Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee 2018 Assess­Ment Report

Total Page:16

File Type:pdf, Size:1020Kb

Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee 2018 Assess­Ment Report Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee 2018 Assess ment Report Montreal Protocol on Substances that Deplete the Ozone Layer Ozone Secretariat MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER 2018 REPORT OF THE REFRIGERATION, AIR CONDITIONING AND HEAT PUMPS TECHNICAL OPTIONS COMMITTEE 2018 Assessment Montreal Protocol on Substances that Deplete the Ozone Layer 2018 REPORT OF THE REFRIGERATION, AIR CONDITIONING AND HEAT PUMPS TECHNICAL OPTIONS COMMITTEE 2018 ASSESSMENT The text of this report is composed in Times New Roman. Co-ordination: Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee Composition: Roberto Peixoto and Fabio Polonara (RTOC co-chairs) Lambert Kuijpers Formatting: Lambert Kuijpers, RTOC co-chairs Reproduction: Ozone Secretariat, UNEP Nairobi, Kenya Date: February 2019 No copyright involved Printed in Kenya, 2019 ISBN: 978-9966-076-58-8 iii 2018 TOC Refrigeration, A/C and Heat Pumps Assessment Report DISCLAIMER The United Nations Environment Programme (UNEP), the Technology and Economic Assessment Panel (TEAP) co-chairs and members, the Refrigeration AC and Heat Pumps Technical Options Committee, co-chairs and members, and the companies and organisations that employ them do not endorse the performance, worker safety, or environmental acceptability of any of the technical options discussed. Every industrial operation requires consideration of worker safety and proper disposal of contaminants and waste products. Moreover, as work continues - including additional toxicity evaluation - more information on health, environmental and safety effects of alternatives and replacements will become available for use in selecting among the options discussed in this document. UNEP, the TEAP co-chairs and members, the Refrigeration, AC and Heat Pumps Technical Options Committee, co-chairs and members, in furnishing or distributing this information, do not make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or utility; nor do they assume any liability of any kind whatsoever resulting from the use or reliance upon any information, material, or procedure contained herein, including but not limited to any claims regarding health, safety, environmental effect or fate, efficacy, or performance, made by the source of information. Mention of any company, association, or product in this document is for information purposes only and does not constitute a recommendation of any such company, association, or product, either express or implied by UNEP, the Technology and Economic Assessment Panel co-chairs or members, the Refrigeration, AC and Heat Pumps Technical Options Committee co-chairs or members, or the companies or organisations that employ them. ACKNOWLEDGEMENT The UNEP Refrigeration, A/C and Heat Pumps Technical Options Committee acknowledges with thanks the outstanding contributions from all of the individuals and organisations who provided technical support to committee members in the period 2015-2018. In developing this report, particularly the RTOC chapter lead authors were instrumental. The names of chapter lead authors, co-authors and contributors are given at the start of each chapter. Names and contact emails of the chapter lead authors and all other authors of the UNEP TOC Refrigeration, A/C and Heat Pumps can be found in an Annex. The opinions expressed are those of the Committee and do not necessarily reflect the views of any sponsoring or supporting organisations. Gratitude is expressed to UNEP’s Ozone Secretariat, Nairobi, Kenya for the co-operation in the last, final formatting and styling of the report, as well as for the reproduction of this 2018 RTOC Assessment Report. iv 2018 TOC Refrigeration, A/C and Heat Pumps Assessment Report Table of Contents ACRONYMS .............................................................................................................................................. XI KEY MESSAGES .......................................................................................................................................... 1 REFRIGERANTS ............................................................................................................................................ 1 DOMESTIC APPLIANCES ............................................................................................................................... 1 COMMERCIAL REFRIGERATION .................................................................................................................... 1 INDUSTRIAL REFRIGERATION AND HEAT PUMP SYSTEMS ............................................................................. 2 TRANSPORT REFRIGERATION ....................................................................................................................... 2 AIR-TO-AIR AIR CONDITIONERS AND HEAT PUMPS ....................................................................................... 2 WATER AND SPACE HEATING HEAT PUMPS .................................................................................................. 3 CHILLERS .................................................................................................................................................... 3 VEHICLE AIR CONDITIONING ........................................................................................................................ 4 ENERGY EFFICIENCY AND SUSTAINABILITY APPLIED TO REFRIGERATION SYSTEMS ..................................... 4 NOT-IN-KIND TECHNOLOGIES ..................................................................................................................... 4 HIGH AMBIENT ............................................................................................................................................ 5 MODELLING ................................................................................................................................................ 5 EXECUTIVE SUMMARIES........................................................................................................................ 7 REFRIGERANTS ............................................................................................................................................ 7 DOMESTIC APPLIANCES ............................................................................................................................... 7 COMMERCIAL REFRIGERATION .................................................................................................................... 8 INDUSTRIAL REFRIGERATION AND HEAT PUMP SYSTEMS ............................................................................. 9 TRANSPORT REFRIGERATION ..................................................................................................................... 10 AIR-TO-AIR AIR CONDITIONERS AND HEAT PUMPS ..................................................................................... 11 WATER AND SPACE HEATING HEAT PUMPS ................................................................................................ 11 CHILLERS .................................................................................................................................................. 12 VEHICLE AIR CONDITIONING ...................................................................................................................... 13 ENERGY EFFICIENCY AND SUSTAINABILITY APPLIED TO REFRIGERATION SYSTEMS ................................... 14 NOT-IN-KIND TECHNOLOGIES ................................................................................................................... 15 HIGH AMBIENT .......................................................................................................................................... 16 MODELLING .............................................................................................................................................. 16 1 INTRODUCTION.............................................................................................................................. 21 1.1 THE REFRIGERATION, AIR CONDITIONING AND HEAT PUMP SECTOR - GENERAL REMARKS ........... 21 1.2 MONTREAL PROTOCOL DEVELOPMENTS .......................................................................................... 22 1.2.1 The Kigali Amendment .......................................................................................................... 22 1.3 TEAP TASK FORCE REPORTS ........................................................................................................... 26 1.4 THE ENERGY EFFICIENCY ISSUE ...................................................................................................... 28 1.5 CFC-11 EMISSIONS .......................................................................................................................... 29 1.6 LONG TERM OPTIONS ....................................................................................................................... 29 1.7 THE TECHNICAL OPTIONS COMMITTEE REFRIGERATION, A/C AND HEAT PUMPS............................ 30 1.8 SET UP OF THE 2018 RTOC ASSESSMENT REPORT........................................................................... 32 1.8.1 Specific items in the 2018 RTOC Assessment Report chapters .............................................. 33 1.9 REFERENCES .................................................................................................................................... 34 2
Recommended publications
  • Solar Heating and Cooling & Solar Air-Conditioning Position Paper
    Task 53 New Generation Solar Cooling & Heating Systems (PV or solar thermally driven systems) Solar Heating and Cooling & Solar Air-Conditioning Position Paper November 2018 Contents Executive Summary ............................................................. 3 Introduction and Relevance ................................................ 4 Status of the Technology/Industry ...................................... 5 Technical maturity and basic successful rules for design .............. 7 Energy performance for PV and Solar thermally driven systems ... 8 Economic viability and environmental benefits .............................. 9 Market status .................................................................................... 9 Potential ............................................................................. 10 Technical potential ......................................................................... 10 Costs and economics ..................................................................... 11 Market opportunities ...................................................................... 12 Current Barriers ................................................................. 12 Actions Needed .................................................................. 13 This document was prepared by Daniel Neyer1,2 and Daniel Mugnier3 with support by Alexander Thür2, Roberto Fedrizzi4 and Pedro G. Vicente Quiles5. 1 daniel neyer brainworks, Oberradin 50, 6700 Bludenz, Austria 2 University of Innsbruck, Technikerstr. 13, 6020 Innsbruck, Austria
    [Show full text]
  • Ammonia As a Refrigerant
    1791 Tullie Circle, NE. Atlanta, Georgia 30329-2305, USA www.ashrae.org ASHRAE Position Document on Ammonia as a Refrigerant Approved by ASHRAE Board of Directors February 1, 2017 Expires February 1, 2020 ASHRAE S H A P I N G T O M O R R O W ’ S B U I L T E N V I R O N M E N T T O D A Y © 2017 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. COMMITTEE ROSTER The ASHRAE Position Document on “Ammonia as a Refrigerant” was developed by the Society’s Refrigeration Committee. Position Document Committee formed on January 8, 2016 with Dave Rule as its chair. Dave Rule, Chair Georgi Kazachki IIAR Dayton Phoenix Group Alexandria, VA, USA Dayton, OH, USA Ray Cole Richard Royal Axiom Engineers, Inc. Walmart Monterey, CA, USA Bentonville, Arkansas, USA Dan Dettmers Greg Scrivener IRC, University of Wisconsin Cold Dynamics Madison, WI, USA Meadow Lake, SK, Canada Derek Hamilton Azane Inc. San Francisco, CA, USA Other contributors: M. Kent Anderson Caleb Nelson Consultant Azane, Inc. Bethesda, MD, USA Missoula, MT, USA Cognizant Committees The chairperson of Refrigerant Committee also served as ex-officio members: Karim Amrane REF Committee AHRI Bethesda, MD, USA i © 2017 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. HISTORY of REVISION / REAFFIRMATION / WITHDRAWAL
    [Show full text]
  • AHRI Project 8018 Final Report
    AHRI Project 8018 Final Report Review of Refrigerant Management Programs Prepared for: Navigant Consulting, Inc. 77 South Bedford St. Suite 400 Burlington, MA 01803 781.270.0101 navigant.com Reference No.: 180019 January 2016 © 2016 AHRI. Table of Contents Acronyms, Abbreviations, and Definitions ....................................................................... vii Executive Summary ................................................................................................................... 1 Research Summary ........................................................................................................................................ 1 Program Effectiveness ................................................................................................................................... 4 Best Practices .................................................................................................................................................. 5 Recommendations ......................................................................................................................................... 7 1. Introduction .......................................................................................................................... 10 1.1 Background ............................................................................................................................................. 10 1.2 Objective .................................................................................................................................................
    [Show full text]
  • Overview of Chiller Compressors
    Overview of Chiller Compressors Course No: M04-027 Credit: 4 PDH A. Bhatia Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] OVERVIEW OF CHILLER COMPRESSORS Overview In HVAC industry, the refrigeration machine that produces chilled water is referred to as a “Chiller”. A chiller package operates either on the principles of vapor compression or vapor absorption. The vapor compression system uses mechanical energy in the form of electric motor to drive the cooling cycle whereas absorption chillers use heat to drive the process. The vapor compression chiller system, which is far more prominent in commercial buildings, consists of four major components: the compressor, evaporator, condenser and expansion device all packaged as a single unit. The classification of vapor compression chiller packages is generally by the type of compressor: centrifugal, reciprocating, and screw being the major ones. Chillers are the largest consumer of energy in a commercial building and it is therefore important to understand the relative benefits and limitations of various types in order to make the right economic decisions in chiller installation and operation. This course will talk about the type of compressor used in the water cooled chiller. The course is divided into 3 parts: Part - I: Types of Chiller Compressors Part – II: Comparison of Chiller Compressors Part –III: Economic Evaluation of Chiller Systems PART I - TYPES OF CHILLER COMPRESSORS Most cooling systems, from residential air conditioners to large commercial and industrial chillers, employ the refrigeration process known as the vapor compression cycle. At the heart of the vapor compression cycle is the mechanical compressor.
    [Show full text]
  • HFO-1234Yf) Combustion
    Kinetic Mechanism of 2,3,3,3-Tetrafluoropropene (HFO-1234yf) Combustion V.I. Babushok, G.T Linteris Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA Short communication To be submitted to “Journal of Fluorine Chemistry” Corresponding author: Valeri I. Babushok Engineering Laboratory National Institute of Standards and Technology Gaithersburg, MD, USA E-mail: [email protected] Phone: 301-975-8975 Keywords: R-1234yf; Refrigerant flammability, Burning velocity, Low ODP/GWP refrigerants, kinetic model. 1 Kinetic Mechanism of 2,3,3,3-Tetrafluoropropene (HFO-1234yf) Combustion V.I. Babushok, G.T Linteris Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA Abstract A kinetic model for 2,3,3,3-tetrafluoropropene (HFO-1234yf) high temperature oxidation and combustion is proposed. It is combined with the GRI-Mech-3.0 model, with the previously developed model for 2-bromo-3,3,3-trifluoropropene (2-BTP), and with the NIST C1-C2 hydrofluorocarbon model. The model includes 909 reactions and 101 species. Combustion equilibrium calculations indicate a maximum combustion temperature of 2076 K for an HFO- 1234yf volume fraction of 0.083 in air for standard conditions (298 K, 0.101 MPa). Modeling of flame propagation in mixtures of 2,3,3,3-tetrafluoropropene with oxygen- enriched air demonstrates that the calculated maximum burning velocity reproduces the experimentally observed maximum burning velocity within about ___%reasonably well. However, the calculated maximum is observed in lean mixtures in contrast to the experimental results showing the maximum burning velocity shifted to the rich mixtures of HFO-1234yf. Keywords: R-1234yf; rRefrigerant flammability; bBurning velocity; lLow ODP/GWP refrigerants; kinetic model.
    [Show full text]
  • GEF Impact Evaluation of the Phase-Out of Ozone-Depleting Substances in Countries with Economies in Transition
    65338 v2 GEF Evaluation Office GEF IMPACT EVALUATION Public Disclosure Authorized GEF IMPACT EVALUATION Public Disclosure Authorized Impact Evaluation Information Document No. 18 GEF Impact Evaluation of the Phase-Out of Ozone-Depleting Substances in Countries with Economies in Transition. Volume Two: Country Reports Public Disclosure Authorized October 2009 Public Disclosure Authorized This paper is an input into the GEF Evaluation Office (GEF EO) program of Impact Evaluation. The findings, interpretations, and conclusions expressed herein are those of the authors and do not necessarily represent the views of GEF Evaluation Office, the GEF Council, or the Governments they represent. The papers in the Impact Evaluation information document series are: 1. Approach Paper to GEF Impact Evaluation – Brann and Todd 2. Final Report on Proposed Approach to GEF Impact Evaluation - Foundations of Success 3. GEF Biodiversity Policy Review - Foundations of Success 4. Methodological Challenges in Impact Evaluation: The Case of the Global Environment Facility – Todd and Vaessen 5. Priorities and indicators for Global Environment Benefits from Biodiversity: The current international architecture – Nair 6. Case Study Methodology – Conservation Development Centre 7. Case Study: Bwindi Impenetrable National Park and Mgahinga Gorilla National Park Conservation Project - Conservation Development Centre 8. Case Study: Lewa Wildlife Conservancy – Conservation Development Centre 9. Case Study: Reducing Biodiversity Loss at Cross-Border Sites in East Africa Conservation Development Centre 10. Impacts of Creation and Implementation of National Parks and of Support to Batwa on their Livelihoods, Well-Being and Use of Forest Products – Namara 11. Protected Areas and Avoided Deforestation: A Statistical Evaluation – Andam, Ferraro, Pfaff and Sanchez-Azofeifa 12.
    [Show full text]
  • Investigating Absorption Refrigerator Fires (Part I)
    Orion P. Keifer Peter D. Layson Charles A. Wensley Investigating Absorption Refrigerator Fires (Part I) ATLANTIC BEACH, FLORIDA—In today’s recreational vehicles (RV), the then expels it when perco- most common refrigerator uses absorption refrigeration technology, lated in the boiler. It is this primarily because this type of system can operate on multiple sources action of the water which of power, including propane when electrical power is unavailable. makes the ammonia flow. These refrigerators have been under intense scrutiny in recent years The hydrogen in the re- due to numerous reported fires, apparently starting in the area of the frigeration coil maintains absorption refrigerator. Both the Dometic Corporation and Norcold a positive pressure of ap- Incorporated, two manufacturers of RV refrigerators, have been re- proximately 300-375 PSI quired by the National Highway and Traffic Safety Administration (2.07-2.59 MPa) when (NHTSA) to recall certain models of refrigerators which have been not in operation and, due identified as capable of failing in a fire mode. In summary, the three to its low partial pressure, NHTSA recalls indicate a fatigue crack may develop in the boiler tube promotes the evaporation of the cooling unit which may release sufficient pressurized flammable of the liquid ammonia. It coolant solution into an area where an ignition source is present. The should be noted that unlike NHTSA Recall Campaign ID Numbers are 06E076000 for Dometic conventional refrigeration (926,877 affected units), and 02E019000 (28,144 affected units) and systems which extensively 02E045000 (8,419 affected units) for Norcold. use copper due to its high thermal conductivity, the Applications Engineering Group, Inc.
    [Show full text]
  • Solar Air-Conditioning and Refrigeration - Achievements and Challenges
    Solar air-conditioning and refrigeration - achievements and challenges Hans-Martin Henning Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg/Germany EuroSun 2010 September 28 – October 2, 2010 Graz - AUSTRIA © Fraunhofer ISE Outline Components and systems Achievements Solar thermal versus PV? Challenges and conclusion © Fraunhofer ISE Components and systems Achievements Solar thermal versus PV? Challenges and conclusion © Fraunhofer ISE Overall approach to energy efficient buildings Assure indoor comfort with a minimum energy demand 1. Reduction of energy demand Building envelope; ventilation 2. Use of heat sinks (sources) in Ground; outside air (T, x) the environment directly or indirectly; storage mass 3. Efficient conversion chains HVAC; combined heat, (minimize exergy losses) (cooling) & power (CH(C)P); networks; auxiliary energy 4. (Fractional) covering of the Solar thermal; PV; (biomass) remaining demand using renewable energies © Fraunhofer ISE Solar thermal cooling - basic principle Basic systems categories Closed cycles (chillers): chilled water Open sorption cycles: direct treatment of fresh air (temperature, humidity) © Fraunhofer ISE Open cycles – desiccant air handling units Solid sorption Liquid sorption Desiccant wheels Packed bed Coated heat exchangers Plate heat exchanger Silica gel or LiCl-matrix, future zeolite LiCl-solution: Thermochemical storage possible ECOS (Fraunhofer ISE) in TASK 38 © Fraunhofer ISE Closed cycles – water chillers or ice production Liquid sorption: Ammonia-water or Water-LiBr (single-effect or double-effect) Solid sorption: silica gel – water, zeolite-water Ejector systems Thermo-mechanical systems Turbo Expander/Compressor AC-Sun, Denmark in TASK 38 © Fraunhofer ISE System overview Driving Collector type System type temperature Low Open cycle: direct air treatment (60-90°C) Closed cycle: high temperature cooling system (e.g.
    [Show full text]
  • Rental Cooling Guide for Tents & Shelters
    Rental Cooling Guide For Tents & Shelters Taking you a step closer to cool Let’s get down to business. You’ve got a hot spot and you need cooling. It’s not everyday you need to purchase air conditioning. How do you fig- ure out how much cooling you need? Where do you turn for help? This cooling load calculator will be your guide to help you determine what kind of cooling you need and how much cooling you need. We outline the questions you need to answer before you make the call to get some extra cooling. Know what you need and you’ll be a more knowledgeable pros- pect, certain to make a more informed buying decision. Determining Your Cooling Load is a simple three step process. Apply the basic rule of thumb for tent cooling — one ton of cooling, 12,000 BTU, for every 100 s.f. to 150 s.f. This method will give you a cooling range for the size tent you select. For example: a 60’ x 80’ tent is 4800 s.f. Divide the total s.f. by 150 and you will have the low end: 4800 / 150 = 32 tons. Divide the total s.f. by 100 and you will have the high end: 4800 / 100 = 48 tons. For a 60’ x 80’ tent you will need between 32 and 48 tons of cooling. AirPac Rents Your online source for portable air conditioner rentals 888-324-7722 www.AirPacRents.com Copyright © 2005 AirPac Rents, Incorporated. All rights reserved. 1 The amount of cooling you select will depend on the event itself.
    [Show full text]
  • Guide for Air Conditioning, Refrigeration, and Help the Student
    DOCUMENT RESUME ED 251 645 CE 040 232 AUTHOR Henderson, William Edward, Jr., Ed. TITLE Art::culated, Performance-Based Instruction Objectives Guide for Air Conditioning, Refrigeration, and Heating. Volume II(Second Year). INSTITUTION Greenville County School District, Greenville, S.C.; Greenville Technical Coll., S. PUB DATE Oct 84 NOTE 374p.; Prepared by the Articulation Program Task Force Committee for Air Conditioning, Refrigeration, and Heating. PUB TYPE Guides Clasrroom Use Guides (For Teachers) (052) EDRS PRICE MF01/PC15 Plus Postage. DESCRIPTO. *Air Conditioning; Behavioral Objectives; Competency Based Education; Curriculum Guides; *Equipment Maintenance; Fuels; Jrade 12; *Heating; High Schools; Job Skills; Le.,zning Activities; *Refrigeration; Secondary Education; Solar Energy; Trade and Industrial Education; Units of Study; *Ventilation ABSTRACT This articulation guide contains 17 units of instruction for the second year of a two-year vocational program designed to prepare the high school graduate to install, maintain, and repair various types of residential and commercial heating, air conditioning, and refrigeration equipment. The units are designed to help the student to expand and apply the basic knowledge already mastered and to learn new principles and techniques and to prepare him/her for entry-level work as an apprentice. The seventeen units cover aid conditioning calculations (psychrometrics,residential heat loss and heat gain, duct design and sizing and air treatment); troubleshooting and servicing residential air conditioners; commercial refrigeration; commercial air conditioning; heating systems (electrical resistance heating, heat pumps, gas heating, oil heating, hydronics, solar heating systems); automotive air conditioner maintenance/repair; estimating and planning heating, ventilation, and air conditioning jobs; customer relations; and shop projects.
    [Show full text]
  • Refrigerant Management Program
    BY ORDER OF THE AIR FORCE MANUAL 32-7089 SECRETARY OF THE AIR FORCE 4 NOVEMBER 2016 Civil Engineering REFRIGERANT MANAGEMENT PROGRAM COMPLIANCE WITH THIS PUBLICATION IS MANDATORY ACCESSIBILITY: Publications and forms are available for downloading or ordering on the e-Publishing website at www.e-Publishing.af.mil. RELEASABILITY: There are no releasability restrictions on this publication. OPR: AF/A4CF Certified by: HQ USAF/A4C (Maj Gen Timothy Green) Supersedes: AFPAM 32-7089, 14 June 2013 Pages: 51 This manual implements Air Force Policy Directive (AFPD) 32-10, Installations and Facilities, and Title 40, Code of Federal Regulations (CFR), Part 82, Protection of Stratospheric Ozone. It describes the Air Force policy for managing refrigerants used in real property equipment and does not apply to refrigerants used in motor vehicle air conditioning (MVAC) or aircraft refrigeration systems. This manual applies to all Air Force Active, Reserve, Guard, civilian and contractor personnel who develop, acquire, deliver, use, operate, or manage refrigerants used in Air Force real property equipment. Direct questions, comments, recommended changes, or conflicts to this manual through command channels, using the AF Form 847, Recommendation for Change of Publication, through the appropriate functional chain of command. The authorities to waive wing/unit level requirements in this publication are identified with a Tier (“T-0, T-1, T- 2, T-3”) number following the compliance statement. See AFI 33-360, Publications and Forms Management, Table 1.1, for a description of the authorities associated with the Tier numbers. Submit requests for waivers through the chain of command to the appropriate Tier waiver approval authority, or alternately, to the publication OPR for non-tiered compliance items.
    [Show full text]
  • IN the UNITED STATES COURT of APPEALS for the DISTRICT of COLUMBIA CIRCUIT NATURAL RESOURCES DEFENSE COUNCIL, INC., Petitioner
    IN THE UNITED STATES COURT OF APPEALS FOR THE DISTRICT OF COLUMBIA CIRCUIT NATURAL RESOURCES DEFENSE COUNCIL, INC., Petitioner, v. Case No. _______ ANDREW WHEELER, Administrator, U.S. Environmental Protection Agency, and UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, Respondents. PETITION FOR REVIEW of a final rule of the U.S. Environmental Protection Agency Pursuant to Clean Air Act § 307(b)(1), 42 U.S.C. § 7607(b)(1), Rule 15 of the Federal Rules of Appellate Procedure, and D.C. Circuit Rule 15, the Natural Resources Defense Council hereby petitions the Court for review of the final rule of Respondents Andrew Wheeler, Administrator, U.S. Environmental Protection Agency (EPA), and EPA, titled “Protection of Stratospheric Ozone: Revisions to the Refrigerant Management Program’s Extension to Substitutes.” This rule was published in the Federal Register at 85 Fed. Reg. 14,150 on March 11, 2020. A copy of the rule is attached as Exhibit A. Dated: May 11, 2020 Respectfully submitted, /s/ Melissa J. Lynch Melissa J. Lynch David D. Doniger Natural Resources Defense Council 1152 15th Street NW, Ste. 300 Washington, DC 20005 Telephone: (202) 289-6868 [email protected] [email protected] Sarah C. Tallman Natural Resources Defense Council 20 N. Wacker Dr., Ste. 1600 Chicago, IL 60606 Telephone: (312) 651-7918 [email protected] Counsel for Petitioner Natural Resources Defense Council, Inc. 2 IN THE UNITED STATES COURT OF APPEALS FOR THE DISTRICT OF COLUMBIA CIRCUIT NATURAL RESOURCES DEFENSE COUNCIL, INC., Petitioner, v. Case No. _______ ANDREW WHEELER, Administrator, U.S. Environmental Protection Agency, and UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, Respondents.
    [Show full text]