Forty Two Problems of First Degree from Diophantus’ Arithmetica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Diophantine Equation X 2 + C = Y N : a Brief Overview
Revista Colombiana de Matem¶aticas Volumen 40 (2006), p¶aginas31{37 The Diophantine equation x 2 + c = y n : a brief overview Fadwa S. Abu Muriefah Girls College Of Education, Saudi Arabia Yann Bugeaud Universit¶eLouis Pasteur, France Abstract. We give a survey on recent results on the Diophantine equation x2 + c = yn. Key words and phrases. Diophantine equations, Baker's method. 2000 Mathematics Subject Classi¯cation. Primary: 11D61. Resumen. Nosotros hacemos una revisi¶onacerca de resultados recientes sobre la ecuaci¶onDiof¶antica x2 + c = yn. 1. Who was Diophantus? The expression `Diophantine equation' comes from Diophantus of Alexandria (about A.D. 250), one of the greatest mathematicians of the Greek civilization. He was the ¯rst writer who initiated a systematic study of the solutions of equations in integers. He wrote three works, the most important of them being `Arithmetic', which is related to the theory of numbers as distinct from computation, and covers much that is now included in Algebra. Diophantus introduced a better algebraic symbolism than had been known before his time. Also in this book we ¯nd the ¯rst systematic use of mathematical notation, although the signs employed are of the nature of abbreviations for words rather than algebraic symbols in contemporary mathematics. Special symbols are introduced to present frequently occurring concepts such as the unknown up 31 32 F. S. ABU M. & Y. BUGEAUD to its sixth power. He stands out in the history of science as one of the great unexplained geniuses. A Diophantine equation or indeterminate equation is one which is to be solved in integral values of the unknowns. -
Unaccountable Numbers
Unaccountable Numbers Fabio Acerbi In memoriam Alessandro Lami, a tempi migliori HE AIM of this article is to discuss and amend one of the most intriguing loci corrupti of the Greek mathematical T corpus: the definition of the “unknown” in Diophantus’ Arithmetica. To do so, I first expound in detail the peculiar ter- minology that Diophantus employs in his treatise, as well as the notation associated with it (section 1). Sections 2 and 3 present the textual problem and discuss past attempts to deal with it; special attention will be paid to a paraphrase contained in a let- ter of Michael Psellus. The emendation I propose (section 4) is shown to be supported by a crucial, and hitherto unnoticed, piece of manuscript evidence and by the meaning and usage in non-mathematical writings of an adjective that in Greek math- ematical treatises other than the Arithmetica is a sharply-defined technical term: ἄλογος. Section 5 offers some complements on the Diophantine sign for the “unknown.” 1. Denominations, signs, and abbreviations of mathematical objects in the Arithmetica Diophantus’ Arithmetica is a collection of arithmetical prob- lems:1 to find numbers which satisfy the specific constraints that 1 “Arithmetic” is the ancient denomination of our “number theory.” The discipline explaining how to calculate with particular, possibly non-integer, numbers was called in Late Antiquity “logistic”; the first explicit statement of this separation is found in the sixth-century Neoplatonic philosopher and mathematical commentator Eutocius (In sph. cyl. 2.4, in Archimedis opera III 120.28–30 Heiberg): according to him, dividing the unit does not pertain to arithmetic but to logistic. -
15 Famous Greek Mathematicians and Their Contributions 1. Euclid
15 Famous Greek Mathematicians and Their Contributions 1. Euclid He was also known as Euclid of Alexandria and referred as the father of geometry deduced the Euclidean geometry. The name has it all, which in Greek means “renowned, glorious”. He worked his entire life in the field of mathematics and made revolutionary contributions to geometry. 2. Pythagoras The famous ‘Pythagoras theorem’, yes the same one we have struggled through in our childhood during our challenging math classes. This genius achieved in his contributions in mathematics and become the father of the theorem of Pythagoras. Born is Samos, Greece and fled off to Egypt and maybe India. This great mathematician is most prominently known for, what else but, for his Pythagoras theorem. 3. Archimedes Archimedes is yet another great talent from the land of the Greek. He thrived for gaining knowledge in mathematical education and made various contributions. He is best known for antiquity and the invention of compound pulleys and screw pump. 4. Thales of Miletus He was the first individual to whom a mathematical discovery was attributed. He’s best known for his work in calculating the heights of pyramids and the distance of the ships from the shore using geometry. 5. Aristotle Aristotle had a diverse knowledge over various areas including mathematics, geology, physics, metaphysics, biology, medicine and psychology. He was a pupil of Plato therefore it’s not a surprise that he had a vast knowledge and made contributions towards Platonism. Tutored Alexander the Great and established a library which aided in the production of hundreds of books. -
Fiboquadratic Sequences and Extensions of the Cassini Identity Raised from the Study of Rithmomachia
Fiboquadratic sequences and extensions of the Cassini identity raised from the study of rithmomachia Tom´asGuardia∗ Douglas Jim´enezy October 17, 2018 To David Eugene Smith, in memoriam. Mathematics Subject Classification: 01A20, 01A35, 11B39 and 97A20. Keywords: pythagoreanism, golden ratio, Boethius, Nicomachus, De Arithmetica, fiboquadratic sequences, Cassini's identity and rithmomachia. Abstract In this paper, we introduce fiboquadratic sequences as a consequence of an extension to infinity of the board of rithmomachia. Fiboquadratic sequences approach the golden ratio and provide extensions of Cassini's Identity. 1 Introduction Pythagoreanism was a philosophical tradition, that left a deep influence over the Greek mathematical thought. Its path can be traced until the Middle Ages, and even to present. Among medieval scholars, which expanded the practice of the pythagoreanism, we find Anicius Manlius Severinus Boethius (480-524 A.D.) whom by a free translation of De Institutione Arithmetica by Nicomachus of Gerasa, preserved the pythagorean teaching inside the first universities. In fact, Boethius' book became the guide of study for excellence during quadriv- ium teaching, almost for 1000 years. The learning of arithmetic during the arXiv:1509.03177v3 [math.HO] 22 Nov 2016 quadrivium, made necessary the practice of calculation and handling of basic mathematical operations. Surely, with the mixing of leisure with this exercise, Boethius' followers thought up a strategy game in which, besides the training of mind calculation, it was used to preserve pythagorean traditions coming from the Greeks and medieval philosophers. Maybe this was the origin of the philoso- phers' game or rithmomachia. Rithmomachia (RM, henceforward) became the ∗Department of Mathematics. -
Hypatia of Alexandria A. W. Richeson National Mathematics Magazine
Hypatia of Alexandria A. W. Richeson National Mathematics Magazine, Vol. 15, No. 2. (Nov., 1940), pp. 74-82. Stable URL: http://links.jstor.org/sici?sici=1539-5588%28194011%2915%3A2%3C74%3AHOA%3E2.0.CO%3B2-I National Mathematics Magazine is currently published by Mathematical Association of America. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/maa.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Sun Nov 18 09:31:52 2007 Hgmdnism &,d History of Mdtbenzdtics Edited by G. -
Cambridge University Press 978-1-108-48147-2 — Scale, Space and Canon in Ancient Literary Culture Reviel Netz Index More Information
Cambridge University Press 978-1-108-48147-2 — Scale, Space and Canon in Ancient Literary Culture Reviel Netz Index More Information Index Aaker, Jennifer, 110, 111 competition, 173 Abdera, 242, 310, 314, 315, 317 longevity, 179 Abel, N. H., 185 Oresteia, 197, 200, 201 Academos, 189, 323, 324, 325, 337 papyri, 15 Academy, 322, 325, 326, 329, 337, 343, 385, 391, Persians, 183 399, 404, 427, 434, 448, 476, 477–8, 512 portraits, 64 Achilles Tatius, 53, 116, 137, 551 Ptolemaic era, 39 papyri, 16, 23 Aeschylus (astronomer), 249 Acta Alexandrinorum, 87, 604 Aesop, 52, 68, 100, 116, 165 adespota, 55, 79, 81–5, 86, 88, 91, 99, 125, 192, 194, in education, 42 196, 206, 411, 413, 542, 574 papyri, 16, 23 Adkin, Neil, 782 Aethiopia, 354 Adrastus, 483 Aetia, 277 Adrastus (mathematician), 249 Africa, 266 Adrianople, 798 Agatharchides, 471 Aedesius (martyr), 734, 736 Agathocles (historian), 243 Aegae, 479, 520 Agathocles (peripatetic), 483 Aegean, 338–43 Agathon, 280 Aegina, 265 Agias (historian), 373 Aelianus (Platonist), 484 agrimensores, 675 Aelius Aristides, 133, 657, 709 Ai Khanoum, 411 papyri, 16 Akhmatova, Anna, 186 Aelius Herodian (grammarian), 713 Albertus Magnus, 407 Aelius Promotus, 583 Albinus, 484 Aenesidemus, 478–9, 519, 520 Alcaeus, 49, 59, 61–2, 70, 116, 150, 162, 214, 246, Aeolia, 479 see also Aeolian Aeolian, 246 papyri, 15, 23 Aeschines, 39, 59, 60, 64, 93, 94, 123, 161, 166, 174, portraits, 65, 67 184, 211, 213, 216, 230, 232, 331 Alcidamas, 549 commentaries, 75 papyri, 16 Ctesiphon, 21 Alcinous, 484 False Legation, 22 Alcmaeon, 310 -
94 Erkka Maula
ORGANON 15 PROBLÊMES GENERAUX Erkka Maula (Finland) FROM TIME TO PLACE: THE PARADIGM CASE The world-order in philosophical cosmology can be founded upon time as well as .space. Perhaps the most fundamental question pertaining to any articulated world- view concerns, accordingly, their ontological and epistemological priority. Is the basic layer of notions characterized by temporal or by spatial concepts? Does a world-view in its development show tendencies toward the predominance of one set of concepts rather than the other? At the stage of its relative maturity, when the qualitative and comparative phases have paved the way for the formation of quantitative concepts: Which are considered more fundamental, measurements of time or measurements of space? In the comparative phase: Is the geometry of the world a geometry of motion or a geometry of timeless order? In the history of our own scientific world-view, there seems to be discernible an oscillation between time-oriented and space-oriented concept formation.1 In the dawn, when the first mathematical systems of astronomy and geography appear, shortly before Euclid's synthesis of the axiomatic thought, there were attempts at a geometry of motion. They are due to Archytas of Tarentum and Eudoxus of Cnidus, foreshadowed by Hippias of Elis and the Pythagoreans, who tend to intro- duce temporal concepts into geometry. Their most eloquent adversary is Plato, and after him the two alternative streams are often called the Heraclitean and the Parmenidean world-views. But also such later and far more articulated distinctions as those between the statical and dynamic cosmologies, or between the formalist and intuitionist philosophies of mathematics, can be traced down to the original Greek dichotomy, although additional concepts entangle the picture. -
Dossier Pierre Duhem Pierre Duhem's Philosophy and History of Science
Transversal: International Journal for the Historiography of Science , 2 (201 7) 03 -06 ISSN 2526 -2270 www.historiographyofscience.org © The Author s 201 7 — This is an open access article Dossier Pierre Duhem Pierre Duhem’s Philos ophy and History of Science Introduction Fábio Rodrigo Leite 1 Jean-François Stoffel 2 DOI: http://dx.doi.org/10.24117/2526-2270.2017.i2.02 _____________________________________________________________________________ We are pleased to present in this issue a tribute to the thought of Pierre Duhem, on the occasion of the centenary of his death that occurred in 2016. Among articles and book reviews, the dossier contains 14 contributions of scholars from different places across the world, from Europe (Belgium, Greece, Italy, Portugal and Sweden) to the Americas (Brazil, Canada, Mexico and the United States). And this is something that attests to the increasing scope of influence exerted by the French physicist, philosopher and 3 historian. It is quite true that since his passing, Duhem has been remembered in the writings of many of those who knew him directly. However, with very few exceptions (Manville et al. 1927), the comments devoted to him exhibited clear biographical and hagiographic characteristics of a generalist nature (see Jordan 1917; Picard 1921; Mentré 1922a; 1922b; Humbert 1932; Pierre-Duhem 1936; Ocagne et al. 1937). From the 1950s onwards, when the studies on his philosophical work resumed, the thought of the Professor from Bordeaux acquired an irrevocable importance, so that references to La théorie physique: Son objet et sa structure became a common place in the literature of the area. As we know, this recovery was a consequence of the prominence attributed, firstly, to the notorious Duhem-Quine thesis in the English- speaking world, and secondly to the sparse and biased comments made by Popper that generated an avalanche of revaluations of the Popperian “instrumentalist interpretation”. -
Historiographie De Paul Tannery Et Receptions De Son Œuvre: Sur L'invention Du Metier D'historien Des Sciences
Historiographie de Paul Tannery et receptions de son œuvre : sur l’invention du metier d’historien des sciences François Pineau To cite this version: François Pineau. Historiographie de Paul Tannery et receptions de son œuvre : sur l’invention du metier d’historien des sciences. Histoire, Philosophie et Sociologie des sciences. Université de Nantes, 2010. Français. NNT : 2010NANT2076. tel-00726388 HAL Id: tel-00726388 https://tel.archives-ouvertes.fr/tel-00726388 Submitted on 29 Aug 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE NANTES UFR SCIENCES ET TECHNIQUES _____ ECOLE DOCTORALE SOCIETES, CULTURES, ECHANGES Année 2010 N° attribué par la bibliothèque Historiographie de Paul Tannery et réceptions de son œuvre : sur l'invention du métier d'historien des sciences ___________ THÈSE DE DOCTORAT Discipline : Épistémologie et Histoire des sciences et des techniques Présentée et soutenue publiquement par François PINEAU Le 11 décembre 2010, devant le jury ci-dessous Rapporteurs : M. Eberhard KNOBLOCH, Professeur, Berlin Mme Jeanne PEIFFER, Directeur de recherche CNRS, Paris Examinateurs : M. Anastasios BRENNER, Professeur, Montpellier M. Bernard VITRAC, Directeur de recherche CNRS, Paris Co-directeurs de thèse : Mme Évelyne BARBIN, Professeur, Nantes M. -
Did Hypatia Know About Negative Numbers?
Did Hypatia Know about Negative Numbers? Hypatia lived in Alexandria in the 4th-5th century AD. She was one of the most remarkable women in history. Her father Theon, presumably the last member of the Museum, instructed her in mathematics, philosophy and clas- sical Greek literature. With time she herself became a brilliant teacher of Neoplatonic philosophy and mathematics. Numerous young aspirants from wealthy Christian and pagan families came to Alexandria with the sole pur- pose of joining the sophisticated inner circle of her students. Theon and Hyptia edited several of the major mathematical treatises avail- able in their time: Arithmetica by Diophantus, Almagest by Ptolemy, Conics by Appolonius of Perga, and Elements by Euclid. A significant part of this work, in particular on the most difficult and demanding Arithmetica, she did alone. To some of these treatises she added commentaries and exemplary exercises. A charismatic figure in the city’s intellectual life and a close friend to many important officials, Hypatia had a significant influence on the Alexandrian elite and politics. She was admired for her knowledge, wisdom, righteousness and personal charm. Her public lectures for the Alexandrian intelligentsia attracted a great deal of interest. However, her elevated social position and popularity did not prevent her from becoming the victim of a brutal murder in 415 AD by the fanatic mob who accused her of conducting forbidden magical practices. Groundless rumors about Hypatia’s dealings with witchcraft were most likely inspired by her political enemies. Bishop Cyril was certainly one of them, but the allegations concerning his direct involvement have never been proven. -
Diophantus of Alexandria
Diophantus of Alexandria Diophantus of Alexandria played a major role in the development of algebra and was a considerable influence on later number theorists. Diophantine analysis, which is closely related to algebraic geometry, has experienced a resurgence of interest in the past half century. Diophantus worked before the introduction of modern algebraic notation, but he moved from rhetorical algebra to syncopated algebra, where abbreviations are used. Prior to Diophantus’ time the steps in solving a problem were written in words and complete sentences, like a piece of prose, or a philosophical argument. Diophantus employed a symbol to represent the unknown quantity in his equations, but as he had only one symbol he could not use more than one unknown at a time. His work, while not a system of symbols, was nevertheless an important step in the right direction. François Viète, influenced by Napier, Descartes and John Wallis, introduced symbolic algebra into Europe in the 16th century when he used letters to represent both constants and variables. Claims that Diophantus lived from about 200 to 284 and spent time at Alexandria are based on detective work in finding clues to the times he flourished in his and others’ writings. Theon of Alexandria quoted Diophantus in 365 and his work was the subject of a commentary written by Theon’s daughter Hypatia at the beginning of the 5th century, which unfortunately is lost. The most details concerning Diophantus’ life are found in the Greek Anthology, compiled by Metrodorus around 500. Diophantus is often referred to as the “father of algebra,” but this is stretching things as many of his methods for solving linear and quadratic equations can be traced back to the Babylonians. -
A Short History of Greek Mathematics
Cambridge Library Co ll e C t i o n Books of enduring scholarly value Classics From the Renaissance to the nineteenth century, Latin and Greek were compulsory subjects in almost all European universities, and most early modern scholars published their research and conducted international correspondence in Latin. Latin had continued in use in Western Europe long after the fall of the Roman empire as the lingua franca of the educated classes and of law, diplomacy, religion and university teaching. The flight of Greek scholars to the West after the fall of Constantinople in 1453 gave impetus to the study of ancient Greek literature and the Greek New Testament. Eventually, just as nineteenth-century reforms of university curricula were beginning to erode this ascendancy, developments in textual criticism and linguistic analysis, and new ways of studying ancient societies, especially archaeology, led to renewed enthusiasm for the Classics. This collection offers works of criticism, interpretation and synthesis by the outstanding scholars of the nineteenth century. A Short History of Greek Mathematics James Gow’s Short History of Greek Mathematics (1884) provided the first full account of the subject available in English, and it today remains a clear and thorough guide to early arithmetic and geometry. Beginning with the origins of the numerical system and proceeding through the theorems of Pythagoras, Euclid, Archimedes and many others, the Short History offers in-depth analysis and useful translations of individual texts as well as a broad historical overview of the development of mathematics. Parts I and II concern Greek arithmetic, including the origin of alphabetic numerals and the nomenclature for operations; Part III constitutes a complete history of Greek geometry, from its earliest precursors in Egypt and Babylon through to the innovations of the Ionic, Sophistic, and Academic schools and their followers.