Phylogenetic Relationships Between Bacillus Species and Related Genera Inferred from 16S Rdna Sequences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Moderately Boron-Tolerant Candidatus Novel Soil Bacterium Lysinibacillus Pakistanensis Sp
Pak. J. Bot., 45(SI): 41-50, January 2013. A MODERATELY BORON-TOLERANT CANDIDATUS NOVEL SOIL BACTERIUM LYSINIBACILLUS PAKISTANENSIS SP. NOV. CAND., ISOLATED FROM SOYBEAN (GLYCINE MAX L.) RHIZOSPHERE RIFAT HAYAT1,2,3*, IFTIKHAR AHMED2*, JAYOUNG PAEK4, MUHAMMAD EHSAN1, 2, MUHAMMAD IQBAL2 AND YOUNG H. CHANG4* 1Department of Soil Science & SWC, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan 2Plant Biotechnology Program, National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad-45500, Pakistan 3Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan 4Korean Collection of Type Cultures, Biological Resource Center, KRIBB, 52 Oeundong, Daejeon 305-806, Republic of Korea *Correspondence E-mail: [email protected]; [email protected]; [email protected] Abstract A Gram-positive, motile, rod-shaped, endospore-forming and moderately boron (B) tolerant novel candidatus strain, designated as NCCP-54T, was isolated from rhizospheric soil of soybean (Glycine max L.) sampled from the experimental area of Research Farm, PMAS Arid Agriculture University, Rawalpindi, Pakistan. To delineate its taxonomic position, the strain was subject to polyphasic characterization. Cells of the strain NCCP-54T can grow at 10-45○C (optimum at 28○C) at pH ranges of 6.5-9.0 (optimum at pH 7.0) and in 0-6% NaCl (w/v) in tryptic soya agar medium. It can also tolerate 150 mM boric acid in agar medium; however, optimum growth occurs in the absence of boric acid. Based on 16S rRNA gene sequence analysis, strain NCCP-54T showed highest similarity to Lysinibacillus xylanilyticus KCTC13423T (99.1%), Lysinibacillus fusiformis KCTC3454T (98.5%), Lysinibacillus boronitolerans KCTC13709T (98.4%), Lysinibacillus parviboronicapiens KCTC13154T (97.8%), and Lysinibacillus sphaericus KCTC3346T (97.5%) and less than 97% with other closely related taxa. -
Bacillus Safensis FO-36B and Bacillus Pumilus SAFR-032: a Whole Genome Comparison of Two Spacecraft Assembly Facility Isolates
bioRxiv preprint doi: https://doi.org/10.1101/283937; this version posted April 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Bacillus safensis FO-36b and Bacillus pumilus SAFR-032: A Whole Genome 2 Comparison of Two Spacecraft Assembly Facility Isolates 3 Madhan R Tirumalai1, Victor G. Stepanov1, Andrea Wünsche1, Saied Montazari1, 4 Racquel O. Gonzalez1, Kasturi Venkateswaran2, George. E. Fox1§ 5 1Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001. 6 2 Biotechnology & Planetary Protection Group, NASA Jet Propulsion Laboratories, California 7 Institute of Technology, Pasadena, CA, 91109. 8 9 §Corresponding author: 10 Dr. George E. Fox 11 Dept. Biology & Biochemistry 12 University of Houston, Houston, TX 77204-5001 13 713-743-8363; 713-743-8351 (FAX); email: [email protected] 14 15 Email addresses: 16 MRT: [email protected] 17 VGS: [email protected] 18 AW: [email protected] 19 SM: [email protected] 20 ROG: [email protected] 21 KV: [email protected] 22 GEF: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/283937; this version posted April 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 23 Keywords: Planetary protection, Bacillus endospores, extreme radiation resistance, peroxide 24 resistance, genome comparison, phage insertions 25 26 Background 27 Microbial persistence in built environments such as spacecraft cleanroom facilities [1-3] is often 28 characterized by their unusual resistances to different physical and chemical factors [1, 4-7]. -
Microbial Diversity and Impact on Carbonate Geochemistry Across a Changing Geochemical Gradient in a Karst Aquifer
The ISME Journal (2013) 7, 325–337 & 2013 International Society for Microbial Ecology All rights reserved 1751-7362/13 www.nature.com/ismej ORIGINAL ARTICLE Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer Cassie J Gray1,2 and Annette S Engel1,3 1Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, USA; 2CH2M Hill, Baton Rouge, LA, USA and 3Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. -
Synthesis of Patterned Media by Self-Assembly of Magnetic
Applied Sciences http://wjst.wu.ac.th https://doi.org/10.48048/wjst.2021.7306 Reductive Dechlorination of 1,2-dichloroethane to Ethylene by Anaerobic Enrichment Culture Containing Vulcanibacillus spp. Utumporn NGIVPROM1, Nipa MILINTAWISAMAI1,* and 2 Alissara REUNGSANG 1Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand 2Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand (*Corresponding author’s e-mail: [email protected]) Received: 10 August 2019, Revised: 26 March 2020, Accepted: 27 April 2020 Abstract Bioremediation has been widely used for clean-up of 1,2-dichloroethane (DCA) at contaminated sites. Only a small number of specific anaerobes, halorespiring bacteria (HRB), have been reported to degrade DCA. The goals of this research were the screening and isolation of HRB with capable dechlorination of DCA. HRB were screened and isolated from 7 enrichment cultures (ES1-ES7), from DCA-contaminated soils, on bicarbonate-buffered basal salts medium containing 10 mM acetate and 250 µM DCA under anaerobic conditions and analyzed by gas chromatography. The results showed that the mixed cultures of ES3 and ES5 could reductively dechlorinate DCA to ethylene via a direct reductive dihaloelimination pathway. In particular, ES5 showed rapid transformation of 250 µM DCA to ethylene within 6 days at 30 °C. Specific microbial populations of Vulcanibacillus spp., elucidated by polymerase chain reaction-denaturing gradient gel electrophoresis, were found only in ES3 and ES5, which was related to reductive dihaloelimination activities on DCA. A 16S rRNA gene analysis of isolate es5d8 from mixed culture ES5 revealed 2 strains of Vulcanibacillus spp. -
I GENOMIC and TRANSCRIPTOMIC ANALYSES of Jeotgalibacillus
i GENOMIC AND TRANSCRIPTOMIC ANALYSES OF Jeotgalibacillus malaysiensis TO PROVIDE INSIGHTS INTO ITS OSMOTIC ADAPTATION AMIRA SURIATY BINTI YAAKOP A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Bioscience) Faculty of Biosciences and Medical Engineering Universiti Teknologi Malaysia AUGUST 2017 iii iv ACKNOWLEDGEMENT I would like to take this opportunity to dedicate my endless gratitude, sincere appreciation and profound regards to my dearest supervisor, Dr. Goh Kian Mau for his scholastic guidance. He has been instrumental in guiding my research, giving me encouragement, guidance, critics and friendship. Without you this thesis will not be presented as it is today. Furthermore, I would like to convey my appreciation toward my labmates Ms. Chia Sing and Mr. Ummirul, Ms. Suganthi and Ms. Chitra for their guidance and support Not forgetting the helpful lab assistant Mdm. Sue, Mr. Khairul and Mr. Hafizi for all their assistances throughout my research. My sincere appreciation also extends to all my others lab mates in extremophiles laboratory who have provided assistance at various occasions. Last but not least, my special gratitude to my husband, Mohd Hanafi bin Suki who see me up and down throughout this PHD journeys, my lovely parents Noora’ini Mohamad and Yaakop Jaafar, my family members for their support and concern. Not to forget, my friends who had given their helps, motivational and guidance all the time with love. Their mentorship was truly appreciated. v ABSTRACT The genus Jeotgalibacillus under the family of Planococcaceae is one of the understudy genera. In this project, a bacterium strain D5 was isolated from Desaru beach, Johor. -
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Comparative
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Comparative Genomics and Epigenomics of Sporosarcina ureae A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Biology By Andrew Oliver August 2016 The thesis of Andrew Oliver is approved by: _________________________________________ ____________ Sean Murray, Ph.D. Date _________________________________________ ____________ Gilberto Flores, Ph.D. Date _________________________________________ ____________ Kerry Cooper, Ph.D., Chair Date California State University, Northridge ii Acknowledgments First and foremost, a special thanks to my advisor, Dr. Kerry Cooper, for his advice and, above all, his patience. If I can be half the scientist you are someday, I would be thrilled. I would like to also thank everyone in the Cooper lab, especially my colleagues Courtney Sams and Tabitha Bayangnos. It was a privilege to work along side you. More thanks to my committee members, Dr. Gilberto Flores and Dr. Sean Murray. Dr. Flores, you were instrumental in guiding me to ask the right questions regarding bacterial taxonomy. Dr. Murray, your contributions to my graduate studies would make this section run on for pages. I thank you for taking me under your wing from the beginning. Acknowledgement and thanks to the Baresi lab, especially Dr. Larry Baresi and Tania Kurbessoian for their partnership in this research. Also to Bernardine Pregerson for all the work that lays at the foundation of this study. This research would not be what it is without the help of my childhood friend, Matthew Kay. You wrote programs, taught me coding languages, and challenged me to go digging for answers to very difficult questions. -
Access to Electronic Thesis
Access to Electronic Thesis Author: Khalid Salim Al-Abri Thesis title: USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS Qualification: PhD This electronic thesis is protected by the Copyright, Designs and Patents Act 1988. No reproduction is permitted without consent of the author. It is also protected by the Creative Commons Licence allowing Attributions-Non-commercial-No derivatives. If this electronic thesis has been edited by the author it will be indicated as such on the title page and in the text. USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS By Khalid Salim Al-Abri Msc., University of Sultan Qaboos, Muscat, Oman Mphil, University of Sheffield, England Thesis submitted in partial fulfillment for the requirements of the Degree of Doctor of Philosophy in the Department of Molecular Biology and Biotechnology, University of Sheffield, England 2011 Introductory Pages I DEDICATION To the memory of my father, loving mother, wife “Muneera” and son “Anas”, brothers and sisters. Introductory Pages II ACKNOWLEDGEMENTS Above all, I thank Allah for helping me in completing this project. I wish to express my thanks to my supervisor Professor Milton Wainwright, for his guidance, supervision, support, understanding and help in this project. In addition, he also stood beside me in all difficulties that faced me during study. My thanks are due to Dr. D. J. Gilmour for his co-supervision, technical assistance, his time and understanding that made some of my laboratory work easier. In the Ministry of Regional Municipalities and Water Resources, I am particularly grateful to Engineer Said Al Alawi, Director General of Health Control, for allowing me to carry out my PhD study at the University of Sheffield. -
Product Sheet Info
Product Information Sheet for HM-331 Sporosarcina sp., Strain 2681 Incubation: Temperature: 37°C Atmosphere: Aerobic Catalog No. HM-331 Propagation: 1. Keep vial frozen until ready for use, then thaw. For research use only. Not for human use. 2. Transfer the entire thawed aliquot into a single tube of broth. Contributor: 3. Use several drops of the suspension to inoculate an Kimberlee A. Musser, Ph.D., Chief, Bacterial Diseases, agar slant and/or plate. Division of Infectious Diseases, Wadsworth Center, New York 4. Incubate the tubes and plate at 37°C for 48 hours. State Department of Health, Albany, New York Citation: Manufacturer: NIH Biodefense and Emerging Infections Acknowledgment for publications should read “The following reagent was obtained through the NIH Biodefense and Research Resource Repository Emerging Infections Research Resources Repository, NIAID, NIH as part of the Human Microbiome Project: Sporosarcina Product Description: sp., Strain 2681, HM-331.” Bacteria Classification: Planococcaceae, Sporosarcina Species: Sporosarcina sp. Biosafety Level: 2 Strain: 2681 Original Source: Sporosarcina sp., strain 2681 was isolated Appropriate safety procedures should always be used with 1 this material. Laboratory safety is discussed in the following from human blood. Comments: Sporosarcina sp., strain 2681 is a reference publication: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and genome for The Human Microbiome Project (HMP). HMP Prevention, and National Institutes of Health. Biosafety in is an initiative to identify and characterize human microbial flora. The complete genome of Sporosarcina sp., strain Microbiological and Biomedical Laboratories. 5th ed. Washington, DC: U.S. Government Printing Office, 2007; see 2681 is currently being sequenced at the Human Genome www.cdc.gov/od/ohs/biosfty/bmbl5/bmbl5toc.htm. -
Enterobacter Massiliensis Sp. Nov
Standards in Genomic Sciences (2013) 7:399-412 DOI:10.4056/sigs.3396830 Non contiguous-finished genome sequence and descrip- tion of Enterobacter massiliensis sp. nov. Jean-Christophe Lagier1, Khalid El Karkouri1, Ajay Kumar Mishra1, Catherine Robert1, Didier Raoult1 and Pierre-Edouard Fournier1* 1Aix-Marseille Université, Faculté de médecine, Marseille, France *Corresponding author: Pierre-Edouard Fournier ([email protected]) Keywords: Enterobacter massiliensis, genome Enterobacter massiliensis strain JC163T sp. nov. is the type strain of E. massiliensis sp. nov., a new species within the genus Enterobacter. This strain, whose genome is described here, was isolated from the fecal flora of a healthy Senegalese patient. E. massiliensis is an aerobic rod. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,922,247 bp long genome (1 chromosome but no plasmid) exhibits a G+C content of 55.1% and contains 4,644 protein-coding and 80 RNA genes, including 5 rRNA genes. Introduction Enterobacter massiliensis strain JC163T (= CSUR Enterobacter spp. were isolated from the normal P161 = DSM 26120) is the type strain of E. fecal flora. massiliensis sp. nov. This bacterium is a Gram- negative, aerobic, flagellate, indole-positive bacil- Classification and features lus that was isolated from the feces of a healthy A stool sample was collected from a healthy 16- Senegalese patient in a study aiming at cultivating year-old male Senegalese volunteer patient living all bacterial species in human feces [1]. The cur- in Dielmo (rural village in the Guinean-Sudanian rent classification of prokaryotes, known as zone in Senegal), who was included in a research polyphasic taxonomy, relies on a combination of protocol. -
Description of Gabonibacter Massiliensis Gen. Nov., Sp. Nov., a New Member of the Family Porphyromonadaceae Isolated from the Human Gut Microbiota
Curr Microbiol DOI 10.1007/s00284-016-1137-2 Description of Gabonibacter massiliensis gen. nov., sp. nov., a New Member of the Family Porphyromonadaceae Isolated from the Human Gut Microbiota 1,2 1 3,4 Gae¨l Mourembou • Jaishriram Rathored • Jean Bernard Lekana-Douki • 5 1 1 Ange´lique Ndjoyi-Mbiguino • Saber Khelaifia • Catherine Robert • 1 1,6 1 Nicholas Armstrong • Didier Raoult • Pierre-Edouard Fournier Received: 9 June 2016 / Accepted: 8 September 2016 Ó Springer Science+Business Media New York 2016 Abstract The identification of human-associated bacteria Gabonibacter gen. nov. and the new species G. mas- is very important to control infectious diseases. In recent siliensis gen. nov., sp. nov. years, we diversified culture conditions in a strategy named culturomics, and isolated more than 100 new bacterial Keywords Gabonibacter massiliensis Á Taxonogenomics Á species and/or genera. Using this strategy, strain GM7, a Culturomics Á Gabon Á Gut microbiota strictly anaerobic gram-negative bacterium was recently isolated from a stool specimen of a healthy Gabonese Abbreviations patient. It is a motile coccobacillus without catalase and CSUR Collection de Souches de l’Unite´ des oxidase activities. The genome of Gabonibacter mas- Rickettsies siliensis is 3,397,022 bp long with 2880 ORFs and a G?C DSM Deutsche Sammlung von content of 42.09 %. Of the predicted genes, 2,819 are Mikroorganismen protein-coding genes, and 61 are RNAs. Strain GM7 differs MALDI-TOF Matrix-assisted laser desorption/ from the closest genera within the family Porphyromon- MS ionization time-of-flight mass adaceae both genotypically and in shape and motility. -
Diapositive 1
29.04.2013 ESCMID-BERLIN «Culturomics» © by author ESCMID Online Lecture Library Didier Raoult Marseille - France [email protected] www.mediterranee-infection.com As samples in 2012 We received -220,000 samples for culture (bactéria, fungi, viruses) - 200,000 PCR were performed - 115,000 serological testing were tested © by author Real-time laboratory surveillance of sexually-transmissible infections in Marseille University hospitals reveals rise of gonorrhea, syphilis and HIV seroconversions in 2012. PhilippeESCMID Colson1,2 , Frédérique Online Gouriet1,2 Lecture , Sékéné Badiaga 2,3Library, Catherine Tamalet 1,2, Andreas Stein2,4, Didier Raoult1,2 *. Eurosurveillance 2013 2 Culture has been negleted in clinical microbiology, very few new media have been recently very few introduced but it is still central for: Causality Suceptibility testing Genome sequencing© by author ESCMID Online Lecture Library Pathophysiology 3 NEW IDENTIFICATIONS Helicobacter pylori • Peptic ulcer disease • Cancer of the stomach, grown in 1983 © by author ESCMIDSeen sinceOnline the Lecture 19th century Library 4 © by author ESCMID Online Lecture Library 5 PROGRESSES MADE IN MICROBIOLOGY FROM 1979 TO 2012 THANKS TO THE DEVELOPMENT OF NEW TECHNOLOGIES © by author a) the ESCMIDleft ordinate axis refers toOnline the cumulative numbers Lecture of bacterial species Library with validly published names (green curve); the right ordinate axis refers to the cumulative numbers of sequenced bacterial genomes (purple) and sequenced viral genomes (blue); 6 © by author b) the left ordinate axis refers to the numbers of articles containing “metagenome” as keyword (red) and of articles containing “microbiota” as keyword (grey); the right ordinate axisESCMID refers to the numbers Online of articles containing Lecture “MALDI-TOF” andLibrary “clinical microbiology” as keywords (orange). -
Next Generation Microbiology for the Future
Next Generation Microbiology for the Future www.msk.or.kr | 1 2014 INTERNATIONAL MEETING of the MICROBIOLOGICAL SOCIETY of KOREA 2 | 2014 International Meeting of the Microbiological Society of Korea 2014 INTERNATIONAL MEETING of Next Generationthe MICROBIOLOGICAL Microbiology for the Future SOCIETY of KOREA Contents • Timetable ············································································································································ 4 • Floor Plan ··········································································································································· 5 • Scientific Programs ···························································································································· 6 • Plenary Lectures······························································································································· 23 PL1 ······································································································································· 24 PL2 ······································································································································· 25 PL3 ······································································································································· 26 PL4 ······································································································································· 27 • Symposia ··········································································································································