Electromagnetic Wave Equation - Wikipedia, the Free Encyclopedia Page 1 of 9
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
On the Linkage Between Planck's Quantum and Maxwell's Equations
The Finnish Society for Natural Philosophy 25 years, K.V. Laurikainen Honorary Symposium, Helsinki 11.-12.11.2013 On the Linkage between Planck's Quantum and Maxwell's Equations Tuomo Suntola Physics Foundations Society, www.physicsfoundations.org Abstract The concept of quantum is one of the key elements of the foundations in modern physics. The term quantum is primarily identified as a discrete amount of something. In the early 20th century, the concept of quantum was needed to explain Max Planck’s blackbody radiation law which suggested that the elec- tromagnetic radiation emitted by atomic oscillators at the surfaces of a blackbody cavity appears as dis- crete packets with the energy proportional to the frequency of the radiation in the packet. The derivation of Planck’s equation from Maxwell’s equations shows quantizing as a property of the emission/absorption process rather than an intrinsic property of radiation; the Planck constant becomes linked to primary electrical constants allowing a unified expression of the energies of mass objects and electromagnetic radiation thereby offering a novel insight into the wave nature of matter. From discrete atoms to a quantum of radiation Continuity or discontinuity of matter has been seen as a fundamental question since antiquity. Aristotle saw perfection in continuity and opposed Democritus’s ideas of indivisible atoms. First evidences of atoms and molecules were obtained in chemistry as multiple proportions of elements in chemical reac- tions by the end of the 18th and in the early 19th centuries. For physicist, the idea of atoms emerged for more than half a century later, most concretely in statistical thermodynamics and kinetic gas theory that converted the mole-based considerations of chemists into molecule-based considerations based on con- servation laws and probabilities. -
Guide for the Use of the International System of Units (SI)
Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S. -
Linear Elastodynamics and Waves
Linear Elastodynamics and Waves M. Destradea, G. Saccomandib aSchool of Electrical, Electronic, and Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; bDipartimento di Ingegneria Industriale, Universit`adegli Studi di Perugia, 06125 Perugia, Italy. Contents 1 Introduction 3 2 Bulk waves 6 2.1 Homogeneous waves in isotropic solids . 8 2.2 Homogeneous waves in anisotropic solids . 10 2.3 Slowness surface and wavefronts . 12 2.4 Inhomogeneous waves in isotropic solids . 13 3 Surface waves 15 3.1 Shear horizontal homogeneous surface waves . 15 3.2 Rayleigh waves . 17 3.3 Love waves . 22 3.4 Other surface waves . 25 3.5 Surface waves in anisotropic media . 25 4 Interface waves 27 4.1 Stoneley waves . 27 4.2 Slip waves . 29 4.3 Scholte waves . 32 4.4 Interface waves in anisotropic solids . 32 5 Concluding remarks 33 1 Abstract We provide a simple introduction to wave propagation in the frame- work of linear elastodynamics. We discuss bulk waves in isotropic and anisotropic linear elastic materials and we survey several families of surface and interface waves. We conclude by suggesting a list of books for a more detailed study of the topic. Keywords: linear elastodynamics, anisotropy, plane homogeneous waves, bulk waves, interface waves, surface waves. 1 Introduction In elastostatics we study the equilibria of elastic solids; when its equilib- rium is disturbed, a solid is set into motion, which constitutes the subject of elastodynamics. Early efforts in the study of elastodynamics were mainly aimed at modeling seismic wave propagation. With the advent of electron- ics, many applications have been found in the industrial world. -
Turbulence Examined in the Frequency-Wavenumber Domain*
Turbulence examined in the frequency-wavenumber domain∗ Andrew J. Morten Department of Physics University of Michigan Supported by funding from: National Science Foundation and Office of Naval Research ∗ Arbic et al. JPO 2012; Arbic et al. in review; Morten et al. papers in preparation Andrew J. Morten LOM 2013, Ann Arbor, MI Collaborators • University of Michigan Brian Arbic, Charlie Doering • MIT Glenn Flierl • University of Brest, and The University of Texas at Austin Robert Scott Andrew J. Morten LOM 2013, Ann Arbor, MI Outline of talk Part I{Motivation (research led by Brian Arbic) • Frequency-wavenumber analysis: {Idealized Quasi-geostrophic (QG) turbulence model. {High-resolution ocean general circulation model (HYCOM)∗: {AVISO gridded satellite altimeter data. ∗We used NLOM in Arbic et al. (2012) Part II-Research led by Andrew Morten • Derivation and interpretation of spectral transfers used above. • Frequency-domain analysis in two-dimensional turbulence. • Theoretical prediction for frequency spectra and spectral transfers due to the effects of \sweeping." {moving beyond a zeroth order approximation. Andrew J. Morten LOM 2013, Ann Arbor, MI Motivation: Intrinsic oceanic variability • Interested in quantifying the contributions of intrinsic nonlinearities in oceanic dynamics to oceanic frequency spectra. • Penduff et al. 2011: Interannual SSH variance in ocean models with interannual atmospheric forcing is comparable to variance in high resolution (eddying) ocean models with no interannual atmospheric forcing. • Might this eddy-driven low-frequency variability be connected to the well-known inverse cascade to low wavenumbers (e.g. Fjortoft 1953)? • A separate motivation is simply that transfers in mixed ! − k space provide a useful diagnostic. Andrew J. -
Variable Planck's Constant
Variable Planck’s Constant: Treated As A Dynamical Field And Path Integral Rand Dannenberg Ventura College, Physics and Astronomy Department, Ventura CA [email protected] [email protected] January 28, 2021 Abstract. The constant ħ is elevated to a dynamical field, coupling to other fields, and itself, through the Lagrangian density derivative terms. The spatial and temporal dependence of ħ falls directly out of the field equations themselves. Three solutions are found: a free field with a tadpole term; a standing-wave non-propagating mode; a non-oscillating non-propagating mode. The first two could be quantized. The third corresponds to a zero-momentum classical field that naturally decays spatially to a constant with no ad-hoc terms added to the Lagrangian. An attempt is made to calibrate the constants in the third solution based on experimental data. The three fields are referred to as actons. It is tentatively concluded that the acton origin coincides with a massive body, or point of infinite density, though is not mass dependent. An expression for the positional dependence of Planck’s constant is derived from a field theory in this work that matches in functional form that of one derived from considerations of Local Position Invariance violation in GR in another paper by this author. Astrophysical and Cosmological interpretations are provided. A derivation is shown for how the integrand in the path integral exponent becomes Lc/ħ(r), where Lc is the classical action. The path that makes stationary the integral in the exponent is termed the “dominant” path, and deviates from the classical path systematically due to the position dependence of ħ. -
Variable Planck's Constant
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2021 doi:10.20944/preprints202101.0612.v1 Variable Planck’s Constant: Treated As A Dynamical Field And Path Integral Rand Dannenberg Ventura College, Physics and Astronomy Department, Ventura CA [email protected] Abstract. The constant ħ is elevated to a dynamical field, coupling to other fields, and itself, through the Lagrangian density derivative terms. The spatial and temporal dependence of ħ falls directly out of the field equations themselves. Three solutions are found: a free field with a tadpole term; a standing-wave non-propagating mode; a non-oscillating non-propagating mode. The first two could be quantized. The third corresponds to a zero-momentum classical field that naturally decays spatially to a constant with no ad-hoc terms added to the Lagrangian. An attempt is made to calibrate the constants in the third solution based on experimental data. The three fields are referred to as actons. It is tentatively concluded that the acton origin coincides with a massive body, or point of infinite density, though is not mass dependent. An expression for the positional dependence of Planck’s constant is derived from a field theory in this work that matches in functional form that of one derived from considerations of Local Position Invariance violation in GR in another paper by this author. Astrophysical and Cosmological interpretations are provided. A derivation is shown for how the integrand in the path integral exponent becomes Lc/ħ(r), where Lc is the classical action. The path that makes stationary the integral in the exponent is termed the “dominant” path, and deviates from the classical path systematically due to the position dependence of ħ. -
1 Fundamental Solutions to the Wave Equation 2 the Pulsating Sphere
1 Fundamental Solutions to the Wave Equation Physical insight in the sound generation mechanism can be gained by considering simple analytical solutions to the wave equation. One example is to consider acoustic radiation with spherical symmetry about a point ~y = fyig, which without loss of generality can be taken as the origin of coordinates. If t stands for time and ~x = fxig represent the observation point, such solutions of the wave equation, @2 ( − c2r2)φ = 0; (1) @t2 o will depend only on the r = j~x − ~yj. It is readily shown that in this case (1) can be cast in the form of a one-dimensional wave equation @2 @2 ( − c2 )(rφ) = 0: (2) @t2 o @r2 The general solution to (2) can be written as f(t − r ) g(t + r ) φ = co + co : (3) r r The functions f and g are arbitrary functions of the single variables τ = t± r , respectively. ± co They determine the pattern or the phase variation of the wave, while the factor 1=r affects only the wave magnitude and represents the spreading of the wave energy over larger surface as it propagates away from the source. The function f(t − r ) represents an outwardly co going wave propagating with the speed c . The function g(t + r ) represents an inwardly o co propagating wave propagating with the speed co. 2 The Pulsating Sphere Consider a sphere centered at the origin and having a small pulsating motion so that the equation of its surface is r = a(t) = a0 + a1(t); (4) where ja1(t)j << a0. -
The Principle of Relativity and the De Broglie Relation Abstract
The principle of relativity and the De Broglie relation Julio G¨u´emez∗ Department of Applied Physics, Faculty of Sciences, University of Cantabria, Av. de Los Castros, 39005 Santander, Spain Manuel Fiolhaisy Physics Department and CFisUC, University of Coimbra, 3004-516 Coimbra, Portugal Luis A. Fern´andezz Department of Mathematics, Statistics and Computation, Faculty of Sciences, University of Cantabria, Av. de Los Castros, 39005 Santander, Spain (Dated: February 5, 2016) Abstract The De Broglie relation is revisited in connection with an ab initio relativistic description of particles and waves, which was the same treatment that historically led to that famous relation. In the same context of the Minkowski four-vectors formalism, we also discuss the phase and the group velocity of a matter wave, explicitly showing that, under a Lorentz transformation, both transform as ordinary velocities. We show that such a transformation rule is a necessary condition for the covariance of the De Broglie relation, and stress the pedagogical value of the Einstein-Minkowski- Lorentz relativistic context in the presentation of the De Broglie relation. 1 I. INTRODUCTION The motivation for this paper is to emphasize the advantage of discussing the De Broglie relation in the framework of special relativity, formulated with Minkowski's four-vectors, as actually was done by De Broglie himself.1 The De Broglie relation, usually written as h λ = ; (1) p which introduces the concept of a wavelength λ, for a \material wave" associated with a massive particle (such as an electron), with linear momentum p and h being Planck's constant. Equation (1) is typically presented in the first or the second semester of a physics major, in a curricular unit of introduction to modern physics. -
Physics-272 Lecture 21
Physics-272Physics-272 Lecture Lecture 21 21 Description of Wave Motion Electromagnetic Waves Maxwell’s Equations Again ! Maxwell’s Equations James Clerk Maxwell (1831-1879) • Generalized Ampere’s Law • And made equations symmetric: – a changing magnetic field produces an electric field – a changing electric field produces a magnetic field • Showed that Maxwell’s equations predicted electromagnetic waves and c =1/ √ε0µ0 • Unified electricity and magnetism and light . Maxwell’s Equations (integral form) Name Equation Description Gauss’ Law for r r Q Charge and electric Electricity ∫ E ⋅ dA = fields ε0 Gauss’ Law for r r Magnetic fields Magnetism ∫ B ⋅ dA = 0 r r Electrical effects dΦB from changing B Faraday’s Law ∫ E ⋅ ld = − dt field Ampere’s Law r Magnetic effects dΦE from current and (modified by ∫ B ⋅ dl = µ0ic + ε0 Maxwell) dt Changing E field All of electricity and magnetism is summarized by Maxwell’s Equations. On to Waves!! • Note the symmetry now of Maxwell’s Equations in free space, meaning when no charges or currents are present r r r r ∫ E ⋅ dA = 0 ∫ B ⋅ dA = 0 r r dΦ r dΦ ∫ E ⋅ ld = − B B ⋅ dl = µ ε E dt ∫ 0 0 dt • Combining these equations leads to wave equations for E and B, e.g., ∂2E ∂ 2 E x= µ ε x ∂z20 0 ∂ t 2 • Do you remember the wave equation??? 2 2 ∂h1 ∂ h h is the variable that is changing 2= 2 2 in space (x) and time ( t). v is the ∂x v ∂ t velocity of the wave. Review of Waves from Physics 170 2 2 • The one-dimensional wave equation: ∂h1 ∂ h 2= 2 2 has a general solution of the form: ∂x v ∂ t h(x,t) = h1(x − vt ) + h2 (x + vt ) where h1 represents a wave traveling in the +x direction and h2 represents a wave traveling in the -x direction. -
EE1.El3 (EEE1023): Electronics III Acoustics Lecture 12 Principles Of
EE1.el3 (EEE1023): Electronics III Acoustics lecture 12 Principles of sound Dr Philip Jackson www.ee.surrey.ac.uk/Teaching/Courses/ee1.el3 Overview for this semester 1. Introduction to sound 2. Human sound perception 3. Noise measurement 4. Sound wave behaviour 5. Reflections and standing waves 6. Room acoustics 7. Resonators and waveguides 8. Musical acoustics 9. Sound localisation L.1 Introduction to sound • Definition of sound • Vibration of matter { transverse waves { longitudinal waves • Sound wave propagation { plane waves { pure tones { speed of sound L.2 Preparation for Acoustics • What is a sound wave? { look up a definition of sound and its properties • Example of a device for manipulating sound { write down or draw your example { explain how it modifies the sound L.3 Definitions of sound \Sensation caused in the ear by the vibration of the surrounding air or other medium", Oxford En- glish Dictionary \Disturbances in the air caused by vibrations, in- formation on which is transmitted to the brain by the sense of hearing", Chambers Pocket Dictionary \Sound is vibration transmitted through a solid, liquid, or gas; particularly, sound means those vi- brations composed of frequencies capable of being detected by ears", Wikipedia L.4 Vibration of a string Let us consider forces on an element of the vibrating string with tension T and ρL mass per unit length, to derive its equation of motion T y + dy dx dx y ds θ dy x y dx T x x + dx Net vertical force from tension between points x and x + dx: dFY = (T sin θ)x+dx − (T sin θ)x (1) Taylor -
Music 170 Assignment 7 1. a Sinusoidal Plane Wave at 20 Hz
Music 170 assignment 7 1. A sinusoidal plane wave at 20 Hz. has an SPL of 80 decibels. What is the RMS displacement (in millimeters.) of air (in other words, how far does the air move)? 2. A rectangular vibrating surface one foot long is vibrating at 2000 Hz. Assuming the speed of sound is 1000 feet per second, at what angle off axis should the beam's amplitude drop to zero? 3. How many dB less does a cardioid microphone pick up from an incoming sound 90 degrees (π=2 radians) off-axis, compared to a signal coming in frontally (at the angle of highest gain)? 4. Suppose a sound's SPL is 0 dB (i.e., it's about the threshold of hearing at 1 kHz.) What is the total power that you ear receives? (Assume, a bit generously, that the opening is 1 square centimeter). 5. If light moves at 3 · 108 meters per second, and if a certain color has a wavelength of 500 nanometers (billionths of a meter - it would look green to human eyes), what is the frequency? Would it be audible if it were a sound? [NOTE: I gave the speed of light incorrectly (mixed up the units, ouch!) - we'll accept answers based on either the right speed or the wrong one I first gave.] 6. A speaker one meter from you is paying a tone at 440 Hz. If you move to a position 2 meters away (and then stop moving), at what pitch to you now hear the tone? (Hint: don't think too hard about this one).