Nutrition and Digestion MODULE - 2 Forms and Functions of Plants and Animals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Non-Bilaterian Perspective on the Development and Evolution of Animal Digestive Systems
Cell and Tissue Research (2019) 377:321–339 https://doi.org/10.1007/s00441-019-03075-x REVIEW A non-bilaterian perspective on the development and evolution of animal digestive systems Patrick R. H. Steinmetz 1 Received: 22 March 2019 /Accepted: 8 July 2019 /Published online: 7 August 2019 # The Author(s) 2019 Abstract Digestive systems and extracellular digestion are key animal features, but their emergence during early animal evolution is currently poorly understood. As the last common ancestor of non-bilaterian animal groups (sponges, ctenophores, placozoans and cnidarians) dates back to the beginning of animal life, their study and comparison provides important insights into the early evolution of digestive systems and functions. Here, I have compiled an overview of the development and cell biology of digestive tissues in non-bilaterian animals. I will highlight the fundamental differences between extracellular and intracellular digestive processes, and how these are distributed among animals. Cnidarians (e.g. sea anemones, corals, jellyfish), the phylogenetic outgroup of bilaterians (e.g. vertebrates, flies, annelids), occupy a key position to reconstruct the evolution of bilaterian gut evolution. A major focus will therefore lie on the development and cell biology of digestive tissues in cnidarians, especially sea anemones, and how they compare to bilaterian gut tissues. In that context, I will also review how a recent study on the gastrula fate map of the sea anemone Nematostella vectensis challenges our long-standing conceptions on the evolution of cnidarian and bilaterian germ layers and guts. Keywords Cnidaria . Porifera . Placozoa . Ctenophora . Gastrovascular system . Gut evolution . Extracellular digestion . Intracellular digestion . Germ layer evolution Introduction ester bonds. -
Biology Inside Cover Mod4.Indd
INCREASING ACCESS TO SECONDARY SCHOOL LEVEL EDUCATION THROUGH THE PRODUCTION OF QUALITY LEARNING MATERIALS JUNIOR SECONDARY LEVEL BIOLOGY Module 4: Nutrition and Digestion Partners: Ministry of Education and Botswana College of Distance and Open Learning (BOCODOL), Botswana Ministry of Education, Science and Technology and the Malawi College of Distance Education (MCDE), Malawi Ministry of Education, Mozambique Ministry of Basic Education, Sport and Culture, and the Namibian College of Open Learning (NAMCOL), Namibia Ministry of Education and the Emlalatini Development Centre, Swaziland Ministry of Education and Culture and the Institute of Adult Education, Tanzania Ministry of Education, Zambia Ministry of Education, Sport and Culture, Zimbabwe Commonwealth of Learning Partners: Commonwealth of Learning Ministry of Education and Botswana College of Distance and Open Learning (BOCODOL), Botswana Ministry of Education, Science and Technology and the Malawi College of Distance Education (MCDE), Malawi Ministry of Education, Mozambique Ministry of Basic Education, Sport & Culture, and the Namibian College of Open Learning (NAMCOL), Namibia Ministry of Education and the Emlalatini Development Centre, Swaziland Ministry of Education and Culture and the Institute of Adult Education, Tanzania Ministry of Education, Zambia Ministry of Education, Sport and Culture, Zimbabwe Mauritius College of the Air, Mauritius Suite 600 - 1285 West Broadway, Vancouver, BC V6H 3X8 CANADA PH: +1-604-775-8200 | FAX: +1-604-775-8210 | WEB: www.col.org | E-MAIL: [email protected] COL is an intergovernmental organisation created by Commonwealth Heads of Government to encourage the development and sharing of open learning and distance education knowledge, resources and technologies. © Commonwealth of Learning, January 2004 ISBN 1-895369-89-4 These materials have been published jointly by the Commonwealth of Learning and the partner Ministries and institutions. -
The Use of Inflammation by Tumor Cells
223 COMMENTARY The Use of Inflammation by Tumor Cells 1 Jose-Ignacio Arias, M.D., Ph.D. 2 Marı´a-Angeles Aller, M.D., Ph.D. 2 Jaime Arias, M.D., Ph.D. 1 Servicio de Cirugı´a General, Hospital Monte Naranco, Oviedo, Asturias, Spain. 2 Ca´tedra de Cirugı´a, Departamento de Cirugı´a I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain. ancer is malignant, because tumor cells invade neighboring tis- Csues and survive in these ectopic sites. This invasion permits them to enter into the circulation, from which they can reach distant organs and, eventually, form secondary tumors, called metastases.1 The classical metastatic cascade encompasses intravasation by tumor cells, circulation of these cells in lymph and blood vascular systems, arrest in distant organs, extravasation, and growth into met- astatic foci.1,2 However, the tumor cells can adopt a great variety of phenotypes; and, due to this plasticity of the malignant cells; it has been proposed that a more dynamic view is needed for the metastatic cascade.2,3 Invasion and metastases are not unique for cancer, because they also occur during embryonic development, in adult tissue mainte- nance, and in many noncancerous diseases, such as in repair pro- cesses.1,2 In relation to the latter, tumor cells have been described as wounds that do not heal.4 Both tissue repair, a beneficial process, and tumor formation, a harmful process, share some molecular mechanisms that can be ascribed to inflammation.1,2,5 Therefore, in one sense, it is possible that inflammation is shared by both processes: tissue repair and tumor formation. -
Hetrotrophic-Nutrition-O-Level.Pdf
Heterotrophic nutrition Heterotrophic organisms are organisms that feed on complex ready-made organic food. They use it as source of: - (i) energy for their vital activities, (ii) building materials, that is specific atoms and molecules for cell maintenance and repair and growth, (iii) vitamins (co-enzymes) that cannot be synthesised in organism but which are vital specific cellular processes. The main forms of heterotrophic nutrition include (i) holozoic, (ii) saprotrophic (or saprophytic) e.g. mould, mushroom (iii) mutualistic (iv) parasitic, although some overlap between groups may occur. Holozoic nutrition It is a type of heterotrophic nutrition involves the following processes (i) Ingestion: is taking in of complex organic food(solid or liquid). (ii) Digestion: is the breakdown of large complex insoluble organic molecules into small, simple soluble diffusible molecules. This is achieved by mechanical break down and enzymatic hydrolysis. Digestion may be either extra or intra cellular. (iii)Absorption: is the uptake of the soluble molecules from the digestion region, across a membrane and into the body tissue proper. The food may pass into the blood stream to be transported to appropriate regions within the body of the organism. (iv) Assimilation is the utilisation of the absorbed molecules by the body to provide either energy or materials to be incorporated into the body. (v) Egestion is the elimination from the body of undigested waste food materials. Animals which feed one plants are called herbivores, those that feed on other animals carnivores, and those that eat a mixed diet of animal and vegetable matter are termed omnivores. If they take in food in form of small particles the animals are microphagous feeders, for example earthworms, whereas if the food is ingested in liquid form they are, classed as fluid feeders, such as aphids and mosquitoes. -
(To Be Solved) Topic- Nutrition in Human Beings- Digestive System Date
Class Work Questions (to be solved) Topic- Nutrition in human beings- digestive system Date: 8th April 2020 Instruction: Questions you need to copy in your c/w Biology copy and then write down the answers. Try sincerely, then if any problem contact me. ‘Notes’ part you can write or you can take print out and paste in your copy but make sure everything must be in one copy. Q. 1 to 3 are MCQ types 1. Our throat divides into two separate tubes: the windpipe and the gullet. What prevents food from entering the windpipe? a. uvula b. tongue c. trachea d. epiglottis 2. For absorption Vitamin B12 must combine with an intrinsic factor which comes from a. stomach b. small intestine c. liver d. large intestine 3. On removal of pancreas the compound which remains undigested is a. lactose b. carbohydrate c. fat d. protein Q. 4 to 6 are Assertion reason based questions 1. Both A and R are true and R is the correct explanation of A. 2. Both A and R are true but R is not the correct explanation of A. 3. A is true but R is false. 4. A is false but R is true. 5. Both A and R are false. 4. A: Absorption of simple sugar, alcohol and medicines takes place in stomach. R: Most of the water is absorbed in large intestine. 5. A: Glucose is absorbed by either simple diffusion or active transport. R: Amino acids are absorbed by either simple diffusion, facilitated diffusion or active transport. 6. A: Small amount of lipases are secreted by gastric glands. -
Prey Capture and Digestion in the Carnivorous Sponge Asbestopluma Hypogea (Porifera: Demospongiae)
Zoomorphology (2004) 123:179–190 DOI 10.1007/s00435-004-0100-0 ORIGINAL ARTICLE Jean Vacelet · Eric Duport Prey capture and digestion in the carnivorous sponge Asbestopluma hypogea (Porifera: Demospongiae) Received: 2 May 2003 / Accepted: 17 March 2004 / Published online: 27 April 2004 Springer-Verlag 2004 Abstract Asbestopluma hypogea (Porifera) is a carnivo- Electronic Supplementary Material Supplementary ma- rous species that belongs to the deep-sea taxon Cla- terial is available in the online version of this article at dorhizidae but lives in littoral caves and can be raised http://dx.doi.org/10.1007/s00435-004-0100-0 easily in an aquarium. It passively captures its prey by means of filaments covered with hook-like spicules. Various invertebrate species provided with setae or thin appendages are able to be captured, although minute crus- Introduction taceans up to 8 mm long are the most suitable prey. Multicellular animals almost universally feed by means of Transmission electron microscopy observations have been a digestive tract or a digestive cavity. Apart from some made during the digestion process. The prey is engulfed parasites directly living at the expense of their host, the in a few hours by the sponge cells, which migrate from only exceptions are the Pogonophores (deep-sea animals the whole body towards the prey and concentrate around relying on symbiotic chemoautotrophy and whose larvae it. A primary extracellular digestion possibly involving have a temporary digestive tract) and two groups of mi- the activity of sponge cells, autolysis of the prey and crophagous organisms relying on intracellular digestion, bacterial action results in the breaking down of the prey the minor Placozoa and, most importantly, sponges (Po- body. -
22. Life Processes
MODULE - 5 Life Processes-1 Nutrition, Transportation, Respiration and Excretion The Living World 22 Notes LIFE PROCESSES-1 NURTRITION, TRANSPORTATION, RESPIRATION AND EXCRETION The activities by which living organisms take in food, derive energy, remove waste from their body and respond to changes in the environment are called life processes. In this lesson, you will learn about basic life processes, namely nutrition, respiration, transportation of nutrients and fluids in the body, and excretion. OBJECTIVES After completing this lesson, you will be able to: • emphasize the need for energy requirement for life processes; • explain the steps in photosynthesis; • appreciate the various modes of heterotrophic nutrition in living organisms; • realize the importance of the process of nutrition in humans,identify nutritional disorders and explain the concept of balanced diet; • outline the need for and steps in the process of respiration; • explain the fundamental aspects of transport of material(food, waste etc.) in plants and animals (e.g. humans); • explain the process of excretion in humans. I. NUTRITION 22.1 WHY DO WE NEED FOOD How do you feel if you do not have food for a day or two? You may feel exhausted and weak. But if you do not get food for a few days, will you survive and grow? You will probably say‘No’. We know that living beings need food to survive. Food provides 58 SCIENCE AND TECHNOLOGY Life Processes-1 Nutrition, Transportation, Respiration and Excretion MODULE - 5 The Living World the essential raw material that our body needs to grow and stay healthy. It also provides energy to carry out various life processes. -
Digestive System (Part-I)
NPTEL – Basic Courses – Basic Biology Lecture 11: Digestive System (Part-I) Introduction: The collective processes by which a living organism takes food which are necessary for their growth, maintenance and energy needs is called nutrition. The chemical substances present in the food are called nutrients. DIFFERENT MODE OF NUTRITION IN ORGANISMS: It is important to know the different modes of nutrition in all living organisms in order to understand energy flow within the ecosystem. Plant produces high energy organic food from inorganic raw materials. They are called autotroph and the mode of nutrition is known as autotrophic nutrition. Animals feed on those high energy organic food, are called as heterotrophs and their mode of nutrition is known as heterotrophic nutrition Heterotrophic nutrition further sub-categorise in holozoic, parasitic, and saprophytic mode of nutrition based on the pattern and class of food that is taken inside. Holozoic Nutrition: It involves taking entire organic food and this can be in the form of whole part of plant or animal. Most of the free living protozoans, humans and other animals fall under this category. Saprophytic Nutrition: The organism fulfils the requirement of food from the rotten parts of dead organisms and decaying matter. The organisms secrete digestive enzymes outside the body on their food and then take in digested food. It is a kind of extra-cellular digestion. Examples: Housefly, Spiders etc. Parasitic Nutrition: The organism fulfils the requirement of food from the body of another organism. The parasites are of two distinct types, one which lives inside the host and the other which lives outside. -
Arboreal Arthropod Predation on Early Instar Douglas-Fir Tussock Moth Redacted for Privacy
AN ABSTRACT OF THE THESIS OF Becky L. Fichter for the degree of Doctor of Philosophy in Entomologypresented onApril 23, 1984. Title: Arboreal Arthropod Predation on Early Instar Douglas-fir Tussock Moth Redacted for privacy Abstract approved: William P. StOphen Loss of early instar Douglas-fir tussock moth( Orgyia pseudotsugata McDunnough) (DFTM) has been found to constitute 66-92% of intra-generation mortality and to be a key factor in inter-generation population change. This death has been attributed to dispersal and to arthropod predation, two factors previously judged more important to an endemic than an outbreak population. Polyphagous arthropod predators are abundant in the forest canopy but their predaceous habits are difficult to document or quantify. The purpose of the study was to develop and test a serological assay, ELISA or enzyme-linked immunosorbent assay, for use as an indirect test of predation. Development of this assay involved production of an antiserum reactive with DFTM but not reactive with material from any coexisting lepidopteran larvae. Two-dimensional immunoelectrophoresis was used to select a minimally cross-reactive fraction of DFTM hemolymph as the antigen source so that a positive response from a field-collected predator would correlate unambiguously with predation on DFTM. Feeding trials using Podisus maculiventris Say (Hemiptera, Pentatomidae) and representative arboreal spiders established the rate of degredation of DFTM antigens ingested by these predators. An arbitrary threshold for deciding which specimens would be considered positive was established as the 95% confidence interval above the mean of controls. Half of the Podisus retained 0 reactivity for 3 days at a constant 24 C. -
Chapter 5 Study Guide Protozoan Groups
CHAPTER 5 STUDY GUIDE PROTOZOAN GROUPS 5.1 Emergence of Eukaryotes and a New Life Pattern A. Cellular Symbiosis 1. The first evidence of life dates to 3.5 billion years ago; these first cells were bacteria-like. 2. The origin of complex eukaryote cells was most likely symbiosis among prokaryotic cells. 3. Aerobic bacteria engulfed by bacteria unable to tolerate the increasing oxygen may have become mitochondria found in most modern eukaryotic cells. 4. Engulfed photosynthetic bacteria evolved into chloroplasts; descendants in the green algae lineage gave rise to multicellular plants. 5. Protozoa are a diverse assemblage with mixed affinities. a. They lack a cell wall. b. They have at least one motile stage in the life cycle. c. Most ingest their food. B. General Features 1. Over 64,000 species are named; half are fossils. 2. Although they are unicellular organisms, protozoan cell organelles are highly specialized. 3. They are ecological diverse, widely dispersed, but many are limited to narrow environmental ranges. 4. They can be fantastically numerous, forming gigantic ocean soil deposits. 5. About 10,000 are symbiotic in or on animals or plants; some are human disease agents. 6. Some are colonial, some have multicellular stages. 7. Protozoa have only one non-reproductive cell type and lack embryonic development; embryonic development is one of the criteria for metazoa. C. Ancestry (Figure 5.1) 1. Protozoans carry on all life activities inside a single plasma membrane; they are acellular or unicellular. 2. Protozoa were considered one phylum; recent work shows there are at least 7 and possibly more phyla. -
Phylum Porifera
790 Chapter 28 | Invertebrates updated as new information is collected about the organisms of each phylum. 28.1 | Phylum Porifera By the end of this section, you will be able to do the following: • Describe the organizational features of the simplest multicellular organisms • Explain the various body forms and bodily functions of sponges As we have seen, the vast majority of invertebrate animals do not possess a defined bony vertebral endoskeleton, or a bony cranium. However, one of the most ancestral groups of deuterostome invertebrates, the Echinodermata, do produce tiny skeletal “bones” called ossicles that make up a true endoskeleton, or internal skeleton, covered by an epidermis. We will start our investigation with the simplest of all the invertebrates—animals sometimes classified within the clade Parazoa (“beside the animals”). This clade currently includes only the phylum Placozoa (containing a single species, Trichoplax adhaerens), and the phylum Porifera, containing the more familiar sponges (Figure 28.2). The split between the Parazoa and the Eumetazoa (all animal clades above Parazoa) likely took place over a billion years ago. We should reiterate here that the Porifera do not possess “true” tissues that are embryologically homologous to those of all other derived animal groups such as the insects and mammals. This is because they do not create a true gastrula during embryogenesis, and as a result do not produce a true endoderm or ectoderm. But even though they are not considered to have true tissues, they do have specialized cells that perform specific functions like tissues (for example, the external “pinacoderm” of a sponge acts like our epidermis). -
Plant Physiology
NUTRITION IN PLANTS AND ANIMALS Life Processes Living forms perform some basic processes. These processes help in the survival and perpetuation of its race. Such processes are called life processes. These include Nutrition, Respiration, Transportation, Excretion, Coordination, Transpiration, and Reproduction. Among these processes reproduction helps in perpetuation of race. Remaining processes help the organism not only in its survival but also in its growth. Introduction to Nutrition: All the living organisms require continuous supply of energy for their daily activities. It is derived by oxidizing food. Food consists of both organic and inorganic compounds. These chemical compounds, which are required for body building, and for energy production are called Nutrients. Intake of nutrients into the body by an organism is called Nutrition. Types of Nutrients: Nutrients may be organic or inorganic in nature. The organic constituents of nutrients are carbohydrates, lipids, proteins and vitamins. The inorganic constituents of nutrients are minerals and water. Depending upon the quantity or functions, nutrients may be of the following types. 1) Macro nutrients: Nutrients which are required in large amounts by our body are called macro nutrients. These nutrients provide energy and growth. Examples: Carbohydrates, lipids (energy) and proteins (growth). 2) Micro nutrients: Nutrients which are required in less amounts by our body are called micro nutrients. Although they do not provide energy they are called protective foods because their absence or shortage in the body can cause certain diseases and abnormalities in animals including humans. Examples: Minerals vitamins. Types of Nutrition: Different organisms use different methods to obtain their nutrients, especially of carbon source.