WO 2015/153102 Al 8 October 2015 (08.10.2015) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2015/153102 Al 8 October 2015 (08.10.2015) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/153102 Al 8 October 2015 (08.10.2015) P O P C T (51) International Patent Classification: 62/006,832 2 June 2014 (02.06.2014) US A61K 39/00 (2006.01) C12N 5/(97 (2010.01) 62/006,828 2 June 2014 (02.06.2014) u s A61K 35/12 (2015.01) 62/006,825 2 June 2014 (02.06.2014) u s 62/006,829 2 June 2014 (02.06.2014) u s (21) Number: International Application 62/025,367 16 July 2014 (16.07.2014) u s PCT/US20 15/0206 14 62/059,100 2 October 2014 (02. 10.2014) u s (22) International Filing Date: PCT/US201 4/065304 13 March 2015 (13.03.2015) 12 November 2014 (12. 11.2014) u s (25) Filing Language: English (71) Applicant: RUBIUS THERAPEUTICS, INC. [US/US]; 1 Memorial Drive, 7th Floor, Cambridge, MA 02 142 (US). (26) Publication Language: English (72) Inventors: MATA-FINK, Jordi; c/o Rubius Therapeutics, (30) Priority Data: Inc., 1 Memorial Drive, 7th Floor, Cambridge, MA 02142 61/973,763 1 April 2014 (01.04.2014) US (US). ROUND, John; c/o Rubius Therapeutics, Inc., 1 61/973,764 1 April 2014 (01.04.2014) US Memorial Drive, 7th Floor, Cambridge, MA 02142 (US). 61/991,3 19 9 May 2014 (09.05.2014) US AFEYAN, Noubar, B.; c/o Rubius Therapeutics, Inc., 1 [Continued on nextpage] (54) Title: METHODS AND COMPOSITIONS FOR IMMUNOMODULATION (57) Abstract: Provided are cells containing exogenous antigen and uses thereof. IC binding Fig 6A 25000 ■ C s only 20000 BSA+ gG Fig 6B Memorial Drive, 7th Floor, Cambridge, MA 02142 (US). (84) Designated States (unless otherwise indicated, for every KAHVEJIAN, Avak; c/o Rubius Therapeutics, Inc., 1 kind of regional protection available): ARIPO (BW, GH, Memorial Drive, 7th Floor, Cambridge, MA 02142 (US). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (74) Agents: Lando HANNAH KOYFMAN, Ph. D. et al; & TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, Anastasi, LLP, One Main Street, Cambridge, MA 02142 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, (US). LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, (81) Designated States (unless otherwise indicated, for every SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, kind of national protection available): AE, AG, AL, AM, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, Published: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, — with international search report (Art. 21(3)) GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, — before the expiration of the time limit for amending the KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, claims and to be republished in the event of receipt of ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, amendments (Rule 48.2(h)) NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. METHODS AND COMPOSITIONS FOR IMMUNOMODULATION FIELD OF THE INVENTION [0001] The field of the invention is pharmaceutical compositions for the treatment of diseases and disorders. BACKGROUND OF THE INVENTION [0002] Aberrant immune activation is a hallmark of many human diseases and conditions. Autoimmune diseases arise when the body's immune system improperly senses an autologous antigen as non-self and attacks the body's own tissues. Inflammatory diseases and allergies can arise when the body's immune system is improperly triggered by common food-borne or environmental antigens. Polypeptides and proteins used to treat a range of human diseases are often destroyed, neutralized, or otherwise rendered ineffective by immune cells that respond to them as though they were foreign antigens. [0003] Current treatment of diseases of improper immune activation involves immunosuppression with chemical agents like corticosteroids, or inhibitors of inflammatory mediators like anti-histamines, antibodies, or cytokines. These generalized treatments are associated with significant morbidities, such as susceptibility to infection, because they broadly suppress the immune system. [0004] For some severe allergies, clinical testing is underway to induce "tolerance" to allergens by exposure to slowly increasing doses of the offending protein over time. To date theses treatments lack long-term efficacy and are associated with a risk of severe anaphylaxis. [0005] There is a need for novel therapeutics to treat these diseases. SUMMARY OF THE INVENTION The invention, in certain aspects, relates to isolated enucleated hematopoietic cells expressing an antigen. Enucleated hematopoietic cells will be referred to herein as "EHCs" (or in its singular form: "EHC"). In some embodiments, the enucleated hematopoietic cells or EHCs lack nuclear material. For example, the EHCs can be are erythroid cells or thromboid cells. In some embodiments, EHCs lacking nuclear material are red blood cells, erythrocytes, reticulocytes, or platelets. In some embodiments, the enucleated hematopoietic cells or EHCs are nucleated precursor erythroid cells or precursor thromboid cells that are, e.g., induced to lose their nuclear material or are rendered functionally enucleated and incapable of replication. In some embodiments, the exogenous antigen-expressing EHC is a circulating cell, such as a red blood cell. In some embodiments, the exogenous antigen-expressing EHC is cultured from a hematopoietic precursor using defined factors. In some embodiments, the exogenous antigen-expressing EHC is a thromboid cell, such as a platelet. In some embodiments the thromboid cell is cultured from a hematopoietic precursor using defined factors. In some embodiments, the exogenous antigen-expressing EHC is a primary cell isolated from a patient, for either autologous or allogeneic use, that is contacted with an antigen. [0006] Certain aspects of the invention relate to exogenous antigen-expressing EHCs that are capable of inducing immune tolerance when administered to a subject, e.g. in form of a pharmaceutical composition comprising the exogenous antigen-expressing EHCs. The exogenous antigen expressed by the EHCs can be tailored to a specific disease, disorder or condition. The exogenous antigen-expressing EHCs can comprise antigen in multiple ways, such as e.g. surface display, intracellular expression, intracellular loading, or surface conjugation, of the antigen of interest. The exogenous antigen-expressing EHCs may manage diseases of aberrant immune activation more effectively and/or with fewer side effects than existing treatments. For example, exogenous antigen-expressing EHCs may selectively modulate the immune system while leaving the broader immune system physiology substantially unperturbed. In some embodiments, exogenous antigen-expressing EHCs may induce the destruction, deactivation, and/or anergy of antigen-specific T and B lymphocytes. Alternatively or in addition, exogenous antigen-expressing EHCs may induce the proliferation of antigen-specific regulatory T lymphocytes. [0007] Certain aspects of the invention relate to exogenous antigen-expressing EHCs that comprise exogenous antigen that is recognized by immune cells in autoimmune diseases, such as, e.g. multiple sclerosis, type 1 diabetes, rheumatoid arthritis, and membranous nephritis. [0008] Certain aspects of the invention relate to exogenous antigen-expressing EHCs that comprise exogenous antigen that is recognized by immune cells in inflammatory diseases, such as, e.g. Crohn's disease, ulcerative colitis, celiac disease, or other idiopathic inflammatory bowl diseases. [0009] Certain aspects of the invention relate to exogenous antigen-expressing EHCs that comprise exogenous antigen that is recognized by immune cells in human leukocyte antigen (HLA) mismatch-mediated diseases, such as, e.g. graft-versus-host disease or organ transplant rejection. [0010] Certain aspects of the invention relate to exogenous antigen-expressing EHCs that comprise exogenous antigen that is recognized by immune cells in allergic diseases, such as, e.g. asthma, peanut allergy, shellfish allergy, pollen allergy, milk protein allergy, insect sting allergy, and latex allergy. [0011] Certain aspects of the invention relate to exogenous antigen-expressing EHCs that comprise exogenous antigen that is a therapeutic protein whose efficacy or potency is reduced or impaired by immune cells, such as, e.g., clotting factor VIII in hemophilia A, clotting factor IX in hemophilia B, anti-tumor necrosis factor alpha (TNFa) antibodies in rheumatoid arthritis and other inflammatory diseases, glucocerebrosidase in Gaucher' s disease, or asparaginase in acute lymphoblastic leukemia (ALL). [0012] Certain aspects of the invention relate to exogenous antigen-expressing EHCs that comprise exogenous antigen that comprises full-length, truncations, and chimeric fusions of polypeptides that a) mediate complement regulation, b) that mediate binding and sequestration of immune complexes, c) autoimmune antibodies, or d) pathogenic particles. In some embodiments, the exogenous antigen comprises full-length, truncations, and chimeric fusions of polypeptides that are enzymatically active in the conversion of one small molecule substrate into another small molecule product or of one polypetide substrate into a second polypeptide product, including, e.g., cleavage of the polypeptide substrate. [0013] The invention, in certain aspects, also provides methods of treatment of disease using the exogenous antigen-expressing EHCs and pharmaceutical compositions thereof provided herein. [0014] In some aspects, disclosed herein is a method of inducing immune tolerance. The method comprises administering to a human subject suffering from or at risk of developing an autoimmune disease, disorder or condition, a pharmaceutical composition comprising an enucleated hematopoietic cell expressing an exogenous antigen, wherein the pharmaceutical composition is administered in an amount effective to induce immune tolerance in the subject to the antigen mediating the autoimmune disease, disorder or condition.
Recommended publications
  • North Fork of the St. Lucie River Floodplain Vegetation Technical Report
    NORTH FORK ST. LUCIE RIVER FLOODPLAIN VEGETATION TECHNICAL REPORT WR-2015-005 Coastal Ecosystem Section Applied Sciences Bureau Water Resources Division South Florida Water Management District Final Report July 2015 i Resources Division North Fork of the St. Lucie River Floodplain Vegetation Technical Report ACKNOWLEDGEMENTS This document is the result of a cooperative effort between the Coastal Ecosystems Section of South Florida Water Management District (SFWMD) and the Florida Department of Environmental Protection (FDEP), Florida Park Service (FPS) at the Savannas Preserve State Park in Jensen Beach, Florida and the Indian River Lagoon Aquatic Preserve Office in Fort Pierce, Florida. The principle author of this document was as follows: Marion Hedgepeth SFWMD The following staff contributed to the completion of this report: Cecilia Conrad SFWMD (retired) Jason Godin SFWMD Detong Sun SFWMD Yongshan Wan SFWMD We would like to acknowledge the contributions of Christine Lockhart of Habitat Specialist Inc. with regards to the pre-vegetation plant survey, reference collection established for this project, and for her assistance with plant identifications. We are especially grateful to Christopher Vandello of the Savannas Preserve State Park and Laura Herren and Brian Sharpe of the FDEP Indian River Lagoon Aquatic Preserves Office for their assistance in establishing the vegetation transects and conducting the field studies. And, we would like to recognize other field assistance from Mayra Ashton, Barbara Welch, and Caroline Hanes of SFWMD. Also, we would like to thank Kin Chuirazzi for performing a technical review of the document. ii North Fork of the St. Lucie River Floodplain Vegetation Technical Report TABLE OF CONTENTS Acknowledgements ..........................................................................................................................ii List of Tables ...............................................................................................................................
    [Show full text]
  • Current Therapies for Chronic Hepatitis C
    Southern Illinois University Edwardsville SPARK Pharmacy Faculty Research, Scholarship, and Creative Activity School of Pharmacy 1-2011 Current Therapies for Chronic Hepatitis C McKenzie C. Ferguson Southern Illinois University Edwardsville, [email protected] Follow this and additional works at: https://spark.siue.edu/pharmacy_fac Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Ferguson, McKenzie C., "Current Therapies for Chronic Hepatitis C" (2011). Pharmacy Faculty Research, Scholarship, and Creative Activity. 4. https://spark.siue.edu/pharmacy_fac/4 This Article is brought to you for free and open access by the School of Pharmacy at SPARK. It has been accepted for inclusion in Pharmacy Faculty Research, Scholarship, and Creative Activity by an authorized administrator of SPARK. For more information, please contact [email protected],[email protected]. Chronic Hepatitis C & Current Therapies 1 Review of Chronic Hepatitis C & Current Therapies Reviews of Therapeutics Pharmacotherapy McKenzie C. Ferguson, Pharm.D., BCPS From the School of Pharmacy, Southern Illinois University Edwardsville, Department of Pharmacy Practice, Edwardsville, Illinois. Address for reprint requests : Southern Illinois University Edwardsville School of Pharmacy 220 University Park Drive, Ste 1037 Edwardsville, IL 62026-2000 Email: [email protected] Keywords : hepatitis C, HCV, ribavirin, interferon, peginterferon alfa-2a, peginterferon alfa-2b, albinterferon, taribavirin, telaprevir, therapeutic efficacy, safety The author received no sources of support in the form of grants, equipment, or drugs. Chronic Hepatitis C & Current Therapies 2 ABSTRACT Hepatitis C virus affects more than 180 million people worldwide and as many as 4 million people in the United States. Given that most patients are asymptomatic until late in disease progression, diagnostic screening and evaluation of patients that display high-risk behaviors associated with acquisition of hepatitis C should be performed.
    [Show full text]
  • How Macrophages Deal with Death
    REVIEWS CELL DEATH AND IMMUNITY How macrophages deal with death Greg Lemke Abstract | Tissue macrophages rapidly recognize and engulf apoptotic cells. These events require the display of so- called eat-me signals on the apoptotic cell surface, the most fundamental of which is phosphatidylserine (PtdSer). Externalization of this phospholipid is catalysed by scramblase enzymes, several of which are activated by caspase cleavage. PtdSer is detected both by macrophage receptors that bind to this phospholipid directly and by receptors that bind to a soluble bridging protein that is independently bound to PtdSer. Prominent among the latter receptors are the MER and AXL receptor tyrosine kinases. Eat-me signals also trigger macrophages to engulf virus- infected or metabolically traumatized, but still living, cells, and this ‘murder by phagocytosis’ may be a common phenomenon. Finally , the localized presentation of PtdSer and other eat- me signals on delimited cell surface domains may enable the phagocytic pruning of these ‘locally dead’ domains by macrophages, most notably by microglia of the central nervous system. In long- lived organisms, abundant cell types are often process. Efferocytosis is a remarkably efficient business: short- lived. In the human body, for example, the macrophages can engulf apoptotic cells in less than lifespan of many white blood cells — including neutro- 10 minutes, and it is therefore difficult experimentally to phils, eosinophils and platelets — is less than 2 weeks. detect free apoptotic cells in vivo, even in tissues where For normal healthy humans, a direct consequence of large numbers are generated7. Many of the molecules this turnover is the routine generation of more than that macrophages and other phagocytes use to recognize 100 billion dead cells each and every day of life1,2.
    [Show full text]
  • Monoclonal Antibodies Against Cd30 Lacking In
    (19) TZZ_97688¥_T (11) EP 1 976 883 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07K 16/28 (2006.01) A61P 35/00 (2006.01) 03.10.2012 Bulletin 2012/40 A61P 37/00 (2006.01) (21) Application number: 07718000.8 (86) International application number: PCT/US2007/001451 (22) Date of filing: 17.01.2007 (87) International publication number: WO 2007/084672 (26.07.2007 Gazette 2007/30) (54) MONOCLONAL ANTIBODIES AGAINST CD30 LACKING IN FUCOSYL AND XYLOSYL RESIDUES MONOKLONALE ANTIKÖRPER GEGEN CD30 OHNE FUCOSYL- UND XYLOSYLRESTE ANTICORPS MONOCLONAUX ANTI-CD30 DEPOURVUS DE RESIDUS FUCOSYL ET XYLOSYL (84) Designated Contracting States: • WANG, Ming-Bo AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Canberra Australian Capital Territory 2617 (AU) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR (74) Representative: Tuxworth, Pamela M. Designated Extension States: J A Kemp RS 14 South Square Gray’s Inn (30) Priority: 17.01.2006 US 759298 P London WC1R 5JJ (GB) 07.04.2006 US 790373 P 11.04.2006 US 791178 P (56) References cited: 09.06.2006 US 812702 P WO-A-03/059282 US-A1- 2004 261 148 11.08.2006 US 837202 P 11.08.2006 US 836998 P • P. BORCHMANN ET AL.: "The human anti-CD30 antibody 5F11 shows in vitro and in vivo activity (43) Date of publication of application: against malignant lymphoma." BLOOD, vol. 102, 08.10.2008 Bulletin 2008/41 no.
    [Show full text]
  • Biological and Clinical Aspects of ABO Blood Group System
    174 REVIEW Biological and clinical aspects of ABO blood group system Eiji Hosoi Department of Cells and Immunity Analytics, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan Abstract : The ABO blood group was discovered in 1900 by Austrian scientist, Karl Land- steiner. At present, the International Society of Blood Transfusion (ISBT) approves as 29 human blood group systems. The ABO blood group system consists of four antigens (A, B, O and AB). These antigens are known as oligosaccharide antigens, and widely ex- pressed on the membranes of red cell and tissue cells as well as, in the saliva and body fluid. The ABO blood group antigens are one of the most important issues in transfusion medicine to evaluate the adaptability of donor blood cells with bone marrow transplan- tations, and lifespan of the hemocytes. This article reviews the serology, biochemistry and genetic characteristics, and clini- cal application of ABO antigens. J. Med. Invest. 55 : 174-182, August, 2008 Keywords : ABO blood group, glycosyltransferase, ABO allele, cisAB allele, PASA : PCR amplification of spe- cific alleles INTRODUCTION The genes of ABO blood group has been deter- mined at chromosome locus 9 (6-9), and Yamamoto, The ABO blood group system was discovered by et al. cloned and determined the structures. It has Austrian scientist, Karl Landsteiner, who found made it possible to analyze genetically ABO blood three different blood types (A, B and O) in 1900 group antigens using molecular biology techniques from serological differences in blood called the Land- (7, 10 - 18). steiner Law (1). In 1902, DesCasterllo and Sturli dis- covered the fourth type, AB (2).
    [Show full text]
  • Differential Expression of Hydroxyurea Transporters in Normal and Polycythemia Vera Hematopoietic Stem and Progenitor Cell Subpopulations
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 Differential expression of hydroxyurea transporters in normal and polycythemia vera hematopoietic stem and progenitor cell subpopulations Tan, Ge ; Meier-Abt, Fabienne Abstract: Polycythemia vera (PV) is a myeloproliferative neoplasm marked by hyperproliferation of the myeloid lineages and the presence of an activating JAK2 mutation. Hydroxyurea (HU) is a standard treat- ment for high-risk patients with PV. Because disease-driving mechanisms are thought to arise in PV stem cells, effective treatments should target primarily the stem cell compartment. We tested for theantipro- liferative effect of patient treatment with HU in fluorescence-activated cell sorting-isolated hematopoietic stem/multipotent progenitor cells (HSC/MPPs) and more committed erythroid progenitors (common myeloid/megakaryocyte-erythrocyte progenitors [CMP/MEPs]) in PV using RNA-sequencing and gene set enrichment analysis. HU treatment led to significant downregulation of gene sets associated with cell proliferation in PV HSCs/MPPs, but not in PV CMP/MEPs. To explore the mechanism underlying this finding, we assessed for expression of solute carrier membrane transporters, which mediate trans- membrane movement of drugs such as HU into target cells. The active HU uptake transporter OCTN1 was upregulated in HSC/MPPs compared with CMP/MEPs of untreated patients with PV, and the HU diffusion facilitator urea transporter B (UTB) was downregulated in HSC/MPPs compared withCM- P/MEPs in all patient and control groups tested. These findings indicate a higher accumulation ofHU within PV HSC/MPPs compared with PV CMP/MEPs and provide an explanation for the differential effects of HU in HSC/MPPs and CMP/MEPs of patients with PV.
    [Show full text]
  • Complement Component 4 Genes Contribute Sex-Specific Vulnerability in Diverse Illnesses
    bioRxiv preprint doi: https://doi.org/10.1101/761718; this version posted September 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Complement component 4 genes contribute sex-specific vulnerability in diverse illnesses Nolan Kamitaki1,2, Aswin Sekar1,2, Robert E. Handsaker1,2, Heather de Rivera1,2, Katherine Tooley1,2, David L. Morris3, Kimberly E. Taylor4, Christopher W. Whelan1,2, Philip Tombleson3, Loes M. Olde Loohuis5,6, Schizophrenia Working Group of the Psychiatric Genomics Consortium7, Michael Boehnke8, Robert P. Kimberly9, Kenneth M. Kaufman10, John B. Harley10, Carl D. Langefeld11, Christine E. Seidman1,12,13, Michele T. Pato14, Carlos N. Pato14, Roel A. Ophoff5,6, Robert R. Graham15, Lindsey A. Criswell4, Timothy J. Vyse3, Steven A. McCarroll1,2 1 Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA 2 Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA 3 Department of Medical and Molecular Genetics, King’s College London, London WC2R 2LS, UK 4 Rosalind Russell / Ephraim P Engleman Rheumatology Research Center, Division of Rheumatology, UCSF School of Medicine, San Francisco, California 94143, USA 5 Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA 6 Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90095, USA 7 A full list of collaborators is in Supplementary Information.
    [Show full text]
  • Investigation of Candidate Genes and Mechanisms Underlying Obesity
    Prashanth et al. BMC Endocrine Disorders (2021) 21:80 https://doi.org/10.1186/s12902-021-00718-5 RESEARCH ARTICLE Open Access Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules G. Prashanth1 , Basavaraj Vastrad2 , Anandkumar Tengli3 , Chanabasayya Vastrad4* and Iranna Kotturshetti5 Abstract Background: Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. Methods: To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. Results: A total of 820 DEGs were identified between
    [Show full text]
  • Serum Albumin OS=Homo Sapiens
    Protein Name Cluster of Glial fibrillary acidic protein OS=Homo sapiens GN=GFAP PE=1 SV=1 (P14136) Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 Cluster of Isoform 3 of Plectin OS=Homo sapiens GN=PLEC (Q15149-3) Cluster of Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2 (P68871) Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 Cluster of Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 (Q13509) Cluster of Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 (P60709) Cluster of Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 (P68363) Cluster of Isoform 2 of Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTAN1 (Q13813-2) Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2 Cluster of Spectrin beta chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTBN1 PE=1 SV=2 (Q01082) Cluster of Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM PE=1 SV=4 (P14618) Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5 Cluster of ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide OS=Homo sapiens GN=ATP1A2 PE=3 SV=1 (B1AKY9) Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens GN=DPYSL2 PE=1 SV=1 Cluster of Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 (P12814) 60 kDa heat shock protein, mitochondrial OS=Homo
    [Show full text]
  • Iraqi Academic Scientific Journals
    Baghdad Science Journal Vol.11(2)2014 Gene frequencies of ABO and rhesus blood groups in Sabians (Mandaeans), Iraq Alia E. M. Alubadi* Asmaa M. Salih** Maisam B. N. Alkhamesi** Noor J.Ali*** Received 20, December, 2012 Accepted 3, March, 2014 Abstract: The present study aimed to determine the frequency of ABO and Rh blood group antigens among Sabians (Mandaeans) population. This paper document the frequency of ABO and Rh blood groups among the Sabians (Mandaeans) population of Iraq.There is no data available on the ABO/Rh (D) frequencies in the Sabians (Mandaeans) population. Total 341 samples analyzed; phenotype O blood type has the highest frequency 49.9%, followed by A 28.7%, and B 13.8% whereas the lowest prevalent blood group was AB 7.6%. The overall phenotypic frequencies of ABO blood groups were O>A>B>AB. The allelic frequencies of O, A, and B alleles were 0.687, 0.2 and 0.1122 respectively. Rhesus study showed that with a percentage of 96.2% Rh (D) positive is by far the most prevalent, while Rh (d) negative is present only in 3.8% of the total population. The Sabians (Mandaeans) ethnic group showed the same distribution of ABO and Rh blood groups with others ethnic groups in Iraqi population. Key words: Gene, ABO, rhesus blood groups, Sabians, Gene frequencies Introduction: We are very thankful to Shakoori of pre-Arab and pre-Islamic origin. Farhan dakhel and Nisreen Iehad Badri They are Semites and speak a dialect for their support and guidelines in of Eastern Aramaic known as Mandaic.
    [Show full text]
  • ABO in the Context of Blood Transfusion and Beyond
    1 ABO in the Context of Blood Transfusion and Beyond Emili Cid, Sandra de la Fuente, Miyako Yamamoto and Fumiichiro Yamamoto Institut de Medicina Predictiva i Personalitzada del Càncer (IMPPC), Badalona, Barcelona, Spain 1. Introduction ABO histo-blood group system is widely acknowledged as one of the antigenic systems most relevant to blood transfusion, but also cells, tissues and organs transplantation. This chapter will illustrate a series of subjects related to blood transfusion but will also give an overview of ABO related topics such as its genetics, biochemistry and its association to human disease as well as a historical section. We decided not to include much detail about the related Lewis oligosaccharide antigens which have been reviewed extensively elsewhere (Soejima & Koda 2005) in order to focus on ABO and allow the inclusion of novel and exciting developments. A/B antigens on ABO group Anti-A/-B in serum Genotype red blood cells O None Anti-A and Anti-B O/O A A Anti-B A/A or A/O B B Anti-A B/B or B/O AB A and B None A/B Table 1. Simple classification of ABO phenotypes and their corresponding genotypes. As its simplest, the ABO system is dictated by a polymorphic gene (ABO) whose different alleles encode for a glycosyltransferase (A or B) that adds a monosaccharide (N-acetyl-D- galactosamine or D-galactose, respectively) to a specific glycan chain, except for the protein O which is not active. The 3 main alleles: A, B and O are inherited in a classical codominant Mendelian fashion (with O being recessive) and produce, when a pair of them are combined in a diploid cell, the very well known four phenotypic groups (see Table 1).
    [Show full text]
  • Regulatory Mechanisms of Apoptosis in Regularly Dividing Cells
    Cell Health and Cytoskeleton Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Regulatory mechanisms of apoptosis in regularly dividing cells Ribal S Darwish Abstract: The balance between cell survival and death is essential for normal development and Department of Anesthesiology, homeostasis of organisms. Apoptosis is a distinct type of cell death with ultrastructural features Division of Critical Care Medicine, that are consistent with an active, inherently controlled process. Abnormalities and dysregulation University of Maryland Medical of apoptosis contribute to the pathophysiology of multiple disease processes. Apoptosis is strictly Center, Baltimore, Maryland, USA regulated by several positive and negative feedback mechanisms that regulate cell death and determine the final outcome after cell exposure to apoptotic stimuli. Mitochondria and caspases are central components of the regulatory mechanisms of apoptosis. Recently, noncaspase pathways of apoptosis have been explored through the studies of apoptosis-inducing factor and endonu- clease G. Multiple difficulties in the apoptosis research relate to apoptosis detection and imaging. For personal use only. This article reviews current understanding of the regulatory mechanisms of apoptosis. Keywords: caspases, apoptosis-inducing factor, apoptosis inhibitory proteins, cytochrome c, mitochondria Introduction Apoptosis is a distinct type of cell death with ultrastructural features that are con- sistent with an active, inherently controlled process, and it is a part of the necrobio- sis, a process that is essential in maintaining tissue homeostasis. The concept that cells must be lost from the normal tissues to balance their mitotic activity was first proposed by the German anatomist Ludwig Graper,1 who proposed that chromolysis must exist in the cells that will be eliminated.
    [Show full text]