Hubble Space Telescope Hubble Space Telescope (Spacetelescope.Org) Molly Rose Guiyun Merkert, Colorado College the Release of the HST on April 24, 1990

Total Page:16

File Type:pdf, Size:1020Kb

Hubble Space Telescope Hubble Space Telescope (Spacetelescope.Org) Molly Rose Guiyun Merkert, Colorado College the Release of the HST on April 24, 1990 Hubble Space Telescope Hubble Space Telescope (spacetelescope.org) Molly Rose Guiyun Merkert, Colorado College The release of the HST on April 24, 1990. The Hubble Space Telescope Background Discoveries ● Agencies: NASA, ESA, & STScI There are two types of optical telescopes: refracting telescopes Over the past 29 years, the Hubble Space Telescope has observed ● Launch: April 24, 1990 (uses lenses) and reflecting telescopes (uses mirrors). Refracting known objects in higher detail and has been used to confirm ● Size: 43.5 ft x 14 ft x 40 ft telescopes can be affected by to chromatic aberration (where theories (like the existence of black holes). It has also been used ● Weight: 24,500 pounds light of different wavelengths focus at different locations). This to research cosmology, dark matter, gravitational lensing, and ● Ritchey-Chretien Cassegrain HST Design (The Hubble Wars) does not happen in reflecting telescopes. cosmic expansion. The Hubble Space Telescope has also An image of the Ritchey-Chretien discovered so many space objects, especially through its deep ● Primary Mirror: 94.5” diameter Cassegrain optical design Observations from Earth based telescopes are often impeded by field images. clouds, light pollution, and astronomical seeing (unpredictable Primary Mirror Problem changes in the atmosphere that bend light going through it). A flaw in the telescope’s primary mirror caused the light focus at different places, causing a halo to appear around objects. Diffraction patterns are created when a point light source (like a laser or star) illuminates a sharp edged object. Hubble Deep Field (spacetelescope.org) aXtreme Deep Field (nasa.gov) Approximately 27 million galaxies can A more recent deep field image from be seen in this image from a seemingly 2012 empty section of space. Taken in 1995. Mirror Flaw (The Hubble Wars) Strange Halo (spacetelescope.org) The primary mirror was only 2 microns The halo around 30 doradus is caused HST Pattern (iopscience.iop.org) Diffraction Patterns (britannica.com) too flat at the edges. by the problem in the primary mirror. What the diffraction pattern from An image explaining why diffraction The Future Hubble Space Telescope’s aperture patterns occur. The Hubble Space Telescope will stop functioning. The telescope COSTAR and Tiny Tim should look like slowly loses altitude each year as well; eventually it will fall to To solve the problems with telescope’s mirror, COSTAR was Earth. However before that, the gyroscopes that are used to installed in December 1993. This arrangement of five mirrors How good is Hubble? point the telescope will wear out. bent the light rays to focus at the same place. COSTAR was We can measure how good a telescope is by using the Rayleigh removed in 2009. Criterion. It gives the angle needed between two light sources However, in the future, the James Webb Space Telescope will be (or stars in this case) for the two sources to be seen as separate sent to space and the European Extra Large Telescope will use M100 (spacetelescope.org) objects. For telescopes, this is given by: lasic adaptive optics to counter astronomical seeing. Left: An image taken by the Hubble Space Telescope where Ө is the angle (in radians) between the two stars, λ is the Right: The same object taken wavelength of the light, and D is the diameter of the primary Acknowledgments with COSTAR installed. mirror. Special thanks to Professor Shane Burns and Professor Stephanie DiCenzo A computer program called Tiny Tim is used to determine star “About the James Webb Space Telescope.” NASA, NASA, jwst.nasa.gov/about.html. For the Hubble Space Telescope (with COSTAR), this angle is 0.05 diffraction patterns. If an object deviates too much from this Burns, Shane. A Practical Guide to Observational Astronomy. 2017. arcseconds. An Earth bound telescope has a limiting resolution of pattern, it is probably not a star. Chaisson, Eric J. The Hubble Wars: Astrophysics Meets Astropolitics in the Two-Billion-Dollar Struggle over the about 1 arcsecond under optimal conditions. Hubble Space Telescope. Harvard University Press, 1998. Chromey, Frederick R. To Measure the Sky: an Introduction to Observational Astronomy. Cambridge University Press, 2010. F1042M Diffraction Patterns Globular Star Cluster M-14 Giancoli, Douglas C. Physics for Scientists & Engineers with Modern Physics. Pearson, 2009. (stsci.edu) (spacetelescope.org) “Hubble's Top Breakthroughs.” HubbleSite - Hubble Breakthroughs - Home, NASA, Left: An image taken by the Left: 4-meter telescope at Cerro hubblesite.org/hubble_discoveries/breakthroughs/. Hubble Space Telescope Tololo Inter-American Observatory Petersen, Carolyn Collins., and John C. Brandt. Hubble Vision: Astronomy with the Hubble Space Telescope. Right: The diffraction pattern has a resolution of 1.5 arcseconds Second ed., Cambridge University Press, 1998. created by Tiny Tim Right: Faint object camera has a Sparrow, Giles. Hubble: Legacy Edition. Quercus, 2014. resolution of 0.08 arcseconds [email protected]. “The European ELT.” ESO, www.eso.org/sci/facilities/eelt/..
Recommended publications
  • Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
    Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S.
    [Show full text]
  • The PLATO Antarctic Site Testing Observatory
    PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie The PLATO Antarctic site testing observatory J. S. Lawrence, G. R. Allen, M. C. B. Ashley, C. Bonner, S. Bradley, et al. J. S. Lawrence, G. R. Allen, M. C. B. Ashley, C. Bonner, S. Bradley, X. Cui, J. R. Everett, L. Feng, X. Gong, S. Hengst, J. Hu, Z. Jiang, C. A. Kulesa, Y. Li, D. Luong-Van, A. M. Moore, C. Pennypacker, W. Qin, R. Riddle, Z. Shang, J. W. V. Storey, B. Sun, N. Suntzeff, N. F. H. Tothill, T. Travouillon, C. K. Walker, L. Wang, J. Yan, J. Yang, H. Yang, D. York, X. Yuan, X. G. Zhang, Z. Zhang, X. Zhou, Z. Zhu, "The PLATO Antarctic site testing observatory," Proc. SPIE 7012, Ground-based and Airborne Telescopes II, 701227 (10 July 2008); doi: 10.1117/12.787166 Event: SPIE Astronomical Telescopes + Instrumentation, 2008, Marseille, France Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/12/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use The PLATO Antarctic site testing observatory J.S. Lawrence*a, G.R. Allenb, M.C.B. Ashleya, C. Bonnera, S. Bradleyc, X. Cuid, J.R. Everetta, L. Fenge, X. Gongd, S. Hengsta, J.Huf, Z. Jiangf, C.A. Kulesag, Y. Lih, D. Luong-Vana, A.M. Moorei, C. Pennypackerj, W. Qinh, R. Riddlek, Z. Shangl, J.W.V. Storeya, B. Sunh, N. Suntzeffm, N.F.H. Tothilln, T. Travouilloni, C.K. Walkerg, L. Wange/m, J. Yane/f, J. Yange, H.Yangh, D. Yorko, X. Yuand, X.G.
    [Show full text]
  • An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies
    2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies The National Academies—comprising the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council—work together to enlist the nation’s top scientists, engineers, health professionals, and other experts to study specific issues in science, technology, and medicine that underlie many questions of national importance. The results of their deliberations have inspired some of the nation’s most significant and lasting efforts to improve the health, education, and welfare of the United States and have provided independent advice on issues that affect people’s lives worldwide. To learn more about the Academies’ activities, check the website at www.nationalacademies.org. Copyright 2011 by the National Academy of Sciences. All rights reserved. Printed in the United States of America This study was supported by Contract NNX08AN97G between the National Academy of Sciences and the National Aeronautics and Space Administration, Contract AST-0743899 between the National Academy of Sciences and the National Science Foundation, and Contract DE-FG02-08ER41542 between the National Academy of Sciences and the U.S. Department of Energy. Support for this study was also provided by the Vesto Slipher Fund. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the agencies that provided support for the project. 2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics Committee for a Decadal Survey of Astronomy and Astrophysics ROGER D.
    [Show full text]
  • Find Your Telescope. Your Find Find Yourself
    FIND YOUR TELESCOPE. FIND YOURSELF. FIND ® 2008 PRODUCT CATALOG WWW.MEADE.COM TABLE OF CONTENTS TELESCOPE SECTIONS ETX ® Series 2 LightBridge ™ (Truss-Tube Dobsonians) 20 LXD75 ™ Series 30 LX90-ACF ™ Series 50 LX200-ACF ™ Series 62 LX400-ACF ™ Series 78 Max Mount™ 88 Series 5000 ™ ED APO Refractors 100 A and DS-2000 Series 108 EXHIBITS 1 - AutoStar® 13 2 - AutoAlign ™ with SmartFinder™ 15 3 - Optical Systems 45 FIND YOUR TELESCOPE. 4 - Aperture 57 5 - UHTC™ 68 FIND YOURSEL F. 6 - Slew Speed 69 7 - AutoStar® II 86 8 - Oversized Primary Mirrors 87 9 - Advanced Pointing and Tracking 92 10 - Electronic Focus and Collimation 93 ACCESSORIES Imagers (LPI,™ DSI, DSI II) 116 Series 5000 ™ Eyepieces 130 Series 4000 ™ Eyepieces 132 Series 4000 ™ Filters 134 Accessory Kits 136 Imaging Accessories 138 Miscellaneous Accessories 140 Meade Optical Advantage 128 Meade 4M Community 124 Astrophotography Index/Information 145 ©2007 MEADE INSTRUMENTS CORPORATION .01 RECRUIT .02 ENTHUSIAST .03 HOT ShOT .04 FANatIC Starting out right Going big on a budget Budding astrophotographer Going deeper .05 MASTER .06 GURU .07 SPECIALIST .08 ECONOMIST Expert astronomer Dedicated astronomer Wide field views & images On a budget F IND Y OURSEL F F IND YOUR TELESCOPE ® ™ ™ .01 ETX .02 LIGHTBRIDGE™ .03 LXD75 .04 LX90-ACF PG. 2-19 PG. 20-29 PG.30-43 PG. 50-61 ™ ™ ™ .05 LX200-ACF .06 LX400-ACF .07 SERIES 5000™ ED APO .08 A/DS-2000 SERIES PG. 78-99 PG. 100-105 PG. 108-115 PG. 62-76 F IND Y OURSEL F Astronomy is for everyone. That’s not to say everyone will become a serious comet hunter or astrophotographer.
    [Show full text]
  • 8. Adaptive Optics 299
    8. Adaptive Optics 299 8.1 Introduction Adaptive Optics is absolutely essential for OWL, to concentrate the light for spectroscopy and imaging and to reach the diffraction limit on-axis or over an extended FoV. In this section we present a progressive implementation plan based on three generation of Adaptive Optics systems and, to the possible extent, the corresponding expected performance. The 1st generation AO − Single Conjugate, Ground Layer, and distributed Multi-object AO − is essentially based on Natural Guide Stars (NGSs) and makes use of the M6 Adaptive Mirror included in the Telescope optical path. The 2nd generation AO is also based on NGSs but includes a second deformable mirror (M5) conjugated at 7-8 km – Multi-Conjugate Adaptive Optics − or a post focus mirror conjugated to the telescope pupil with a much higher density of actuators -tweeter- in the case of EPICS. The 3rd generation AO makes use of single or multiple Laser Guide Stars, preferably Sodium LGSs, and should provide higher sky coverage, better Strehl ratio and correction at shorter wavelengths. More emphasis in the future will be given to the LGS assisted AO systems after having studied, simulated and demonstrated the feasibility of the proposed concepts. The performance presented for the AO systems is based on advances from today's technology in areas where we feel confident that such advances will occur (e.g. the sizes of the deformable mirrors). Even better performance could be achieved if other technologies advance at the same rate as in the past (e.g. the density of actuators for deformable mirrors).
    [Show full text]
  • Fundamental Limits of Detection in the Near and Mid Infrared Nathan Lenssen Claremont Mckenna College
    Claremont Colleges Scholarship @ Claremont CMC Senior Theses CMC Student Scholarship 2013 Fundamental Limits of Detection in the Near and Mid Infrared Nathan Lenssen Claremont McKenna College Recommended Citation Lenssen, Nathan, "Fundamental Limits of Detection in the Near and Mid Infrared" (2013). CMC Senior Theses. Paper 800. http://scholarship.claremont.edu/cmc_theses/800 This Open Access Senior Thesis is brought to you by Scholarship@Claremont. It has been accepted for inclusion in this collection by an authorized administrator. For more information, please contact [email protected]. Fundamental Limits of Detection of Galaxies in the Near and Mid Infrared Senior Thesis in Physics Nathan Lenssen Claremont McKenna College Dr. Philip Lubin University of California, Santa Barbara Dr. James Higdon Keck Science Department Table of Contents 1. Abstract ..................................................................................................................................................... 2 2. Introduction .............................................................................................................................................. 2 3. Infrared Missions ...................................................................................................................................... 3 3.1 Ground Based ...................................................................................................................................... 3 3.1.1 W. M. Keck Observatory .............................................................................................................
    [Show full text]
  • Subaru Super Deep Field (SSDF) with AO
    Subaru Super Deep Field (SSDF) using Adaptive Optics Yosuke Minowa (NAOJ) on behalf of Yoshii, Y. (IoA, Univ. of Tokyo; PI) and SSDF team: Kobayashi, N. (IoA, Univ. of Tokyo), Totani, T. (Kyoto Univ.), Takami, H., Takato, N. Hayano, Y., Iye, M. (NAOJ). Subaru UM (1/30/2007) SSDF project: What? { Scientific motivation 1. Study the galaxy population at the unprecedented faint end (K’=23-25mag) to find any new population which may explain the missing counterpart to the extragalactic background light. 2. Study the morphological evolution of field galaxies in rest-frame optical wavelengths to find the origin of Hubble sequence. Æ high-resolution deep imaging of distant galaxies SSDF project: How? { Deep imaging of high-z galaxies with AO. z Improve detection sensitivity. Peak intensity: with AO ~ 10-20 times higher 0”.07 without AO z Improve spatial 0”.4 resolution FWHM < 0”.1 AO is best suited for the deep imaging study of high-z galaxies which requires both high-sensitivity and high-resolution. z SSDF project: Where? { Target field: a part of “Subaru Deep Field” (SDF) z Originally selected to locate near a bright star for AO observations (Maihara+01). z Optical~NIR deep imaging data are publicly available. { Enable the SED fitting of detected galaxies. Æ phot-z, rest-frame color, (Maihara+01) stellar mass… Observations { AO36+IRCS at Cassegrain z K’-band (2.12um) imaging with 58mas mode z providing 1x1 arcmin2 FOV AO36 IRCS To achieve unprecedented faint-end, we concentrated on K’-band imaging of this 1arcmin2 field, rather than wide-field or multi-color imaging.
    [Show full text]
  • The Importance of Radio Astronomy and Remote Sensing of the Earth, and the Unique Vulnerability of Passive Services to Interference
    Before the FEDERAL COMMUNICATIONS COMMISSION Washington, DC 20554 In the Matter of ) ) Establishment of an Interference Temperature ) Metric to Quantify and Manage Interference ) ET Docket No. 03-237 and to Expand Available Unlicensed ) Operation in Certain Fixed, Mobile and ) Satellite Frequency Bands ) COMMENTS OF THE NATIONAL ACADEMY OF SCIENCES’ COMMITTEE ON RADIO FREQUENCIES The National Academy of Sciences, through the National Research Council's Committee on Radio Frequencies (hereinafter, CORF1), hereby submits its comments in response to the Notice of Inquiry and Notice of Proposed Rule Making (NPRM), released November 28, 2003, in the above-captioned docket, seeking comments on a new “interference temperature” metric for quantifying and managing interference. Herein, CORF supports the Commission’s general intent of quantifying and managing interference in a more precise fashion. However, in light of the tremendously weak signals observed by passive scientific users of the spectrum, and the long integration times used to make such observations, the use of the interference temperature metric cannot as a practical matter provide the protection needed for scientific observation. Accordingly, CORF strongly recommends that an interference temperature metric not be used in bands allocated for passive scientific observation, such as bands allocated to the Radio Astronomy Service (RAS) or to the Earth Exploration Satellite Service (EESS). I. Introduction: The Importance of Radio Astronomy and Remote Sensing of the Earth, and the Unique Vulnerability of Passive Services to Interference CORF has a substantial interest in this proceeding, as it represents the interests of the scientific users of the radio spectrum, including users of the RAS and the EESS bands.
    [Show full text]
  • Observational Astronomy
    Observational Astronomy Dr Elizabeth Stanway, [email protected] A brief history of observational astronomy Astronomical alignments 32,500 year old… star chart? e.g. Stonehenge c.5000 yr old A brief history of observational astronomy Armillary spheres and astrolabes Independently invented in China and Greece c. 200bce Astronomical alignments e.g. Stonehenge c.5000 yr old A brief history of observational astronomy Armillary spheres and astrolabes Independently invented in China and Greece c. 200bce Chaucer wrote a treatise on the astrolabe in 1391 A brief history of observational astronomy The Antikythera Mechanism – a calendar and orrery from c.100bce A brief history of observational astronomy It took 1500 years to make similarly complex astronomical clocks – e.g. Samuel Watson of Coventry (1690) Can show planetary orbits, dates, times, lunar and solar cycles, eclipses. In the collection of Windsor castle (image reproduced from Royal Collections Trust) The first telescopes 1608: Hans Lippershey/Jacob Metius Refracting telescopes… may 1608: Gallileo Gallilei have been around decades before - or even longer 1611: Johannes Kepler 1668: Isaac Newton Reflecting telescope – proposed earlier 1936: Karl Jansky Radio telescopes 1963: Riccardo Giacconi X-Ray telescopes 1968: Nancy Grace Roman Space telescopes Key Questions to consider: Where is your target? What effect will the atmosphere - coordinate systems have? - precession of the equinoxes - atmospheric refraction - proper motion - atmospheric extinction - seeing and sky brightness - adaptive optics When can you observe it? - equatorial vs alt/az - hour angles - how do we measure time? Angles Observational astronomy is all about angles: 1 AU @ 1 pc subtends 1 arcsecond = 1”.
    [Show full text]
  • Modern Astronomical Optics 1
    Modern Astronomical Optics 1. Fundamental of Astronomical Imaging Systems OUTLINE: A few key fundamental concepts used in this course: Light detection: Photon noise Diffraction: Diffraction by an aperture, diffraction limit Spatial sampling Earth's atmosphere: every ground-based telescope's first optical element Effects for imaging (transmission, emission, distortion and scattering) and quick overview of impact on optical design of telescopes and instruments Geometrical optics: Pupil and focal plane, Lagrange invariant Astronomical measurements & important characteristics of astronomical imaging systems: Collecting area and throughput (sensitivity) flux units in astronomy Angular resolution Field of View (FOV) Time domain astronomy Spectral resolution Polarimetric measurement Astrometry Light detection: Photon noise Poisson noise Photon detection of a source of constant flux F. Mean # of photon in a unit dt = F dt. Probability to detect a photon in a unit of time is independent of when last photon was detected→ photon arrival times follows Poisson distribution Probability of detecting n photon given expected number of detection x (= F dt): f(n,x) = xne-x/(n!) x = mean value of f = variance of f Signal to noise ration (SNR) and measurement uncertainties SNR is a measure of how good a detection is, and can be converted into probability of detection, degree of confidence Signal = # of photon detected Noise (std deviation) = Poisson noise + additional instrumental noises (+ noise(s) due to unknown nature of object observed) Simplest case (often
    [Show full text]
  • Adaptive Optics: an Introduction Claire E
    1 Adaptive Optics: An Introduction Claire E. Max I. BRIEF OVERVIEW OF ADAPTIVE OPTICS Adaptive optics is a technology that removes aberrations from optical systems, through use of one or more deformable mirrors which change their shape to compensate for the aberrations. In the case of adaptive optics (hereafter AO) for ground-based telescopes, the main application is to remove image blurring due to turbulence in the Earth's atmosphere, so that telescopes on the ground can "see" as clearly as if they were in space. Of course space telescopes have the great advantage that they can obtain images and spectra at wavelengths that are not transmitted by the atmosphere. This has been exploited to great effect in ultra-violet bands, at near-infrared wavelengths that are not in the atmospheric "windows" at J, H, and K bands, and for the mid- and far-infrared. However since it is much more difficult and expensive to launch the largest telescopes into space instead of building them on the ground, a very fruitful synergy has emerged in which images and low-resolution spectra obtained with space telescopes such as HST are followed up by adaptive- optics-equipped ground-based telescopes with larger collecting area. Astronomy is by no means the only application for adaptive optics. Beginning in the late 1990's, AO has been applied with great success to imaging the living human retina (Porter 2006). Many of the most powerful lasers are using AO to correct for thermal distortions in their optics. Recently AO has been applied to biological microscopy and deep-tissue imaging (Kubby 2012).
    [Show full text]
  • RASC Choosing and Using a Telescope for Astronomy
    of binoculars accompanied by a good rainbow, obscuring fine detail. The objective astronomy guide like the Royal Astronomical lens in achromat refractors is commonly made Society of Canada’s Observer’s Handbook or of two or more lenses of different glass types to Beginner’s Observing Guide is all you need to begin help correct this problem, Choosing understanding the night sky. known as chromatic aberration. This most and Using a TELESCOPE READINESS TEST commonly manifests itself as faint fringes of colour “Space is mostly empty and you can find a around objects like the whole lot of nothing with a telescope” --- Moon or Jupiter, but it is Richard Weis, former President of rarely fully cured except in RASC-Calgary Centre. Telescope very expensive If you can do the following, then you are ready apochromat refractors. for Astronomy to make full and rewarding use of a telescope: Advantages: Refractors, by default, have a Find and name four circumpolar totally clear aperture. No central obstruction constellations causes light to be scattered from brighter to For many people, the words ‘astronomy’ and Find and name three constellations seen in darker areas. Thus, contrast is good in ‘telescope’ are inseparable. Many newcomers to the southern sky in each of the four seasons refractors. Refractors are often chosen as the the hobby of astronomy mistakenly believe that Find and name - (a) 4 double stars (b) 4 premier instruments for planetary and double- it is important to get a telescope as quickly as variable stars (c) 5 star clusters (d) 5 nebulae star observing. Refractors are also low in possible.
    [Show full text]