PATENT Office Cellulose ACETATE Comirostion Louis E

Total Page:16

File Type:pdf, Size:1020Kb

PATENT Office Cellulose ACETATE Comirostion Louis E Patented Sept. 7, 1937 2,092,677 UNITED STATEs 2,092,677PATENT office CELLULose ACETATE coMirosTION Louis E. Lovett, Cleveland Heights, Ohio, assign Ohio,or to Industriala corporation Rayon of Delaware Corporation, Cleveland, No Drawing. Application August 30, 1934, Serial No. 742,155 6 Cain. (C. 108-40) This invention relates to filaments, ribbons, tles to the articles formed therefrom other ob sheets and other articles formed from solu jects will in part be obvious and will in part tions or other dispersions of cellulose acetate, appear more fully hereinafter. as well as to the compositions and methods of Among the acetates of polysaccharides other 6 making the compositions from which such ar than cellulose that may be incorporated in solu ticles are formed. The invention involves, tions or other dispersions of cellulose acetate among other things, the incorporation in solu may be mentioned the various acetates of the tions or other dispersions of cellulose acetate polysaccharide sugars, such, for example, as of various proportions of acetates of polysac Sucrose, maltose, lactose and other disaccharides, 10 charides other than cellulose; for example, ace the acetates of the trisaccharides raffinose, and tates of sucrose. Such acetates may be mixed the acetates of the tetrasaccharide stachyose. 0. or otherwise combined in a common liquid ve Acetates of still other polysaccharides than those hicle with the cellulose acetate, being in general mentioned may also be used, such, for example, perfectly compatible therewith, and when so as the acetates of cellobiose, starch, inulin, dex l6 mixed or combined give rise to compositions trin, gums and the like. Thus, among others, having the capability of being formed, in much maltose octaacetate, lactose octaacetate and cel 5 the same manner as solutions of cellulose ace lobiose octacetate may be incorporated in the tate, into flaments, ribbons, sheets, and other Solution or other dispersion of the cellulose ace articles having high tensile strengths and other tate. Preferably, however, the acetates of 20 desirable properties. s. sucrose are used, including both the fully acet- 20 Cellulose acetate has been formed hereto ylated Sucrose octaacetate and the less fully fore into flaments, ribbons, sheets and other acetylated esters such as sucrose monoacetate, articles similar to those made from viscose, but diacetate, triacetate, and so on. Good results , inasmuch as cellulose acetate is a more expen can also be obtained by mixing or otherwise 25 sive material than viscose, the regenerated cel combining with the cellulose acetate in a liquid 25 lulose articles formed from the latter have in vehicle the mixture of acetates of sucrose ob general been preferred on account of cheapness tained by acetylating cane or beet sugar, such despite certain advantages inherent in cellulose mixture, termed "acetylated sugar", including acetate such, for example, as its relative in various acetates of sucrose in various propor 30 permeability to moisture. It has now been found tions. - 30 that the cost of flaments, ribbons, sheets and The compositions to which the invention re other articles made from solutions or other dis-, lates may be formed by adding the cellulose ace persions of cellulose acetate may be greatly re tate, which may be any of the cellulose acetates duced and the physical properties thereof in commonly made, such as the monoacetate, the 35 many cases considerably improved by the incor diacetate, or even the triacetate, to a liquid ve poration in the solution or other dispersion of hicle, preferably acetone, together with an acet 35 cellulose acetate of various proportions of ace ylated polysaccharide other than cellulose and tates of polysaccharides other than cellulose, the any other ingredients, usually plasticizers or the same having been found to be compatible with . like, that it may be desired to include in the COm-, 40 the cellulose acetate and to give rise to com position. All of the constituents are thoroughly 40 positions from which may be formed articles of dissolved or otherwise dispersed in the acetone uniform characteristics. and the mass is then extruded through appro It is accordingly an object of the present in priate apparatus to form flaments, ribbons, vention to provide articles of improved physical sheets, etc., or otherwise manipulated as may 45 characteristics formed from solutions or other be found desirable. The composition is then set 45 dispersions containing cellulose acetate. An by evaporation of the acetone. Upon examina other object of the invention is to provide com tion, the resulting products will be found in positions capable of being extruded and set to many instances to have greater tensile strength form flaments, ribbons, sheets and other ar than heretofore obtainable by the manipulation 50 ticles, such compositions containing not only cel of solutions containing only cellulose acetate and 50 lulose acetate but also acetates of polysaccharides plasticizers; i. e., without the addition of acet other than cellulose. A further object of the in ylated polysaccharides other than cellulose. vention is to provide a method of preparing less The exact composition used may be varied with costly solutions or other dispersions of cellulose in widelimits and many different plasticizers and acetate capable of imparting desirable proper other substances may be, included in the mix 2 2,092,877 Crose octaacetate may be added to the solution in without departing from the spirit of the inven the form of the pure crystals, which have a bitter tion. taste, but it is observed that a cellulose acetate As illustrative of dispersions that may be made sheet containing sucrose octaacetate is neverthe up in accordance with the invention, the ac less free from the taste of sucrose octaacetate, companying examples are given; but it should thus permitting its use in the wrapping of food be understood that the invention is not limited stuffs and confections. Sucrose tetraacetate, un thereto, procedurally or otherwise. like sucrose octaacetate, is not a crystalline mate Eacample 1 rial, but a viscous substance; this, however, con Stitutes no objection to its use in lieu of or in con 0 10 The following are dissolved in 5,500 cc. of ace junction with Sucrose Octaacetate, since it is read tOne: ily incorporated in the solution and forms a uni Grams form mass with the other ingredients thereof. Medium viscosity cellulose acetate-------- 1,000 The Sucrose mono-, tri-, penta-, hexa-, and hep Sucrose octaacetate--------------------- 100 taacetates are also suitable, both alone and to 5 Diethyl phthalate---------------------- 300 gether with other sucrose acetates, Glyptal resin--------------------------- 300 Warious plasticizing agents, such as glycerine, All the ingredients are added to the acetone glycerine-phthalic acid resins, polyglycerol, di gradually, with constant stirring, until com ethyl phthalate, tricresyl phosphate, etc., may pletely dissolved. also be added to the composition, as may also 20 20 Eacample 2 appropriate pigments, dyes and the like. It is obvious that numerous changes may be, In 540 cc. of acetone are dissolved the follow made in the invention as herein described, such ing: changes extending, for example, to the liquid ve Grams hicle employed, the amount of cellulose acetate 25 25 Medium viscosity cellulose acetate----------- 90 used, the nature of the added acetylated polysac Sucrose Octaacetate ------------------------ 40 charides, the kind of plasticizer, etc. Among Diethyl phthalate -------------------------- O other things, it is not necessary that all of the in These ingredients are brought into solution in the gredients employed in preparing the composition 30 acetone with constant stirring, as in Example 1. be completely soluble in the liquid vehicle em 30 Flexible transparent films may be formed from ployed: homogeneous dispersions thereof may be the solutions described in the foregoing illustra used to, good advantage in the practice of the in tive examples, as also from other dispersions pre vention. Numerous modifications of the proced pared in a similar manner, by placing the compo ure employed in forming the final product may sition in a hopper having a narrow slotted open also be made; thus instead of forming a sheet, 35 ing and causing the composition to flow through as in the examples given herein, the composition the opening onto a large drum placed immediately may be used in the production of flaments, rib thereunder. As the drum is revolved, the compo bons, etc., as well as in other ways obvious to sition is deposited thereon in the form of a thin those skilled in the art. It is intended that the 40 film from which the liquid vehicle is evaporated patent shall cover, by suitable expression in the 40 either by heat supplied from within the drum or appended claims, whatever features of patentable by heat from the surrounding atmosphere. Even novelty reside in the invention. tually there is left on the drum a thin transparent What I claim is: sheet that may be stripped of continuously. The 1. A thin, transparent film comprising, in in 45 composition may, if desired, be extruded through timate solid admixture, cellulose acetate and su 45 a spinneret to form flaments capable of being crose octaacetate, said film being characterized combined into a thread of artificial silk in the by homogeneity, flexibility and relative imperme usual manner. The composition may also be ability to moisture. manipulated by various other methods. to form 2. A thin, transparent film comprising, in in 50 articles of any desired shapes. timate Solid admixture, cellulose acetate and an 50 As mentioned, the cellulose acetate used may be acetylated polysaccharide sugar, said film being the mono-, di-, or triacetate, but the lower ace characterized by homogeneity, flexibility and rel tates produce stronger sthan the higher ace ative3. A impermeability thin, transparent to moisture, film comprising, in in tates and consequently are preferred for that timate solid admixture, cellulose acetite and an 55 55 reason.
Recommended publications
  • Chemistry and New Uses of Sucrose: How Important?
    Pure & Appi. Chem., Vol. 56, No. 7, pp. 833—844, 1984. 0033—4545/84 $3.OO+O.OO Printed in Great Britain. Pergamon Press Ltd. ©1984 IUPAC CHEMISTRY AND NEW USES OF SUCROSE: HOW IMPORTANT? Riaz Khan Philip Lyle Memorial Research Laboratory, Tate & Lyle PLC, Whiteknights P.O. Box 68, Reading, England Abstract —Somerecent work on selective reactions of sucrose is described. These reactions reveal a profile of chemical reactivity which has been exploited to produce a number of products of commercial significance. The potential of sucrose as a raw material for chemicals and energy is also indicated. INTRODUCTION The world economy is critically dependent upon oil which is a non—regenerable material. In order to maintain an economic order in the world it is therefore imperative that the future energy and chemical needs are secured. In the short—term we must curb on wasteful consumption of oil and in the long—term dependence on oil must be reduced. Alternative resources such as coal, tarsands, shale oil, natural gas and lignite, agricultural and aquatic materials must be considered as sources of energy and chemicals. The potential of carbohydrates as feedstocks for chemicals has been demonstrated, but not yet significantly commercially realised except in a few instances. Although cellulose is the most abundant carbohydrate, several technical difficulties in its processing makes it economically unattractive as a raw material for energy and chemicals. In contrast sucrose and starch are readily amenable to chemical and biochemical modifications giving a range of compounds presently derived through petrochemical routes, as well as new derivatives of potential commercial significance.
    [Show full text]
  • Natured Alcohol and Spe- Cially Denatured
    Alcohol and Tobacco Tax and Trade Bureau, Treasury § 21.141 (c) Purity. Technical grade or better. droxide. Reflux for 1 hour on a steam bath, cool and titrate the excess so- [T.D. ATF–133, 48 FR 24673, June 2, 1983. Re- designated by T.D. ATF–442, 66 FR 12854, dium hydroxide with 0.5 N sulfuric acid Mar. 1, 2001] using phenolphthalein indicator. Percent sucrose octaacetate=(ml NaOH¥ml § 21.129 Spearmint oil, terpeneless. H2SO4)×4.2412/weight of sample (a) Carvone content. Not less than 85 percent by weight. [T.D. ATF–133, 48 FR 24673, June 2, 1983. Re- ° designated by T.D. ATF–442, 66 FR 12854, (b) Refractive index at 20 C. 1.4930 to Mar. 1, 2001] 1.4980. (c) Specific gravity at 25 °/25 °C. 0.949 to § 21.132 Toluene. 0.956. (d) Odor. Characteristic odor. (a) Distillation range. (For applicable ASTM method, see 1980 Annual Book of [T.D. ATF–133, 48 FR 24673, June 2, 1983. Re- ASTM Standards, Part 29, page 569, designated by T.D. ATF–442, 66 FR 12854, Standard No. D 362–75 for industrial Mar. 1, 2001] grade toluene; for incorporation by ref- § 21.130 Spike lavender oil, natural. erence, see § 21.6(b).) When 100 ml of tol- uene are distilled by this method, not (a) Alcohol content (as borneol). Not more than 1 ml should distill below 109 less than 30 percent by weight. °C., and not less than 99 ml below 112 (b) Esters (as bornyl acetate). Not less °C. than 1.5 percent by weight.
    [Show full text]
  • SDS Contains All of the Information Required by the HPR
    SAFETY DATA SHEET Preparation Date: 01/26/2015 Revision Date: 7/25/2018 Revision Number: G2 1. IDENTIFICATION Product identifier Product code: SU104 Product Name: SUCROSE OCTAACETATE, NF Other means of identification Synonyms: alpha-d-glucopyranoside; 1,3,4,6-tetra-O-acetyl-beta-D-Frutofuranosyl; tetraacetate; Octaacetylsucrose CAS #: C28H38O19 RTECS # WN6620000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: No information available. Uses advised against No information available Supplier: Spectrum Chemical Mfg. Corp 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is not considered hazardous according to the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Not a dangerous substance or mixture according to the Globally Harmonized System (GHS) Label elements Not classified Hazards not otherwise classified (HNOC) Not Applicable Other hazards Not available Product code: SU104 Product name: SUCROSE 1 / 10 OCTAACETATE, NF 3. COMPOSITION/INFORMATION ON INGREDIENTS Components CAS-No. Weight % Sucrose Octaacetate 126-14-7 100 4. FIRST AID MEASURES First aid measures General Advice: National Capital Poison Center in the United States can provide assistance if you have a poison emergency and need to talk to a poison specialist. Call 1-800-222-1222. Skin Contact: Wash off immediately with soap and plenty of water removing all contaminated clothing and shoes. Get medical attention if irritation develops. Consult a physician if necessary.
    [Show full text]
  • United States Patent Office Patented Apr
    2,931,802 United States Patent Office Patented Apr. 5, 1960 1. 2 solved. Any unreacted anhydride and acid by-product are removed by distillation under reduced pressure. To re 2931,802 move traces of acid and the salt catalyst, the residue is dis solved in a water-immiscible inert solvent and the result MXED ESTERS OF GLUCOSE AND SUCROSE ing solution is washed with dilute NaOH or Na2CO3, George P. Touey and Herman E. Davis, Kingsport, Tenn., following which the aqueous layer is removed and the assignors to Eastman Kodak Company, Rochester, N.Y., inert solvent is distilled off under reduced pressure. Ordi a corporation of New Jersey narily, 2-3 hours gives sufficient time to run the reaction No Drawing. Application April 30, 1958 to completion although longer times. may be employed. Serial No. 731,890 10 If desired, an inert diluent may be employed in the esteri fication bath such as a ketonelike diethyl ketone, a hydro 7 Claims. (CI. 260-234) carbon such as toluene, or a chlorinated hydrocarbon such as propylene chloride. If a solvent is used its boil ing point should be within the range of 90-140 C. This invention relates to organic solvent soluble short 5 Acid diluents are preferably avoided since they may react chain fatty acid esters of sucrose and of glucose and with the anhydrides used, thereby altering the anhydride their method of preparation. In particular it relates to ratio employed. ... completely esterified or highly esterified mixed fatty acid To obtain non-crystallizing esters in accordance with esters of sucrose and glucose containing a combination of our invention the proportions of the combinations acetic acetyl and propionyl groups, or acetyl (or propionyl) and 20 anhydride-propionic anhydride, acetic anhydride-isobutyric isobutyryl groups as acyl substituents.
    [Show full text]
  • Optimization of Ultrasound Synthesis of Sucrose Esters by Selection of a Suitable Catalyst and Reaction Conditions
    JournalJournal of Chemical of Chemical Technology Technology and Metallurgy,and Metallurgy, 56, 2, 56, 2021, 2, 2021 268-274 OPTIMIZATION OF ULTRASOUND SYNTHESIS OF SUCROSE ESTERS BY SELECTION OF A SUITABLE CATALYST AND REACTION CONDITIONS Dragomir Vassilev1, Nadezhda Petkova2, Milena Koleva1, Panteley Denev2 1 Technical University of Gabrovo, 4 Hadji Dimitar str., 5300 Gabrovo, Bulgaria Received 25 October 2019 2 University of Food Technologies, 26 Maritza blv., 4002 Plovdiv, Bulgaria Accepted 10 January 2020 E-mail: [email protected] ABSTRACT Sucrose is used as a renewable raw material for the preparation of esters in various fields such as detergents, whitening boosters, cosmetics, medicines, nutritional supplements, emulsifiers, stabilizing agents, etc. By transes- terification of all hydroxyl groups with fatty acids, the polysubstituted sucrose esters acquire specific physical and organoleptic properties of fats. Sucrose esters, with three or less substituted OH groups with fatty acids, are suitable as surfactants and nutritional supplements due to their emulsification, stabilizing and conditioning properties. The main problem with the synthesis of sucrose esters relates to the high functionality of the sucrose molecule - eight hydroxyl groups that compete during the synthesis and lead to the formation of mixtures of monoesters, diesters and even higher esters. Transesterification can be oriented to a specific substitution model by carefully selecting the reaction conditions. Therefore, the focus of this study was to clarify the effects of the sucrose to fatty acid molar ratio, catalyst and reaction temperature on the rate of sucrose ester formation in a specific substitution mode (monoesters). Keywords: sucrose, transesterification, ultrasound synthesis, sucrose esters. INTRODUCTION rate of chemical reactions in solution through the phe- nomenon of cavitation and the generation of microbub- The interest in sucrose esters, which are surfactants bles.
    [Show full text]
  • Temporary Compounding of Certain Alcohol-Based Hand Sanitizer Products During the Public Health Emergency Immediately in Effect Guidance for Industry
    Policy for Temporary Compounding of Certain Alcohol-Based Hand Sanitizer Products During the Public Health Emergency Immediately in Effect Guidance for Industry FDA is issuing this guidance for immediate implementation in accordance with 21 CFR 10.115(g)(2). Comments may be submitted at any time for Agency consideration. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. Submit electronic comments to https://www.regulations.gov. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register. For questions regarding this document, contact FDA’s human drug compounding team (CDER) at [email protected]. March 2020 Updated February 10, 2021 Compounding Contains Nonbinding Recommendations Policy for Temporary Compounding of Certain Alcohol-Based Hand Sanitizer Products During the Public Health Emergency Immediately in Effect Guidance for Industry Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993-0002 Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353 Email: [email protected] https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET SECTION 1: CHEMICAL PRODUCT and COMPANY IDENTIFICATION Product Name: Sucrose octaacetate 98% Product Code: S10780 Supplier: Pfaltz & Bauer, Inc. 172 E. Aurora Street Waterbury, CT 06708 USA Phone: 203-574-0075 FAX: 203-574-3181 Emergency Phone: INFOTRAC, US: 1-800-535-5053 INFOTRAC, INTERNATIONAL: +1-352-323-3500 SECTION 2: HAZARDS IDENTIFICATION Statement of Hazard: Irritant, Respiratory irritant Acute Health Hazard: Irritant to eyes, skin, mucous membranes and respiratory system. May be harmful by ingestion, skin absorption and inhalation. Chronic Health Hazard: Not Available HMIS Rating: H: 1 F: 0 P: 0 NFPA Rating: H: 1 F: 0 R: 0 To the best of our knowledge, the toxicological properties of this chemical have not been thoroughly investigated. Use appropriate procedures and precautions to prevent or minimize exposure. GHS Classification in accordance with 29 CFR 1910 (OSHA HCS): Acute toxicity, dermal (Category 4), H312 Acute toxicity, inhalation (Category 4), H332 Acute toxicity, oral (Category 4), H302 Serious eye damage/eye irritation (Category 2A), H319 Skin corrosion/irritation (Category 2), H315 Specific target organ toxicity, single exposure; Respiratory tract irritation (Category 3), H335 Page 1 of 6 Pictogram: Signal Word: Warning Hazard Statement(s): H302 Harmful if swallowed. H312 Harmful in contact with skin. H315 Causes skin irritation. H319 Causes serious eye irritation. H332 Harmful if inhaled. H335 May cause respiratory irritation. Precautionary Statement(s): P261 Avoid breathing dust/fume/gas/mist/vapors/spray. P280 Wear protective gloves/protective clothing/eye protection/face protection. P301+P312 IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell.
    [Show full text]
  • SU104 12 KG Sucrose Octaacetate
    Scientific Documentation SU104, Sucrose Octaacetate, NF Not appropriate for regulatory submission. Please visit www.spectrumchemical.com or contact Tech Services for the most up‐to‐date information contained in this information package. Spectrum Chemical Mfg Corp 769 Jersey Avenue New Brunswick, NJ 08901 Phone 732.214.1300 Ver4.01 27.April.2016 Dear Customer, Thank you for your interest in Spectrum’s quality products and services. Spectrum has been proudly serving our scientific community for over 45 years. It is our mission to manufacture and distribute fine chemicals and laboratory products with Quality and delivery you can count on every time. To accomplish our mission, Spectrum utilizes our sourcing leverage and supplier qualification expertise in offering one of the industry’s most comprehensive line of fine chemical products under one brand, in packaging configurations designed to meet your research and production requirements. Our product grades include: USP, NF, BP, EP, JP, FCC, ACS, KSA, Reagent grade, as well as DEA controlled substances. We operate facilities in the United States on the East Coast, West Coast, as well as in Shanghai, China in order to provide the best logistical support for our customers. At Spectrum, Quality is priority number one. Suppliers with the best qualifications are preferred and we employ full-functioning in-house analytical laboratories at each of our facilities. Our facilities and systems are USFDA registered and ISO certified. We frequently host customer audits and cherish opportunities for improvements. Quality is engrained into our culture. Quality is priority number one. In the following pages, we have designed and prepared documented scientific information to aid you in your initial qualification or your continual use of our products.
    [Show full text]
  • Synthesis of Sucrose Fatty Acid Esters by Using Mixed
    Journal of Oleo Science Copyright ©2020 by Japan Oil Chemists’ Society doi : 10.5650/jos.ess19239 J. Oleo Sci. 69, (7) 693-701 (2020) Synthesis of Sucrose Fatty Acid Esters by Using Mixed Carboxylic-fatty Anhydrides Iteb Trabelsi, Kamel Essid* , and Mohamed Hedi Frikha Laboratory of Organic Chemistry LR17ES08: Faculty of sciences in Sfax, Route de Soukra Km 3,5 – BP 1171-3000. Sfax. TUNISIA Abstract: Fatty acid sugar esters are non-ionic surfactant active agents with excellent performance and many uses. This work is devoted to the synthesis of sugar esters by the esterification reaction of sugar with mixed carboxylicpalmitic anhydrides using resin Amberlyst-15 as heterogeneous acid catalyst. These anhydrides should be stable and react as acylating agents. Influence of different reaction parameters, such as the molar ratio (sucrose/anhydride), the type of solvent and the reaction time on the yield of the esterification reaction were studied. The esterification reaction of sucrose with mixed palmitic benzoic anhydride leads to a mixture of sucrose esters of palmitic acid with a good percentage of conversion. The mixed anhydride was both reactive and selective for the preparation of fatty acid ester. Key words: fatty acid, mixed anhydride, heterogeneous acid catalyst, resin Amberlyst-15, esterification, sucrose, acylation of sucrose, sucrose fatty acid esters (SEs) 1 Introduction mixed anhydrides have been often employed in order to Sucrose fatty acid esters(SEs), commonly called sugar obtain a high yield of ester16). Mixed anhydrides obtained esters, are nonionic surfactants that have excellent emulsi- from two different carboxylic acids are molecules finding fying, stabilizing, detergency and other useful effect1-4).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,906,413 B2 Chang Et Al
    USOO8906413B2 (12) United States Patent (10) Patent No.: US 8,906,413 B2 Chang et al. (45) Date of Patent: Dec. 9, 2014 (54) DRUG FORMULATIONS HAVING REDUCED (56) References Cited ABUSE POTENTIAL U.S. PATENT DOCUMENTS (75) Inventors: Rong-Kun Chang, Rockville, MD (US); 3,079,303 A 2f1963 Raffet al. 3,383,283 A * 5, 1968 Brindamour .................. 424/490 Richard A. Couch, Chevy Chase, MD 4,070,494 A 1/1978 Hoffmeister et al. ............. 424.2 (US); Beth A. Burnside, Bethesda, MD 4,401,672 A 8/1983 Portoghese ... ... 424,260 (US) 4,457.933 A 7/1984 Gordon et al. ... 424,260 4,834,965 A 5/1989 Martani et al. 5,162.341 A 1 1/1992 Cook ............................ 514,317 (73) Assignee: Supernus Pharmaceuticals, Inc., 5,236,714 A 8/1993 Lee et al. ...................... 424/449 Rockville, MD (US) (Continued) (*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 EP 1382.331 A1 1, 2004 U.S.C. 154(b) by 1073 days. OTHER PUBLICATIONS (21) Appl. No.: 10/435,597 Non-Final Office Action mailed on Apr. 7, 2009 in U.S. Appl. No. 1 1/250,309, 11 pages. Matschiner et al. “Characterization of ion pair formation between (22) Filed: May 12, 2003 erythromycin and lipophilic counter ions.” Pharmazie, 1995, vol. 50. pp. 462-464. (65) Prior Publication Data (Continued) US 2004/02288O2A1 Nov. 18, 2004 Primary Examiner — Lakshmi Channavaljala (74) Attorney, Agent, or Firm — Foley & Lardner LLP; Sunit Talapatra (51) Int. C. (57) ABSTRACT A6K9/20 (2006.01) Drug formulations having reduced abuse potential which A 6LX 9/50 (2006.01) contain one or more of (1) a bittering agent, (2) a bright A 6LX 9/70 (2006.01) deterrent/indicator dye and (3) fine insoluble particulate mat A6 IK3I/00 (2006.01) ter.
    [Show full text]
  • Ultrasound-Assisted Synthesis of Antimicrobial Inulin and Sucrose Esters with 10-Undecylenic Acid
    Article Volume 11, Issue 4, 2021, 12055 - 12067 https://doi.org/10.33263/BRIAC114.1205512067 Ultrasound-Assisted Synthesis of Antimicrobial Inulin and Sucrose Esters with 10-Undecylenic Acid Nadezhda Petkova 1,* , Radka Arabadzhieva 1, Ivanka Hambarliyska 1, Dragomir Vassilev 2 , Gergana Gencheva 1, Yulian Tumbarski 3 , Tsveteslava Ignatova-Ivanova 4, Sevginar Ibryamova 4 , Milena Koleva 2, Panteley Denev 1 1 Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritza Blvd., Plovdiv 4002, Bulgaria; [email protected] (N.P.); [email protected] (R.A.); [email protected] (V.H.); [email protected] (P.D.); 2 Department of Physics, Chemistry and Ecology, Technical University of Gabrovo, 4, Hadji Dimitar Str., Gabrovo 5300, Bulgaria; e-mail: [email protected] (D.V.); [email protected] (M.K.); 3 Department of Microbiology, University of Food Technologies, 26 Maritza Blvd., Plovdiv, Bulgaria; [email protected] (Y.T.); 4 Department of Biology, Konstantin Preslavsky University of Shumen, Shumen, Bulgaria; [email protected] (T.I.); e-mail: [email protected] (S.I); * Correspondence: [email protected]; Scopus Author ID 56507003400 Received: 1.12.2020; Revised: 28.12.2020; Accepted: 30.12.2020; Published: 2.01.2021 Abstract: An environmentally friendly and sustainable ultrasound-assisted esterification of long- chained inulin and sucrose with monounsaturated 10-undecylenic acid was performed. The obtained esters were characterized by thin-layer chromatography (TLC), Fourier transforms infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR) spectroscopy. The spectral analyses demonstrated the successful incorporation of the hydrophobic 10-undecylenoyl residue in the water- soluble carbohydrate backbone. Additionally, the antimicrobial potential of 10-undecylenic esters of inulin and sucrose were tested against nine microorganisms (Gram-positive and Gram-negative bacteria, yeasts, and fungi).
    [Show full text]
  • JI470-002 Sucrose Octaacetate
    Version: 1.0 Revision date: Safety Data Sheet 12/09/2015 Supersedes: 03/01/2013 Sucrose Octaacetate 1. Product and Company Identification 1.1. Product Identifiers Product Form: powder Substance Name: Sucrose Octaacetate CAS No.: 126-14-7 Product Code: UIC, Inc. Catalog Number CM300-011 1.2. Intended Use of the Product Use of the substance/mixture: Laboratory chemicals, Manufacture of substances, Combustion tubes Name, Address, and Telephone of the Responsible Party UIC Inc 1225 Channahon Rd Joliet, IL 60436 Phone: (815) 744-4477 Fax: (815) 744-1561 Emergency Telephone Number For Chemical Emergency, Spill, Leak, Fire, Exposure, or Accident, call emergency number: 1-815-474-8753 2. Hazards Identification of the product 2.1. Classification of the substance or mixture Not a hazardous substance or mixture. 2.2. GHS Label elements, including precautionary statements Not a hazardous substance or mixture. 2.3. Hazards not otherwise classified (HNOC) or not covered by GHS – none 3. Composition/information on ingredients 3.1. Substances Chemical name: Sucrose octaacetate Synonyms: D-(+)-Sucrose octaacetate Formula: C28H38O19 Molecular weight: 678.59 g/mol CAS-No.: 126-14-7 EC-No.: 204-772-1 No components need to be disclosed according to the applicable regulations. 4. First Aid Measures 4.1. Description of first aid measures General advice Consult a physician. Show this safety data sheet to the doctor in attendance. If inhaled If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician. In case of skin contact Wash off with soap and plenty of water. Consult a physician.
    [Show full text]