How Will Aphids Respond to More Frequent Drought?

Total Page:16

File Type:pdf, Size:1020Kb

How Will Aphids Respond to More Frequent Drought? bioRxiv preprint doi: https://doi.org/10.1101/2020.06.24.168112; this version posted June 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 1 Stressful times in a climate crisis: how will aphids respond to more 2 frequent drought? 3 Running title: Aphid-plant interactions under drought stress 4 Daniel J Leybourne 1,2,3Ŧ, Katharine F Preedy 4, Tracy A Valentine 2,, Jorunn IB Bos 1,3 & 5 Alison J Karley 2* 6 1 Division of Plant Science, School of Life Science. Dundee University, Dundee. UK 7 2 Ecological Science, The James Hutton Institute. Invergowrie, Dundee. UK 8 3 Cell and Molecular Science, The James Hutton Institute. Invergowrie, Dundee. UK 9 4 Biomathematics and Statistics Scotland. Invergowrie, Dundee. UK 10 Ŧ Current address: ADAS High Mowthorpe, Duggleby, Malton, North Yorkshire, YO17 8BP, 11 UK 12 * Author for correspondence 13 Funding 14 DJL was funded by the James Hutton Institute and the Universities of Aberdeen and Dundee 15 through a Scottish Food Security Alliance (Crops) PhD studentship. The James Hutton 16 Institute is supported by the Scottish Government Rural and Environment Science and 17 Analytical Services. 18 Author contributions 19 AJK, DJL, and KFP conceived and designed the study. DJL extracted and analysed the 20 data, with input from KFP. All authors contributed to data interpretation. DJL wrote the 21 manuscript with input from all authors. All authors read and approved the final manuscript. 22 Conflict of interest 23 The authors declare no conflict of interest. 24 25 26 27 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.24.168112; this version posted June 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 2 28 Abstract 29 Aphids are a common and widely distributed group of phloem-feeding insects and are 30 abundant components of insect communities in natural and managed ecosystems. It is 31 anticipated that a changing climate will lead to more frequent periods of drought, which will 32 have consequences for the biology and ecology of these ubiquitous species and the 33 foodwebs they support. To date there has been no comprehensive assessment of the 34 literature to determine the extent to which drought negatively affects aphid fitness. For the 35 first time, we qualitatively and quantitatively assess the literature to determine whether 36 drought stress has an overall negative, positive, or null effect on aphid fitness in terms of 37 development, fecundity, survival and abundance. The underlying causes of changes in 38 aphid fitness are assessed by examining measures of plant growth, nutrition, and defence 39 in relation to the predictions of the plant vigour hypothesis. The meta-analysis indicates that 40 aphid fitness is typically reduced under drought stress, and this is mediated by a reduction 41 in plant vigour and an increase in allocation to defence in drought-stressed plants. We 42 discuss the ecological consequences of increased drought frequency for aphid success, 43 plant resistance against aphids, and aphid-trophic interactions in natural and agricultural 44 systems. 45 46 47 48 49 50 51 52 53 54 55 56 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.24.168112; this version posted June 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 3 57 Introduction 58 The changing climate is anticipated to lead to decreased annual levels of precipitation in 59 some regions, resulting in extended periods of drought (Blenkinsop & Fowler 2007; Santos 60 et al., 2016). For areas which do not regularly experience prolonged periods of water 61 deprivation, such as temperate regions, prolonged drought conditions can have severe 62 consequences on plant physiology, often leading to reduced growth and photosynthetic 63 capacity (Osakabe et al., 2014; Zeppel et al., 2014). Changes in plant physiology in 64 response to drought stress can directly influence the population dynamics, fitness, 65 phenology, and biology of herbivorous insects (Huberty & Denno 2004; Mody et al., 2009; 66 Aslam et al., 2013), with consequences that cascade through trophic networks (Johnson et 67 al., 2011; Rodríguez‐Castañeda 2013). 68 Previous meta-analyses have examined drought effects by comparing responses of 69 herbivorous insect species with different feeding strategies (Huberty & Denno 2004). To 70 date, however, there has been no comprehensive assessment of drought effects on a 71 specific herbivore group and the underpinning causes due to physiological changes in the 72 host plant. Aphids are phloem-feeding insects of global ecological importance due to their 73 near-worldwide distribution, ability to colonise most habitat types, and capacity to vector 74 plant viruses (Van Emden & Harrington 2017). There are over 4400 known species of aphid 75 (Blackman & Eastop 2000) and many of these are major agricultural and horticultural pests, 76 making them an economically important group of herbivorous insects. Aphids are abundant 77 components of insect communities in diverse ecosystems across the globe (Messelink et 78 al., 2012; Roubinet et al., 2018). In many ecosystems, aphids sustain several higher trophic 79 groups, including the primary consumers of aphids, such as parasitoid wasps, spiders, 80 ladybirds, and carabid beetles (Staudacher et al., 2016), the higher-level consumers of these 81 aphid natural enemies, such as hyperparasitoids (Traugott et al., 2008; Lefort et al., 2017), 82 small mammals and birds, and a range of entomological pathogens and parasites (Hagen 83 & van den Bosch 1968). Examining how climate change, including drought, might influence 84 aphid fitness is a major avenue of current research, specifically with regards to examining 85 how this might affect the productivity and functioning of agricultural, horticultural, and natural 86 vegetation systems (Romo & Tylianakis 2013; Teixeira et al., 2020) 87 The effect of drought stress on aphid fitness has been investigated experimentally across 88 many aphid-plant systems (Pons & Tatchell 1995; Agele et al., 2006; Mody et al., 2009; 89 Aslam et al., 2013; Grettenberger & Tooker 2016; Foote et al., 2017), with numerous studies 90 indicating that aphids are negatively affected by drought stress. To date, there has been no bioRxiv preprint doi: https://doi.org/10.1101/2020.06.24.168112; this version posted June 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 4 91 comprehensive analysis of the causes of decreased aphid fitness under drought stress, 92 although several studies suggest that it is mediated through reduced plant fitness (Hale et 93 al., 2003; Banfield-Zanin & Leather, 2015; Dai et al., 2015). Two meta-analyses conducted 94 in recent decades provide context for constructing a hypothesis to explain variation in aphid 95 fitness under water stress in relation to plant fitness. First, Huberty & Denno (2004) assessed 96 the responses of herbivorous insects from different feeding guilds to drought stress 97 conditions and found limited evidence for the plant stress hypothesis (i.e. enhanced insect 98 performance on water-stressed host plants due to increased tissue nitrogen availability: 99 White, 1969) amongst sap-feeding insects (phloem and mesophyll feeders); conversely, 100 their analysis showed that drought stress typically has negative effects on herbivorous insect 101 fitness and abundance. Second, Cornelissen et al., (2008) examined insect fitness in 102 relation to plant vigour and demonstrated that sap-feeding insects are more abundant and 103 show increased fitness when feeding on more vigorously growing plants or plant tissues. 104 These findings lead us to hypothesise that the effects of drought stress on aphid fitness and 105 abundance are driven by decreased plant vigour rather than stress-related changes in plant 106 nutritional quality. 107 Although the majority of studies have reported reduced aphid fitness when exposed to 108 drought stressed host plants (Banfield-Zanin & Leather, 2015; Dai et al., 2015; Foote et al., 109 2017), several studies have reported null (Mewis et al., 2012) and positive (Oswald & 110 Brewer, 1997) effects. Multiple factors could explain these contrasting observations, 111 including differences in aphid or plant biology. Indeed, in the study by Oswald & Brewer 112 (1997) a positive effect of drought stress on aphid fitness was detected in the Russian wheat 113 aphid, Diuraphis noxia, and a negative effect was reported for the corn leaf aphid, 114 Rhopalosiphum maidis. Although both of these species are cereal-feeding aphids, D. noxia 115 and R. maidis belong to two distinct aphid tribes, the Macrosiphini and the Aphidini, 116 respectively (Kim & Lee, 2008; Choi et al., 2018). The findings of Oswald and Brewer (1997) 117 suggest that differences in aphid biology and/or life history could underlie contrasting 118 responses to drought stress. Additionally, the specific aphid-plant combination could further 119 influence the effects of drought stress on aphid fitness. For example, multiple aphid species 120 exhibit contrasting responses to drought stress on a common plant host (Mewis et al., 2012) 121 and a single aphid species can display contrasting responses to drought stress on several 122 related host plant species (Hale et al., 2003). These findings suggest that the specific aphid- 123 plant combination could be a key factor in mediating aphid responses to drought stress, with 124 differences likely to be driven by plant species-specific responses to drought (i.e.
Recommended publications
  • Russian Wheat Aphid
    Fact sheet Russian wheat aphid What is Russian wheat aphid? Russian wheat aphid (Diuraphis noxia) is a soft bodied insect that feeds mainly on wheat and barley, but can attack most cereal crops. If this pest enters Australia, it has been estimated that it could cause significant damage to crops, resulting in up to 75% yield losses. è è What does it look like? The aphid is small (up to 1.8 mm long), has a ‘needle-like’ mouthpart, and is light green in colour. The body is elongated compared with other cereal Bugwood.org Frank Peairs, Colorado State University, Wingless adult Russian wheat aphid, showing lack of aphid species. Adults can be winged or wing-less. siphuncles (‘exhaust pipes’ – circled) and presence of a Juveniles (nymphs) look similar to adults but lack ‘double tail’ end (cauda – arrowheads) wings. Characteristic features include dual structures at the rear (cauda) of the insect giving it a ‘double-tail’ appearance (see arrowheads in image top right) and lack visible siphuncles (‘exhaust pipes’ – circles in images on right) that are characteristic for most aphids. What can it be confused with? If it were present, Russian wheat aphid could be found with other cereal aphids on crops. The elongated body shape and lack of ‘exhaust SARDI pipes’ distinguish this aphid from common cereal Adult Oat aphid, with siphuncles (‘exhaust pipe’) structures species (compare top image to middle image). (circled) and no double tail What should I look for? Whilst feeding, the aphid injects salivary toxins into the plant tissue causing the leaves to roll up and white, purple or yellowish streaks to form.
    [Show full text]
  • Picea Sitchensis (Bong.) Carr. Sitka Spruce Pinaceae Pine Family A
    Picea sitchensis (Bong.) Carr. Sitka Spruce Pinaceae Pine family A. S. Harris Sitka spruce (Picea sitchensis), known also as tideland spruce, coast spruce, and yellow spruce, is the largest of the world’s spruces and is one of the most prominent forest trees in stands along the northwest coast of North America. This coastal species is seldom found far from tidewater, where moist maritime air and summer fogs help to main- tain humid conditions necessary for growth. Throughout most of its range from northern Califor- nia to Alaska, Sitka spruce is associated with western hemlock (Tsuga heterophylla) in dense stands where growth rates are among the highest in North America. It is a valuable commercial timber species for lumber, pulp, and many special uses (15,16). Habitat Native Range Sitka spruce (fig. 1) grows in a narrow strip along the north Pacific coast from latitude 61” N. in south- central Alaska to 39” N. in northern California. The most extensive portion of the range in both width and elevation is in southeast Alaska and northern British Columbia, where the east-west range extends for about 210 km (130 mi) to include a narrow main- land strip and the many islands of the Alexander Archipelago in Alaska and the Queen Charlotte Is- lands in British Columbia (24). North and west of southeast Alaska, along the Gulf of Alaska to Prince William Sound, the range is restricted by steep mountains and Piedmont glaciers edging the sea. Within Prince William Sound, the range again widens to about 105 km (65 mi) to include many offshore islands.
    [Show full text]
  • Areawide Pest Management of Cereal Aphids in Dryland Wheat Systems of the Great Plains, USA
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Panhandle Research and Extension Center Agricultural Research Division of IANR 2008 Areawide Pest Management of Cereal Aphids in Dryland Wheat Systems of the Great Plains, USA Kristopher Giles Oklahoma State University, [email protected] Gary L. Hein University of Nebraska-Lincoln, [email protected] Frank Peairs Colorado State University - Fort Collins Follow this and additional works at: https://digitalcommons.unl.edu/panhandleresext Part of the Agriculture Commons Giles, Kristopher; Hein, Gary L.; and Peairs, Frank, "Areawide Pest Management of Cereal Aphids in Dryland Wheat Systems of the Great Plains, USA" (2008). Panhandle Research and Extension Center. 33. https://digitalcommons.unl.edu/panhandleresext/33 This Article is brought to you for free and open access by the Agricultural Research Division of IANR at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Panhandle Research and Extension Center by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 19 Areawide Pest Management of Cereal Aphids in Dryland Wheat Systems of the Great Plains, USA KRISTOPHER GILES, 1 GARY HEIN2 AND FRANK PEAIRS3 1Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA 2Department of Entomology, University of Nebraska Panhandle R&E Center, Scottsbluff, Nebraska, USA 3Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, USA Introduction: Description of the Problem and Need for an Areawide Pest Management Approach In the Great Plains of the USA from Wyoming to Texas, dryland winter wheat either is regularly grown continuously or is followed by a year of fallow in semi-arid locales (Royer and Krenzer, 2000).
    [Show full text]
  • DEFOLIATORS Insect Sections
    Alaska. Reference is made to this map in selected DEFOLIATORS insect sections. (Precipitation information from Schwartz, F.K., and Miller, J.F. 1983. Probable maximum precipitation and snowmelt criteria for Fewer defoliator plots (27 plots) were visited during southeast Alaska: National Weather Service the 1999 aerial survey than in previous years (52 plots) Hydrometeorological Report No. 54. 115p. GIS layer throughout southeast Alaska. An effort was made to created by: Tim Brabets, 1997. distribute these plots evenly across the archipelago. URL:http://agdc.usgs.gov/data/usgs/water) The objectives during the 1999 season were to: ¨ Spend more time covering the landscape during Spruce Needle Aphid the aerial survey, Elatobium abietinum Walker ¨ Allow more time to land and identify unknown mortality and defoliation, and Spruce needle aphids feed on older needles of Sitka ¨ Avoid visit sites that were hard to get to and had spruce, often causing significant amounts of needle few western hemlocks. drop (defoliation). Defoliation by aphids cause reduced tree growth and can predispose the host to Hemlock sawfly and black-headed budworm larvae other mortality agents, such as the spruce beetle. counts were generally low in 1999 as they were in Severe cases of defoliation alone may result in tree 1998. The highest sawfly larvae counts were from the mortality. Spruce in urban settings and along marine plots in Thorne Bay and Kendrick Bay, Prince of shorelines are most seriously impacted. Spruce aphids Wales Island. Larval counts are used as a predictive feed primarily in the lower, innermost portions of tree tool for outbreaks of defoliators. For example, if the crowns, but may impact entire crowns during larval sample is substantially greater in 1999, then an outbreaks.
    [Show full text]
  • Biodiversity Climate Change Impacts Report Card Technical Paper 12. the Impact of Climate Change on Biological Phenology In
    Sparks Pheno logy Biodiversity Report Card paper 12 2015 Biodiversity Climate Change impacts report card technical paper 12. The impact of climate change on biological phenology in the UK Tim Sparks1 & Humphrey Crick2 1 Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry, CV1 5FB 2 Natural England, Eastbrook, Shaftesbury Road, Cambridge, CB2 8DR Email: [email protected]; [email protected] 1 Sparks Pheno logy Biodiversity Report Card paper 12 2015 Executive summary Phenology can be described as the study of the timing of recurring natural events. The UK has a long history of phenological recording, particularly of first and last dates, but systematic national recording schemes are able to provide information on the distributions of events. The majority of data concern spring phenology, autumn phenology is relatively under-recorded. The UK is not usually water-limited in spring and therefore the major driver of the timing of life cycles (phenology) in the UK is temperature [H]. Phenological responses to temperature vary between species [H] but climate change remains the major driver of changed phenology [M]. For some species, other factors may also be important, such as soil biota, nutrients and daylength [M]. Wherever data is collected the majority of evidence suggests that spring events have advanced [H]. Thus, data show advances in the timing of bird spring migration [H], short distance migrants responding more than long-distance migrants [H], of egg laying in birds [H], in the flowering and leafing of plants[H] (although annual species may be more responsive than perennial species [L]), in the emergence dates of various invertebrates (butterflies [H], moths [M], aphids [H], dragonflies [M], hoverflies [L], carabid beetles [M]), in the migration [M] and breeding [M] of amphibians, in the fruiting of spring fungi [M], in freshwater fish migration [L] and spawning [L], in freshwater plankton [M], in the breeding activity among ruminant mammals [L] and the questing behaviour of ticks [L].
    [Show full text]
  • Hippodamia Variegata (Goeze) (Coleoptera: Coccinellidae) Detected in Michigan Soybean Fields
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ValpoScholar The Great Lakes Entomologist Volume 38 Numbers 3 & 4 - Fall/Winter 2005 Numbers 3 & Article 8 4 - Fall/Winter 2005 October 2005 Hippodamia Variegata (Goeze) (Coleoptera: Coccinellidae) Detected in Michigan Soybean Fields Mary M. Gardiner Michigan State University Gary L. Parsons Michigan State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Gardiner, Mary M. and Parsons, Gary L. 2005. "Hippodamia Variegata (Goeze) (Coleoptera: Coccinellidae) Detected in Michigan Soybean Fields," The Great Lakes Entomologist, vol 38 (2) Available at: https://scholar.valpo.edu/tgle/vol38/iss2/8 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Gardiner and Parsons: <i>Hippodamia Variegata</i> (Goeze) (Coleoptera: Coccinellidae) D 164 THE GREAT LAKES ENTOMOLOGIST Vol. 38, Nos. 3 & 4 HIPPODAMIA VARIEGATA (GOEZE) (COLEOPTERA: COCCINELLIDAE) DETECTED IN MICHIGAN SOYBEAN FIELDS Mary M. Gardiner1 and Gary L. Parsons2 ABSTRACT Since its initial detection near Montreal, Canada in 1984, the variegated lady beetle Hippodamia variegata (Goeze) (Coleoptera:Coccinellidae) has spread throughout the northeastern United States. In 2005, this immigrant Old World species was detected in Michigan for the first time. Twenty-nine adults were found in soybean fields in 4 counties: Ingham, Gratiot, Kalamazoo, and Saginaw.
    [Show full text]
  • The Green Spruce Aphid in Western Europe
    Forestry Commission The Green Spruce Aphid in Western Europe: Ecology, Status, Impacts and Prospects for Management Edited by Keith R. Day, Gudmundur Halldorsson, Susanne Harding and Nigel A. Straw Forestry Commission ARCHIVE Technical Paper & f FORESTRY COMMISSION TECHNICAL PAPER 24 The Green Spruce Aphid in Western Europe: Ecology, Status, Impacts and Prospects for Management A research initiative undertaken through European Community Concerted Action AIR3-CT94-1883 with the co-operation of European Communities Directorate-General XII Science Research and Development (Agro-Industrial Research) Edited by Keith R. t)ay‘, Gudmundur Halldorssorr, Susanne Harding3 and Nigel A. Straw4 ' University of Ulster, School of Environmental Studies, Coleraine BT52 ISA, Northern Ireland, U.K. 2 2 Iceland Forest Research Station, Mogilsa, 270 Mossfellsbaer, Iceland 3 Royal Veterinary and Agricultural University, Department of Ecology and Molecular Biology, Thorvaldsenvej 40, Copenhagen, 1871 Frederiksberg C., Denmark 4 Forest Research, Alice Holt Lodge, Wrecclesham, Farnham, Surrey GU10 4LH, U.K. KVL & Iceland forestry m research station Forest Research FORESTRY COMMISSION, EDINBURGH © Crown copyright 1998 First published 1998 ISBN 0 85538 354 2 FDC 145.7:453:(4) KEYWORDS: Biological control, Elatobium , Entomology, Forestry, Forest Management, Insect pests, Picea, Population dynamics, Spruce, Tree breeding Enquiries relating to this publication should be addressed to: The Research Communications Officer Forest Research Alice Holt Lodge Wrecclesham, Farnham Surrey GU10 4LH Front Cover: The green spruce aphid Elatobium abietinum. (Photo: G. Halldorsson) Back Cover: Distribution of the green spruce aphid. CONTENTS Page List of contributors IV Preface 1. Origins and background to the green spruce aphid C. I. Carter and G. Hallddrsson in Europe 2.
    [Show full text]
  • Cereal Aphids G
    G1284 (Revised August 2005) Cereal Aphids G. L. Hein, Extension Entomologist, J. A. Kalisch, Extension Technologist, and J. Thomas, Research Coordinator to living young. A female may produce two to three young Identification and general discussion of the cereal per day under warm conditions, and females may mature in aphid species most commonly found in Nebraska small 7-10 days. This tremendous reproduction potential can result grains, corn, sorghum and millet. in rapid aphid population buildup. Males of some species are seldom if ever seen. Cereal aphids can be a serious threat to several Nebraska Both winged and wingless aphids may be present in the crops. Aphid feeding may cause direct damage to the plant or field. Winged forms are produced when the quality of the host result in transmission of plant diseases. Aphids also may cause plant declines, such as at maturity. Other factors, including damage by injecting toxic salivary secretions during feeding. temperature, photoperiod or seasonality, and population density In Nebraska the most serious cereal aphid problems result also may be involved. The ability of aphids to use flight for from Russian wheat aphid infestations on wheat and barley dispersal is an important factor that contributes to the status and greenbug infestations on sorghum and to a lesser extent of these insects as pests. on wheat. Growers must monitor their crops for these aphids. Greenbug, Schizaphis graminum (Rondani) Several other cereal aphid species also may be present, but they seldom cause significant damage. Accurate aphid identi- The greenbug is a light green aphid with a dark green fication is necessary to make the best management decisions.
    [Show full text]
  • Airborne Multispectral Remote Sensing for Russian Wheat Aphid
    AIRBORNE MULTI-SPECTRAL REMOTE SENSING FOR RUSSIAN WHEAT APHID INFESTATIONS Norm Elliott1, Mustafa Mirik2, Zhiming Yang3, Tom Dvorak4, Mahesh Rao3, Jerry Michels2, Vasile Catana2, Mpho Phoofolo2, Kris Giles2, and Tom Royer2 1USDA-ARS-PSRL 1301 N. Western Rd., Stillwater, OK 74074 [email protected] 2Texas Agricultural Experiment Station 2301 Experiment Station Rd., Bushland, TX 79012 [email protected], [email protected] 3Oklahoma State University Stillwater, OK 74078 [email protected], [email protected] [email protected], [email protected] [email protected], [email protected] 4University of Iowa Iowa City, IA 52243 [email protected] ABSTRACT The Russian wheat aphid (RWA) is a severe pest of wheat in the High Plains region of the United States. Remote sensing could be effective for detecting RWA infestations for pest management decision-making. We evaluated an airborne multi-spectral remote sensing system for its ability to differentiate varying levels of injury caused by RWA infestation in winter wheat fields. Two study fields were located in southeastern Colorado in spring 2004, and two fields were located in far western Oklahoma in spring 2005. In each field, RWA density and plant damage were determined for 20-24 3x3 m plots with varying levels of RWA damage. Prior to sampling plots, multi-spectral imagery was obtained using an SSTCRIS® multi-spectral imaging system mounted NADIR in a Cessna 172 aircraft. The multi-spectral data were used to compare with RWA infestation level for each plot. Correlations between vegetation indices and the proportion of RWA damaged wheat tillers per plot were negative for all vegetation indices calculated.
    [Show full text]
  • The Russian Wheat Aphid in Utah
    Extension Entomology Department of Biology, Logan, UT 84322 Utah State University Extension Fact Sheet No. 80 February 1993 THE RUSSIAN WHEAT APHID IN UTAH Introduction Since arriving in Utah in 1987, the Russian wheat aphid, Diuraphis noxia (Kurdjumov), has spread to all grain growing areas of the state. It is very unpredictable in that at times it becomes an economic pest and at other times it is just present. In some areas it has caused losses in wheat and barley of up to 50 percent or more. It can be a problem in fall or spring planted grains. Biology Russian wheat aphids infest wheat, barley, and triticale, as well as several wild and cultivated grasses. Broadleaf plants such as alfalfa, clover, potatoes, and sunflowers are not hosts. Volunteer grain plays a key role in the life cycle of this pest by providing a food source in the interval between grain harvest and the emergence of fall-seeded crops. Many species of grasses act as reservoir hosts during the late-summer dry season; however, grasses such as barnyard grass and foxtail grass that grow on irrigation ditch banks and other wet waste areas are poor hosts. Most wild desert grasses are normally dormant and unsuitable for aphids during this period. In some cases, winged forms may feed on corn during heavy flights, but no colonization occurs. In the summer, all Russian wheat aphids are females that do not lay eggs but give birth to live young at a rate of four to five per day for up to four weeks. The new young females can mature in as little as 7-10 days.
    [Show full text]
  • Aphid Vectors and Grass Hosts of Barley Yellow Dwarf Virus and Cereal Yellow Dwarf Virus in Alabama and Western Florida by Buyun
    AphidVectorsandGrassHostsofBarleyYellowDwarfVirusandCerealYellow DwarfVirusinAlabamaandWesternFlorida by BuyungAsmaraRatnaHadi AdissertationsubmittedtotheGraduateFacultyof AuburnUniversity inpartialfulfillmentofthe requirementsfortheDegreeof DoctorofPhilosophy Auburn,Alabama December18,2009 Keywords:barleyyellowdwarf,cerealyellowdwarf,aphids,virusvectors,virushosts, Rhopalosiphumpadi , Rhopalosiphumrufiabdominale Copyright2009byBuyungAsmaraRatnaHadi Approvedby KathyFlanders,Co-Chair,AssociateProfessorofEntomologyandPlantPathology KiraBowen,Co-Chair,ProfessorofEntomologyandPlantPathology JohnMurphy,ProfessorofEntomologyandPlantPathology Abstract Yellow Dwarf (YD) is a major disease problem of wheat in Alabama and is estimated to cause yield loss of 21-42 bushels per acre. The disease is caused by a complex of luteoviruses comprising two species and several strains, including Barley yellowdwarfvirus (BYDV),strainPAV,and Cerealyellowdwarfvirus (CYDV),strain RPV. The viruses are exclusively transmitted by aphids. Suction trap data collected between1996and1999inNorthAlabamarecordedthe presence of several species of aphidsthatareknowntobeB/CYDVvectors. Aphidsweresurveyedinthebeginningofplantingseasonsinseveralwheatplots throughout Alabama and western Florida for four consecutive years. Collected aphids wereidentifiedandbioassayedfortheirB/CYDV-infectivity.Thissurveyprogramwas designedtoidentifytheaphid(Hemiptera:Aphididae)speciesthatserveasfallvectorsof B/CYDVintowheatplanting.From2005to2008,birdcherry-oataphid,
    [Show full text]
  • 1 Suction Trapping of Selected Small Grain Aphids in Colorado, 1988-1998 Robert W. Hammon1, Terri L. Randolph2, J. Scott Armstro
    Suction Trapping of Selected Small Grain Aphids in Colorado, 1988-1998 Robert W. Hammon1, Terri L. Randolph2, J. Scott Armstrong3, Cynthia B. Walker4, Jeffrey B. Rudolph2, Michael D. Koch5, Wendy L. Meyer6, and Frank B. Peairs2 1 Fruita Research Center, 1910 L Rd., Fruita, CO 81521 2 Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins CO 80523 3Plant and Soil Science, Texas Tech University, Lubbock TX 79409 4Colorado State University, 1001 S. Main, Lamar CO 81052 5 USDA Central Great Plains Research Station, P.O. Box 400, Akron CO 80720 6TREC, 18905 SW 280th St., Homestead FL 33031 1 Aphids are serious pests of small grains climactic conditions. Eggs are much less worldwide because of direct feeding damage and vulnerable to climactic extremes than living the ability to transmit plant pathogens. In aphids, so Russian wheat aphid populations are Colorado, the major cereal aphid pests are the more stable from year to year in areas where Russian wheat aphid, Diuraphis noxia there is no sexual reproduction. Males have never (Mordvilko), greenbug, Schizaphis graminum been found in North America so all reproduction (Rodani), and bird-cherry oat aphid, is assumed to be asexual. Russian wheat aphids Rhopalosiphum padi (L.). The Russian wheat spend the winter as living aphids, feeding on host aphid, introduced into the United States in 1986, plants when climactic conditions permit causes chlorotic leaf streaking, leaf stunting and (Hammon and Peairs, 1992). When winters are rolling, and trapped and distorted heads. Losses very cold or there is extended snow cover, to Russian wheat aphid have exceeded $112 Russian wheat aphid populations decrease or million in damage in Colorado (F.B.
    [Show full text]