of Diaphoranthema are na and Chile. It grows epiphytical- common and locally abundant in South Ameri- ly on trees, bushes, and cacti or as ca, with a distribution centered in Argentina and a petrophyte on rocky cliffs. It is Bolivia. Only two species reach North America: T. recurvata (aka Small Ballmoss) was found growing close to the ground on the side of the barrel cactus Echinocactus platyacanthus near La Ascención, Nuevo León, Mexico (right). More often, T. recurvata is spotted (right) clinging to the bark of pine trees (Pinus johannis and Pinus arizonica var stormiae), as seen here at a Tspot between Santa Lucia and El Pinito, Nuevo León. 2 CACTUS AND SUCCULENT JOURNAL T. recurvata, sometimes called Small Ballmoss, and Tillandsia species, such as T. capillaris, T. croca- T. usneoides, the well known Spanish Moss. ta, and T. mallemontii, which are found in simi- Polyploidy, the condition wherein a plant con- lar habitats but which have different flower char- tains more than one set of chromosomes in its acteristics. cells, is common in this subgenus. Normally we T. recurvata was described by Carl Linnaeus think of polyploidy resulting in larger-than-nor- as Renealmia recurvata in 1753, the same year mal plants, but these bromeliads tend to be quite that he erected the genus Tillandsia.
    [Show full text]
  • Spanish Moss Management Kelby Fite, Phd, Plant & Environmental Science
    RESEARCH LABORATORY TECHNICAL REPORT Spanish Moss Management Kelby Fite, PhD, Plant & Environmental Science Spanish moss is a signature plant of the coastal Southeast and Gulf States. The long, slender grayish growth is frequently found on live oaks (Figure 1) and bald cypress, but many other tree species will support this plant. This plant is generally considered desirable and part of the charm of the landscape of the coastal Southeast. Spanish moss (Tillandsia usneoides) is not a moss or a Spanish moss is not parasitic to trees that support its lichen at all but an epiphyte, or “air plant” in the growth. Instead, it derives nutrients and water from bromeliad family which also includes pineapple. This rainfall and produces its own food from plant consists of slender stems with scalelike leaves photosynthesis like other green plants. In some and air roots (Figure 2). Tillandsia produces instances, Tillandsia can become so dense that it inconspicuous flowers and seed that are reponsible for shades out foliage on its host which can weaken the dispersal. Spanish moss also is spread when small tree. It can also add considerable weight and wind fragments are blown by wind or carried by animals, resistance to branches increasing the risk of storm especially birds that use the plant for nests. damage in hurricane-prone coastal areas. Figure 1: Dense accumulation of Spanish moss in Management branches of live oak Management of Spanish moss is only required when it has become so dense that it is shading out the foliage of the support plant or could increase the risk of damage during storms.
    [Show full text]
  • Bald Cypress & Dawn Redwood
    Bald Cypress & Dawn Redwood: Deciduous Conifers and Newcomers to the Urban Landscape By: Dan Petters University of Minnesota Department of Forest Resources Urban Forestry Outreach Research and Extension Lab and Nursery February, 2020 Many Minnesotans are already familiar with one type of deciduous conifer: our native tamarack (Larix laricina). Those deciduous conifers are fairly unique and relatively uncommon. They have both needle-like leaves and seeds contained in some sort of cone, but also drop their needles annually with the changing seasons. Tamaracks are often found growing in bogs or other acidic, lowland or wet sites, as well as many upland sites, and have clustered tufts of soft needles that turn yellow and are shed annually. Though, aside from our native, a couple other deciduous conifers of the Cupressaceae family have begun to make an appearance in urban and garden landscapes over the last several decades: dawn redwood (Metasequoia glyptostroboides) and bald cypress (Taxodium distichum). Dawn redwood bark and form -- John Ruter, A couple of factors have made the introduction of these two species University of Georgia, possible. Dawn redwood was thought to be extinct until the 1940s, but the Bugwood.org discovery of some isolated pockets in China made the distribution of seeds and introduction of the tree possible worldwide. Bald cypress is native to much of the southeastern US, growing in a variety of sites including standing water. Historically, this tree would not have been able to survive the harshest winters this far north, but the warming Minnesota climate over the last several decades has allowed bald cypress to succeed in a variety of plantings.
    [Show full text]
  • Spanish Moss, Ball Moss, and Lichens - Harmless Epiphytes 1 Joe Sewards and Sydney Park Brown2
    ENH1224 Spanish Moss, Ball Moss, and Lichens - Harmless Epiphytes 1 Joe Sewards and Sydney Park Brown2 Epiphytes are “air” plants that survive on moisture and Despite their common names, Spanish moss (Tillandsia nutrients in the atmosphere. Several epiphytic plants, like usneoides) and ball moss (Tillandsia recurvata) are not Spanish moss, ball moss, and lichen, are common to the mosses, but members of the Bromeliad family. Spanish Florida landscape and southeast United States. People moss (Figure 1) is easily recognizable by its pendant unfamiliar with epiphytes sometimes worry that they may strands. Ball moss (Figure 2) is a small, tufted, gray-green injure the plants they perch in. Epiphytes attach themselves plant. Both prefer high light and will therefore thrive on to plants, but they do not harm the plants, unlike mistletoe, weak or dead trees that have lost their leaves. Their pres- a plant parasite. Without soil as a source of nutrients, ence on dead or dying trees does not implicate them as the epiphytic plants have evolved the capacity to obtain miner- cause of the plant’s deterioration, however. Sick or dead als dissolved in water that flows across leaves and down host trees likely succumbed to soil compaction, altered branches. drainage, disease, or other problems that can compromise plant health. Spanish moss may speed the decline of failing While epiphytes may grow on wires, fences and other trees. This is because branches heavily laden with Spanish non-living structures, they are particularly well-adapted to moss may shade lower leaves, intercepting light needed well-lit, moist habitats commonly found near rivers, ponds for photosynthesis, and sometimes concealing structural and lakes.
    [Show full text]
  • Ball Moss Tillandsia Recurvata
    Ball Moss Tillandsia recurvata Like Spanish moss, ball moss is an epiphyte and belongs to family Bromeliaceae. Ball moss [Tillandsia recurvata (L.) L], or an air plant, is not a true moss but rather is a small flowering plant. It is neither a pathogen nor a parasite. During the past couple of years, ball moss has increas- ingly been colonizing trees and shrubs, including oaks, pines, magnolias, crape myrtles, Bradford pears and others, on the Louisiana State University campus and surrounding areas in Baton Rouge. In addition to trees and shrubs, ball moss can attach itself to fences, electric poles and other physical structures with the help of pseudo-roots. Ball moss uses trees or plants as surfaces to grow on but does not derive any nutrients or water from them. Ball moss is a true plant and can prepare its own food by using water vapors and nutrient from the environment. Extending from Georgia to Arizona and Mexico, ball moss thrives in high humidity and low intensity sunlight environments. Unlike loose, fibrous Spanish moss, ball moss grows in a compact shape of a ball ranging in size from a Figure 1. Young ball moss plant. golf ball to a soccer ball. Ball moss leaves are narrow and grayish-green, with pointed tips that curve outward from the center of the ball. It gets its mosslike appearance from the trichomes present on the leaves. Blue to violet flowers emerge on long central stems during spring. Ball moss spreads to new locations both through wind-dispersed seeds and movement of small vegetative parts of the plant.
    [Show full text]
  • Lyonia Preserve Plant Checklist
    I -1 Lyonia Preserve Plant Checklist Volusia County, Florida I, I Aceraceae (Maple) Asteraceae (Aster) Red Maple Acer rubrum • Bitterweed Helenium amarum • Blackroot Pterocaulon virgatum Agavaceae (Yucca) Blazing Star Liatris sp. B Adam's Needle Yucca filamentosa Blazing Star Liatris tenuifolia BNolina Nolina brittoniana Camphorweed Heterotheca subaxillaris Spanish Bayonet Yucca aloifolia § Cudweed Gnaphalium falcatum • Dog Fennel Eupatorium capillifolium Amaranthaceae (Amaranth) Dwarf Horseweed Conyza candensis B Cottonweed Froelichia floridana False Dandelion Pyrrhopappus carolinianus • Fireweed Erechtites hieracifolia B Anacardiaceae (Cashew) Garberia Garberia heterophylla Winged Sumac Rhus copallina Goldenaster Pityopsis graminifolia • § Goldenrod Solidago chapmanii Annonaceae (Custard Apple) Goldenrod Solidago fistulosa Flag Paw paw Asimina obovata Goldenrod Solidago spp. B • Mohr's Throughwort Eupatorium mohrii Apiaceae (Celery) BRa gweed Ambrosia artemisiifolia • Dollarweed Hydrocotyle sp. Saltbush Baccharis halimifolia BSpanish Needles Bidens alba Apocynaceae (Dogbane) Wild Lettuce Lactuca graminifolia Periwinkle Catharathus roseus • • Brassicaceae (Mustard) Aquifoliaceae (Holly) Poorman's Pepper Lepidium virginicum Gallberry Ilex glabra • Sand Holly Ilex ambigua Bromeliaceae (Airplant) § Scrub Holly Ilex opaca var. arenicola Ball Moss Tillandsia recurvata • Spanish Moss Tillandsia usneoides Arecaceae (Palm) • Saw Palmetto Serenoa repens Cactaceae (Cactus) BScrub Palmetto Sabal etonia • Prickly Pear Opuntia humifusa Asclepiadaceae
    [Show full text]
  • Quantification and Characterization of Net Precipitation Bacterial Flux from a Subtropical Epiphyte-Laden Oak Forest
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Fall 2017 Quantification and Characterization of Net Precipitation Bacterial Flux From a Subtropical Epiphyte-Laden Oak Forest Preston Pound Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Forest Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Pound, Preston, "Quantification and Characterization of Net Precipitation Bacterial Flux From a Subtropical Epiphyte-Laden Oak Forest" (2017). Electronic Theses and Dissertations. 1692. https://digitalcommons.georgiasouthern.edu/etd/1692 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. QUANTIFICATION AND CHARACTERIZATION OF NET PRECIPITATION BACTERIAL FLUX FROM A SUBTROPICAL EPIPHYTE-LADEN OAK FOREST by PRESTON THOMAS POUND (Under the Direction of John Van Stan) ABSTRACT Transport pathways of microbes between ecosystem spheres (atmosphere, phyllosphere, and pedosphere) represent major fluxes in nutrient cycles and have the potential to significantly affect microbially-mediated biogeochemical processes. We quantified a previously unexamined microbial flux from the phyllosphere to the pedosphere during rainfall via throughfall (rainfall dripping from the canopy and through gaps) and stemflow (rainwater funneled down the stem) using flow cytometry and validated with quantitative Polymerase Chain Reaction (qPCR) assays for samples from a Quercus virginiana (oak) forest with heavy epiphyte cover (Tillandsia usneoides, Spanish moss) in coastal Georgia (Southeastern USA).
    [Show full text]
  • Quercus Virginiana: Southern Live Oak1 Edward F
    ENH-722 Quercus virginiana: Southern Live Oak1 Edward F. Gilman, Dennis G. Watson, Ryan W. Klein, Andrew K. Koeser, Deborah R. Hilbert, and Drew C. McLean2 Introduction UF/IFAS Invasive Assessment Status: native Uses: street without sidewalk; shade; specimen; reclama- A large, sprawling, picturesque tree, usually graced with tion; parking lot island > 200 sq ft; tree lawn > 6 ft wide; Spanish moss and strongly reminiscent of the Old South. urban tolerant; highway median Southern live oak is one of the broadest spreading of the oaks, providing large areas of deep, inviting shade. It is the state tree of Georgia. Reaching 60 to 80 feet in height with a 60 to 120 foot spread and usually possessing many sinuously curved trunks and branches, Southern live oak is an impressive sight for any large-scale landscape. An amaz- ingly durable American native, it can measure its lifetime in centuries if properly located and cared for in the landscape. It makes an excellent street tree in the South. Unfortunately, oak wilt has devastated the tree in parts of central Texas. Give it plenty of room since the trunk can grow to more than six feet in diameter. Figure 1. Full Form—Quercus virginiana: southern live oak General Information Description Scientific name: Quercus virginiana Height: 60 to 80 feet Pronunciation: KWERK-us ver-jin-ee-AY-nuh Spread: 60 to 120 feet Common name(s): live oak, southern live oak Crown uniformity: symmetrical Family: Fagaceae Crown shape: spreading, round USDA hardiness zones: 7B through 10B (Figure 2) Crown density: dense Origin: native to the Atlantic and Gulf Coastal states of Growth rate: moderate the southeastern United States, in addition to south central Texture: fine Texas, and northeastern Mexico 1.
    [Show full text]
  • Habitat Relationships of Bat Species of Conservation Concern in Coastal South Carolina
    Clemson University TigerPrints All Theses Theses August 2020 Habitat Relationships of Bat Species of Conservation Concern in Coastal South Carolina Kyle Edward Shute Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Shute, Kyle Edward, "Habitat Relationships of Bat Species of Conservation Concern in Coastal South Carolina" (2020). All Theses. 3374. https://tigerprints.clemson.edu/all_theses/3374 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. HABITAT RELATIONSHIPS OF BAT SPEICIES OF CONSERVATION CONCERN IN COASTAL SOUTH CAROLINA A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Wildlife and Fisheries Biology by Kyle Shute August 2020 Accepted by: David S. Jachowski, Committee Chair Susan C. Loeb Catherine B. Jachowski ABSTRACT Loss of forest habitat used for roosting and nocturnal activity by bats is a conservation concern in the southeastern United States. The northern long-eared bat (Myotis septentrionalis), southeastern myotis (Myotis austroriparius), tri-colored bat (Perimyotis subflavus), and northern yellow bat (Lasiurus intermedius) all occur within the Coastal Plain of South Carolina, where their greatest conservation threat is loss of critical roosting and foraging habitats. However, little research has been conducted on these species of conservation concern in this region, leaving gaps in information about habitat associations that would inform conservation and management as forest loss continues due to logging, agriculture, urban development, and intense storm events.
    [Show full text]