Thesis Reference

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Reference Thesis A phylogenomic contribution to the eukaryotic tree of life BURKY, Fabien Abstract Depuis quelques années, la phylogénie moléculaire, c'est-à-dire l'étude des relations évolutives entre les êtres vivants en comparant des séquences d'ADN ou d'acides aminés, a profondément modifié notre vision de l'arbre des eucaryotes. Le schéma qui est actuellement accepté par le plus grand nombre voit cinq assemblages majeurs d'organismes regroupant toutes les espèces d'eucaryotes : ce sont les ‘super-groupes' (unikonts, excavates, Plantae, chromalveolates et Rhizaria). Si l'existence de ces super-groupes fait figure de consensus, les relations phylogénétiques qui les lient sont encore très incertaines. La phylogénomique est un nouvel outil de la biologie évolutive permettant d'adresser d'importantes questions qui étaient jusque-là restées sans réponse, faute d'information suffisante. Grâce à l'accumulation de données génomiques, il devient en effet possible d'utiliser un nombre toujours plus important de marqueurs moléculaires (gènes ou protéines) pour une diversité croissante d'organismes en vue de reconstruire les relations phylogénétiques à l'échelle des eucaryotes. Les [...] Reference BURKY, Fabien. A phylogenomic contribution to the eukaryotic tree of life. Thèse de doctorat : Univ. Genève, 2009, no. Sc. 4077 URN : urn:nbn:ch:unige-18450 DOI : 10.13097/archive-ouverte/unige:1845 Available at: http://archive-ouverte.unige.ch/unige:1845 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Département de zoologie Professeur Jan Pawlowski et biologie animale A phylogenomic contribution to the eukaryotic tree of life THÈSE Présentée à la Faculté des sciences de l’Université de Genève pour obtenir le grade de Docteur ès sciences, mention biologie par Fabien BURKI de Genève (Suisse) Thèse No 4077 GENÈVE ReproMail: atelier d’impression à Uni Mail 2009 Remerciements Je tiens à exprimer ici ma plus profonde reconnaissance à toutes les personnes qui, de prés ou de loin, m’ont apporté leur soutient et leur confiance tout au long de cette aventure. Au Professeur Jan Pawlowski tout d’abord… Jan, que dire en particulier il y a tellement de pensées qui me viennent à l’esprit. Nous nous sommes rencontré il y a 8 ans, lorsque je suis venu frapper à ta porte pour un travail de diplôme. 8 ans ! Après une période d’incertitudes où je ne savais plus très bien quel chemin suivre, tu m’a à nouveau accordé ta confiance en m’acceptant comme doctorant, il y a 4 ans et demi. Depuis lors, ce ne fût que bonheur et découverte. Merci pour la liberté que tu m’as ac- cordée. Merci pour ta disponibilité, ton écoute, tes conseils. To Professor Kamran Shalchian-Tabrizi. Thank you so much for all your help, our countless discussions over skype, and the aquavit. You’re more than just a collea- gue ! Au Professeur Louisette Zaninetti, pour le souvenir merveilleux de mes années de diplôme qui m’a fait revenir frapper à la porte du labo. A Juan, pour ton dévouement, ta disponibilité et tes explications toujours telle- ment claires qu’en fait… on les comprend, même s’il s’agit de phylogénie… A Jackie, pour tes connaissances, ta contribution, et… nos discussions. J’espère de tout cœur que nos chemins se croiseront à nouveau. A José, merci pour ta disponibilité de chaque instant, ton enthousiasme et ton aide. A Loic… non je ne le dirai pas ici. Mais toi seul sais de quoi je parle. Simplement merci pour ces 2 années, t’es à jamais dans mon cœur… ouais mais bon… A Béa, même si ce couloir a été comme une barrière infranchissable… Que ton enthousiasme débordant ne s’éteigne jamais. A Thierry, eh gaillard c’est pas parce que t’es vaudois que t’as pas le droit de faire partie de la liste. T’es vaudois en fait ? C’est déjà où les Brenets ? Aux diplômants Michael et Cyril, avec qui le labo s’est d’ores et déjà assuré un avenir radieux. A Ignacio Bolivar, pour ton aide précieuse durant les balbutiements de ce tra- vail. Aux ex : Cédric, Ben, Xav, Patrick, Fred, Sasha et Yurika. Parce que vous avez bercé une partie de ma thèse de votre douce folie. Vos départs ont laissé un gros vide. Aux collaborateurs des divers projets : Kamran Shalchian-Tabrizi, Jon Brate, Asmund Skjaeveland, Marianne Minge, Dag Klaveness, Kjetill Jakobsen from Oslo ; John Archibald from Halifax ; Patrick Keeling, Ales Horak from Vancouver ; Yuji Inagaki, Tetsuo Hashimoto, Miako Sakaguchi from Tsukuba ; Hervé Philippe from Montréal ; Thomas Cavalier-Smith from Oxford ; Colomban de Vargas, Ian Probert from Roscoff ; Sergey Nikolaev from Geneva. Aux ordinateurs, aspect non-humain mais indispensable à ce genre travail, et à toutes les personnes qui permettent le fonctionnement de ces clusters. Le Vital-IT de l’Institut Suisse de Bioinformatique et le Bioportal de l’Université de Oslo ont permis pratiquement la réalisation de cette thèse en moins de 20 ans. Je tiens particulièrement à remercier Bruno Nyffeler, Jacques Rougemont et Volker Flegel au Vital-IT, ainsi que Asmund Skjaeveland et Pal Enger au Bioportal pour leur aide inestimable dans les in- nombrables debuggings. Je voudrais aussi remercier Lorenza Bordoli, Vassilios Ioannidid and Laurent Falquet pour leur précieux conseils dans les méandres de l’apprentis bioin- formaticien. To the Canadian consortium Protist EST Program (PEP) that has made publi- cly available several EST projects, allowing us to greatly improve the taxon-sampling of our alignments. Je suis infiniment reconnaissant au Fond National Suisse de la recherche scienti- fique, à l’état de Genève, au Département de zoologie et biologie animale et à la Fonda- tion Ernst & Lucie Schmidheiny pour leur soutient financier. I am very grateful to John Archibald, Kjetill Jakobsen and Michel Milinkovitch for accepting to evaluate my PhD. A ceux que j’oublie… j’espère peu nombreux. Enfin, un énorme, immense, gigantisme MERCI aux miens : ma mère, mon père, mon frère. C’est surtout grâce à vos inconditionnels encouragements depuis toujours que j’y suis arrivé. And… Thanks, Grazie, Merci à toi Babs pour… tout. Merci d’être toi, merci d’être là. Merci d’avoir supporté ces moments difficiles, lorsque le stresse devenait trop fort. Mer- ci pour ton soutient, tes encouragements. Merci, merci, merci. L’aventure continue, en- semble. Résumé en français Depuis quelques années, la phylogénie moléculaire, c’est-à-dire l’étude des relations évolutives entre les êtres vivants en comparant des séquences d’ADN ou d’acides aminés, a profondément modifié notre vision de l’arbre des eucaryotes. Le schéma qui est actuelle- ment accepté par le plus grand nombre voit cinq assemblages majeurs d’organismes regrou- pant toutes les espèces d’eucaryotes : ce sont les ‘super-groupes’ (unikonts, excavates, Plantae, chromalveolates et Rhizaria). Si l’existence de ces super-groupes fait figure de consensus, les relations phylogénétiques qui les lient sont encore très incertaines. La phylo- génomique est un nouvel outil de la biologie évolutive permettant d’adresser d’importantes questions qui étaient jusque-là restées sans réponse, faute d’information suffisante. Grâce à l’accumulation de données génomiques, il devient en effet possible d’utiliser un nombre toujours plus important de marqueurs moléculaires (gènes ou protéines) pour une diversité croissante d’organismes en vue de reconstruire les relations phylogénétiques à l’échelle des eucaryotes. Les récentes publications d’études relatant les analyses d’immenses alignements multigéniques (plus de 120 gènes concaténés) englobant tous les super-groupes ont montré qu’il était désormais possible de remonter toujours plus loin dans le temps et de résoudre des relations évolutives pour lesquelles seul un très grand nombre de données contient un signal suffisant. S’inscrivant complètement dans cette nouvelle approche génomique de la phylogé- nie, nous avons en premier lieu obtenu des librairies d’EST (Expressed Sequence Tag) pour 3 espèces appartenant au super-groupe Rhizaria : deux foraminifères, Reticulomyxa filosa et Quinqueloculina sp., et un Cercozoa Gymnophrys cometa (récemment renommé Limnofila borokensis). Un total de plus de 4500 séquences représentant des gènes exprimés au moment de l’extraction d’ARN ont été analysé, ce qui constitue à ce jour le plus vaste jeu de données disponibles pour cet assemblage majeur d’eucaryotes. Apparus à la fin des années 1990, les Rhizaria sont un groupe pour l’instant définis uniquement sur la base de séquences moléculaires. Bien que reconnus comme étant l’un des cinq super-groupes d’eucaryotes, il était jusqu’à notre étude restés en dehors de la discussion alimentée par la phylogénomique à cause de l’insuffisance des données. Notre objectif de départ était simple : utiliser des alignements multigéniques pour 1) confirmer la monophylie des Rhizaria et, surtout, 2) positionner ce super-groupe dans l’arbre des eucaryotes, autrement dit investi- guer les relations phylogénétiques existantes entre les divers super-groupes présumés. Nous avons donc commencé par obtenir environ 2000 ESTs pour R. filosa (chapi- tre 2) ce qui nous a permis, en utilisant également la seule librairie de Rhizaria publique de l’époque (Bigelowiella natans), de construire un alignement comprenant 85 protéines (environ 13'000 acides aminés) et 37 espèces (dont deux Rhizaria) (chapitre 3). Les Rhi- zaria faisaient ainsi leur entrée dans le domaine de la phylogénomique. Cette étude est ve- nue confirmer, en utilisant pour la première fois des dizaines de gènes, que ce groupe avait en effet un ancêtre commun. Elle n’a par contre pas pu établir de façon convaincante sa position dans l’arbre des eucaryotes, notre alignement ne contenant pas suffisamment de signal phylogénétique. Nous avons ensuite continué notre échantillonnage pour augmenter nos données, en séquençant plus de 2500 ESTs pour deux nouvelles espèces de Rhizaria (Quinqueloculina sp.
Recommended publications
  • Culturing and Targeted Pacbio RS Amplicon Sequencing Reveals a Higher Order Taxonomic Diversity and Global Distribution
    bioRxiv preprint doi: https://doi.org/10.1101/199125; this version posted October 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Enigmatic Diphyllatea eukaryotes: Culturing and targeted PacBio RS amplicon sequencing reveals a higher order taxonomic diversity and global distribution Orr Russell J.S.1,2*, Zhao Sen3,4, Klaveness Dag5, Yabuki Akinori6, Ikeda Keiji7, Makoto M. Watanabe7, Shalchian-Tabrizi Kamran1,2* 1 Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway 2 Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway 3 Department of Molecular Oncology, Institute of Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway 4 Medical Faculty, Center for Cancer Biomedicine, University of Oslo University Hospital, Oslo, Norway 5 Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, Norway 6 Japan Agency for Marine-Earth Sciences and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan 7 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan * Corresponding authors: Russell J. S. Orr & Kamran Shalchian-Tabrizi Email: [email protected] Mobile: +4748187013 Email: [email protected] Mobile: +4741045328 Address: Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway Keywords: Diphyllatea, PacBio, rRNA, phylogeny, diversity, Collodictyon, amplicon, Sulcozoa 1 bioRxiv preprint doi: https://doi.org/10.1101/199125; this version posted October 8, 2017.
    [Show full text]
  • Identification of a Novel Fused Gene Family Implicates Convergent
    Chen et al. BMC Genomics (2018) 19:306 https://doi.org/10.1186/s12864-018-4685-y RESEARCH ARTICLE Open Access Identification of a novel fused gene family implicates convergent evolution in eukaryotic calcium signaling Fei Chen1,2,3, Liangsheng Zhang1, Zhenguo Lin4 and Zong-Ming Max Cheng2,3* Abstract Background: Both calcium signals and protein phosphorylation responses are universal signals in eukaryotic cell signaling. Currently three pathways have been characterized in different eukaryotes converting the Ca2+ signals to the protein phosphorylation responses. All these pathways have based mostly on studies in plants and animals. Results: Based on the exploration of genomes and transcriptomes from all the six eukaryotic supergroups, we report here in Metakinetoplastina protists a novel gene family. This family, with a proposed name SCAMK,comprisesSnRK3 fused calmodulin-like III kinase genes and was likely evolved through the insertion of a calmodulin-like3 gene into an SnRK3 gene by unequal crossover of homologous chromosomes in meiosis cell. Its origin dated back to the time intersection at least 450 million-year-ago when Excavata parasites, Vertebrata hosts, and Insecta vectors evolved. We also analyzed SCAMK’s unique expression pattern and structure, and proposed it as one of the leading calcium signal conversion pathways in Excavata parasite. These characters made SCAMK gene as a potential drug target for treating human African trypanosomiasis. Conclusions: This report identified a novel gene fusion and dated its precise fusion time
    [Show full text]
  • Sex Is a Ubiquitous, Ancient, and Inherent Attribute of Eukaryotic Life
    PAPER Sex is a ubiquitous, ancient, and inherent attribute of COLLOQUIUM eukaryotic life Dave Speijera,1, Julius Lukešb,c, and Marek Eliášd,1 aDepartment of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 Ceské Budejovice, Czech Republic; cCanadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8; and dDepartment of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic Edited by John C. Avise, University of California, Irvine, CA, and approved April 8, 2015 (received for review February 14, 2015) Sexual reproduction and clonality in eukaryotes are mostly Sex in Eukaryotic Microorganisms: More Voyeurs Needed seen as exclusive, the latter being rather exceptional. This view Whereas absence of sex is considered as something scandalous for might be biased by focusing almost exclusively on metazoans. a zoologist, scientists studying protists, which represent the ma- We analyze and discuss reproduction in the context of extant jority of extant eukaryotic diversity (2), are much more ready to eukaryotic diversity, paying special attention to protists. We accept that a particular eukaryotic group has not shown any evi- present results of phylogenetically extended searches for ho- dence of sexual processes. Although sex is very well documented mologs of two proteins functioning in cell and nuclear fusion, in many protist groups, and members of some taxa, such as ciliates respectively (HAP2 and GEX1), providing indirect evidence for (Alveolata), diatoms (Stramenopiles), or green algae (Chlor- these processes in several eukaryotic lineages where sex has oplastida), even serve as models to study various aspects of sex- – not been observed yet.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • Emerging Genomic and Proteomic Evidence on Relationships Among the Animal, Plant and Fungal Kingdoms
    Review Emerging Genomic and Proteomic Evidence on Relationships Among the Animal, Plant and Fungal Kingdoms John W. Stiller Department of Biology, East Carolina University, Greenville, NC 27858, USA. Sequence-based molecular phylogenies have provided new models of early eu- karyotic evolution. This includes the widely accepted hypothesis that animals are related most closely to fungi, and that the two should be grouped together as the Opisthokonta. Although most published phylogenies have supported an opisthokont relationship, a number of genes contain a tree-building signal that clusters animal and green plant sequences, to the exclusion of fungi. The alter- native tree-building signal is especially intriguing in light of emerging data from genomic and proteomic studies that indicate striking and potentially synapomor- phic similarities between plants and animals. This paper reviews these new lines of evidence, which have yet to be incorporated into models of broad scale eukaryotic evolution. Key words: genomics, proteomics, evolution, animals, plants, fungi Introduction The results of sequence-based, molecular phylogenetic two di®erent and conflicting phylogenetic signals; analyses have reshaped current thinking about an- most available sequences supported an animals + cient evolutionary relationships, and have begun to es- fungi relationship, but a smaller subset of genes in- tablish a new framework for systematizing broad-scale dicated a closer relationship between animals and eukaryotic diversity. Among the most widely accepted plants. Curiously, there was little or no support of the new evolutionary hypotheses is a proposed for the third possible relationship (plants + fungi). sister relationship between animals (+ choanoflagel- This suggested that a persistent phylogenetic artifact, lates) and fungi (see ref.
    [Show full text]
  • Molecular Identity of Strains of Heterotrophic Flagellates Isolated from Surface Waters and Deep-Sea Sediments of the South Atlantic Based on SSU Rdna
    AQUATIC MICROBIAL ECOLOGY Vol. 38: 239–247, 2005 Published March 18 Aquat Microb Ecol Molecular identity of strains of heterotrophic flagellates isolated from surface waters and deep-sea sediments of the South Atlantic based on SSU rDNA Frank Scheckenbach1, Claudia Wylezich1, Markus Weitere1, Klaus Hausmann2, Hartmut Arndt1,* 1Department of General Ecology and Limnology, Zoological Institute, University of Cologne, 50923 Cologne, Germany 2Institute of Biology/Zoology, Free University of Berlin, Research Group Protozoology, 14195 Berlin, Germany ABSTRACT: Whereas much is known about the biodiversity of prokaryotes and macroorganisms in the deep sea, knowledge on the biodiversity of protists remains very limited. Molecular studies have changed our view of marine environments and have revealed an astonishing number of previously unknown eukaryotic organisms. Morphological findings have shown that at least some widely dis- tributed nanoflagellates can also be found in the deep sea. Whether these flagellates have contact with populations from other habitats is still uncertain. We performed a molecular comparison of strains isolated from deep-sea sediments (>5000 m depth) and surface waters on the basis of their small subunit ribosomal DNA (SSU rDNA). Sequences of Rhynchomonas nasuta, Amastigomonas debruynei, Ancyromonas sigmoides, Cafeteria roenbergensis and Caecitellus parvulus were analysed, and 2 contrasting results obtained. Firstly, we found nearly identical genotypes within 1 morphospecies (C. roenbergensis), and secondly, quite different genotypes within certain morpho- species (R. nasuta, A. sigmoides and C. parvulus). In addition, high genetic distances between the dif- ferent strains of A. sigmoides and C. parvulus indicate that these morphospecies should be divided into different at least genetically distinguishable species. In contrast, some heterotrophic nanoflagel- lates must indeed be regarded as being cosmopolitan.
    [Show full text]
  • Multiple Roots of Fruiting Body Formation in Amoebozoa
    GBE Multiple Roots of Fruiting Body Formation in Amoebozoa Falk Hillmann1,*, Gillian Forbes2, Silvia Novohradska1, Iuliia Ferling1,KonstantinRiege3,MarcoGroth4, Martin Westermann5,ManjaMarz3, Thomas Spaller6, Thomas Winckler6, Pauline Schaap2,and Gernot Glo¨ ckner7,* 1Junior Research Group Evolution of Microbial Interaction, Leibniz Institute for Natural Product Research and Infection Biology – Hans Kno¨ ll Institute (HKI), Jena, Germany 2Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, United Kingdom 3Bioinformatics/High Throughput Analysis, Friedrich Schiller University Jena, Germany 4CF DNA-Sequencing, Leibniz Institute on Aging Research, Jena, Germany 5Electron Microscopy Center, Jena University Hospital, Germany 6Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany 7Institute of Biochemistry I, Medical Faculty, University of Cologne, Germany *Corresponding authors: E-mails: [email protected]; [email protected]. Accepted: January 11, 2018 Data deposition: The genome sequence and gene predictions of Protostelium aurantium and Protostelium mycophagum were deposited in GenBank under the Accession Numbers MDYQ00000000 and MZNV00000000, respectively. The mitochondrial genome of P. mycophagum was deposited under the Accession number KY75056 and that of P. aurantium under the Accession number KY75057. The RNAseq reads can be found in Bioproject Accession PRJNA338377. All sequence and annotation data are also available directly from the authors. The P. aurantium strain is deposited in the Jena Microbial Resource Collection (JMRC) under accession number SF0012540. Abstract Establishment of multicellularity represents a major transition in eukaryote evolution. A subgroup of Amoebozoa, the dictyos- teliids, has evolved a relatively simple aggregative multicellular stage resulting in a fruiting body supported by a stalk. Protosteloid amoeba, which are scattered throughout the amoebozoan tree, differ by producing only one or few single stalked spores.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Assessing Allelopathic Effects of Alexandrium Fundyense on Thalassiosira SP
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 12-2012 Assessing Allelopathic Effects of Alexandrium Fundyense on Thalassiosira SP. Emily R. Lyczkowski Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Oceanography Commons Recommended Citation Lyczkowski, Emily R., "Assessing Allelopathic Effects of Alexandrium Fundyense on Thalassiosira SP." (2012). Electronic Theses and Dissertations. 1861. http://digitalcommons.library.umaine.edu/etd/1861 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. ASSESSING ALLELOPATHIC EFFECTS OF ALEXANDRIUM FUNDYENSE ON THALASSIOSIRA SP. By Emily R. Lyczkowski B.A. Colby College, 2008 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Oceanography) The Graduate School The University of Maine December, 2012 Advisory Committee: Lee Karp-Boss, Associate Research Professor of Marine Sciences, Advisor Mary-Jane Perry, Professor of Marine Sciences David Townsend, Professor of Oceanography Mark Wells, Professor of Marine Sciences i ASSESSMENT OF ALLELOPATHIC EFFECTS OF ALEXANDRIUM FUNDYENSE ON THALASSIOSIRA SP. By Emily R. Lyczkowski Thesis Advisor: Dr. Lee Karp-Boss An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Oceanography) December, 2012 Production of allelopathic chemicals by the toxic dinoflagellate Alexandrium fundyense is one suggested mechanism by which this relatively slow grower outcompetes other phytoplankton, particularly diatoms. Despite well documented allelopathic potential of Alexandrium spp., the potency is variable.
    [Show full text]
  • Protistology an International Journal Vol
    Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb.
    [Show full text]
  • S41467-021-25308-W.Pdf
    ARTICLE https://doi.org/10.1038/s41467-021-25308-w OPEN Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota ✉ ✉ Luis Javier Galindo 1 , Purificación López-García 1, Guifré Torruella1, Sergey Karpov2,3 & David Moreira 1 Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living fla- gellated stages (zoospores) remain poorly known and their phylogenetic position is often 1234567890():,; unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and San- chytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchy- trids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids’ phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages. 1 Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. 2 Zoological Institute, Russian Academy of Sciences, St. ✉ Petersburg, Russia. 3 St.
    [Show full text]