Building Open Source Hardware
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impact of the Maker Movement
Impact of the maker movement Developed by Deloitte Center for the Edge and Maker Media from the Maker Impact Summit Dec. 2013 I AM A MAKER with my own two hands I forge the future from my imagining my work, my sweat with these tools i can build worlds here i put wire and foam transistor and plastic rubber metal and wood together to make something new what does it do where will this take us new places new worlds all from my workshop Malcolm S. Hoover, 2014 TABLE OF CONTENTS A Future of Potential 4 Overview 7 Letters from Conveners 10 How to Read This Document 14 How might the Maker Movement have an impact on… 15 • Manufacturing 16 • Education 19 • Government and Public Policy 22 • Citizen Science 25 • Retail 28 What Happens Next? 30 Participants 32 Other Images from the Summit 38 A FUTURE OF POTENTIAL We are on the cusp of an opportunity to more fully We are in a correction of sorts. Driven by the goal of scale tap into our creative potential, driven by significant efficiencies and low costs, the supply chain has been technological innovation that is democratizing the means stretched to the far extremes, like a bungee cord, and now of production and enabling connections between resources it’s starting to come back as the underlying economics and markets. Realizing this opportunity will require change. Where will we end up? We’ve learned in the last re-thinking and redesigning all of our major institutions, 15 years that experimentation is the key to innovation. -
Diybio Things: Open Source Biology Tools As Platforms for Hybrid Knowledge Production and Scientific Participation
UC Berkeley UC Berkeley Previously Published Works Title DIYbio things: Open source biology tools as platforms for hybrid knowledge production and scientific participation Permalink https://escholarship.org/uc/item/90h1s0hf ISBN 9781450331456 Authors Kuznetsov, S Doonan, C Wilson, N et al. Publication Date 2015-04-18 DOI 10.1145/2702123.2702235 License https://creativecommons.org/licenses/by-nc-sa/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Social Media & Citizen Science CHI 2015, Crossings, Seoul, Korea DIYbio Things: Open Source Biology Tools as Platforms for Hybrid Knowledge Production and Scientific Participation Stacey Kuznetsov1, Carrie Doonan2, Nathan Wilson2, Swarna Mohan2, Scott E. Hudson1, Eric Paulos3 Human-Computer Interaction Institute1 Department of Biological Sciences Electrical Engineering and Carnegie Mellon University Carnegie Mellon University2 Computer Sciences3 Pittsburgh, PA, USA Pittsburgh, PA, USA University of California {stace, hudson}@cmu.edu {cbd, njwilson, Berkeley, CA, USA swm}@andrew.cmu.edu [email protected] ABSTRACT members of the general public in various practices that DIYbio (Do It Yourself Biology) is a growing movement of interpret, critique, and construct scientific knowledge. scientists, hobbyists, artists, and tinkerers who practice biology outside of professional settings. In this paper, we One way of orienting this space for HCI is in terms of present our work with several open source DIYbio tools, publics—groups of people who come together around including OpenPCR and Pearl Blue Transilluminator, issues and work towards resolving shared concerns [5]. which can be used to test DNA samples for specific Within this larger framing, we focus on DIYbio (Do It sequences. -
The Toastboard: Ubiquitous Instrumentation and Automated Checking of Breadboarded Circuits
The Toastboard: Ubiquitous Instrumentation and Automated Checking of Breadboarded Circuits Daniel Drew†, Julie L. Newcomb‡, William McGrath?, Filip Maksimovic†, David Mellis†, Bjoern Hartmann† †: UC Berkeley EECS, ‡: University of Washington PLSE, ? : Stanford University HCI Group ddrew73,fil,mellis,[email protected], [email protected], [email protected] ABSTRACT The recent proliferation of easy to use electronic components and toolkits has introduced a large number of novices to de- signing and building electronic projects. Nevertheless, debug- ging circuits remains a difficult and time-consuming task. This paper presents a novel debugging tool for electronic design projects, the Toastboard, that aims to reduce debugging time by improving upon the standard paradigm of point-wise circuit measurements. Ubiquitous instrumentation allows for imme- diate visualization of an entire breadboard’s state, meaning users can diagnose problems based on a wealth of data instead Figure 1. The Toastboard device and accompanying software. (1) LED bars indicate power, ground, or other voltage. (2) A push button triggers of having to form a single hypothesis and plan before taking a scan. (3) Quantitative voltage data is displayed in the accompanying a measurement. Basic connectivity information is displayed software. (4) Components are associated with testers that run on every visually on the circuit itself and quantitative data is displayed scan. (5) The voltage at a selected row can be viewed over time as a on the accompanying web interface. Software-based testing graph. functions further lower the expertise threshold for efficient debugging by diagnosing classes of circuit errors automati- cally. In an informal study, participants found the detailed, frustrating, and time-consuming to debug. -
'Do It Yourself Biotechnology' (Diybio) for Open, Inclusive
Do-it-Yourself Healthcare Clinic. Credit: Waag Society ‘Do It Yourself Biotechnology’ (DIYBio) for open, inclusive, responsible Biotechnology This policy brief assesses the potential and challenges of 1) Potential for Inclusivity and Openness in Science “Do-It-Yourself Biotechnology” (DIYBio) for the progression Practitioners of DIYBio, also known as biohackers or DIYBi- of Open Science and Responsible Research and Innovation ologists, aim to ultimately make biotechnology accessible (RRI). It makes recommendations to the European Commis- to anyone. This rapidly growing culture of inclusivity, which sion as to how it can integrate DIYBio into existing science emerged in the United States in the early 2000s, challeng- funding mechanisms and regulatory directives, thereby max- es more conventional academic and industry structures, by imising benefits for European stakeholders. promoting complete access to scientific resources such as in- struments, laboratories and publications. DIYBio activities are conducted in various private and public laboratories outside of traditional academic or corporate in- The aim for a more inclusive and transparent science is also stitutions and are therefore outside the scope of current poli- a key component of the Responsible Research and Innova- cy. The full spectrum of DIYBio activities is also much broader tion10 and Open Science11 policy agendas promoted by the than what is currently understood as Citizen Science. European Commission. As a community built around these values from its inception, the DIYBio movement can be a val- The re-evaluation of funding mechanisms and regulations for uable model for academia as it undergoes a transition to a DIYBio should: more open practice. Case Study 1 (below) describes how the DIYBio space “BioTehna” operationalised openness and inclu- • promote inclusiveness and openness in science, siveness. -
Greek Society in Crisis and in Motion: Building the Material Bases for an Alternative Society from the Bottom up Georgia Bekridaki and Antonios Broumas
Interface: a journal for and about social movements Article Volume 9 (1): 230 – 255 (2017) Bekridaki and Broumas, Greek society in crisis Greek society in crisis and in motion: building the material bases for an alternative society from the bottom up Georgia Bekridaki and Antonios Broumas Abstract In the last six years, Greece has been hit by a vicious circle of relentless neoliberal restructuring programs. During the years of the crisis, throughout the country urban and rural communities of struggle have been formed, which tend to employ instituent practices and to acquire constitutive characteristics, in order to collectively address unmet social needs / desires and ensure their collective survival. In this context, socially reproductive commons in germ form have emerged with social and solidarity economy initiatives in their peripheries, alternative forms of life in common have been shaped and societies have been set in motion with the potential to establish the material foundations of their collective autonomy. Within this huge gap of social (re)production, the constituent power of social movements emerges in germ form as a resurgent force with the potential to address these needs and desires and, correspondingly, shape life in common. In the neoliberal era, it is this potential of a constituent counter - power that has the capacity to constitute the contending power to the dominant force of the capital - state complex. Keywords: Greece, social movements, mutual aid, commons, social and solidarity economy, constituent power. Introduction Greece is at the forefront of a social war raging throughout the south and, gradually spreading towards the north of Europe. On the one side, capital loots wealth and accumulates social power from vulnerable populations directly by dispossession of small property, public wealth and the commons and less by the traditional means of extracting value through exploitation (Harvey 2014: 65). -
Electronic and Electromechanical Prototyping
Electronic and electromechanical prototyping Introduction - ECAD Corso LM ‘Materiali Intelligenti e Biomimetici’ – Prof. A. Ahluwalia 4/05/2017 [email protected] After Breadboards: Matrix Boards We use breadboards for quick construction, Matrix Boards for laying out a project so it can be copied to make a Printed Circuit Board. This is a prototyping board, with copper pads in a matrix layout. You solder the components in place, and then simply cut pieces of wire, and solder them to make the circuit Printed Circuit Board The PCB is the physical board that holds and connects all of the electronic components. The circuits are formed by a thin layer of conducting material deposited, or "printed," on the surface of an insulating board known as the substrate. Individual electronic components are placed on the surface of the substrate and soldered to the interconnecting circuits. ECAD Electronic computer-aided design (ECAD) or Electronic design automation (EDA) is a category of software tools for designing electronic systems such as integrated circuits and printed circuit boards. The tools work together in a design flow that chip designers use to design and analyze entire semiconductor chips. Before EDA, integrated circuits were designed by hand and manually laid out. By the mid-1970s, developers started to automate the design along with the drafting. The first placement and routing tools were developed. Printed Circuit Board Design PCB ECAD Software (Ex. Eagle): PCB design in EAGLE is a two-step process. First you design your schematic, then you lay out a PCB based on that schematic. PCB Design (2) Your circuit design software will allow you to output the PCB layout in a format called Gerber with one file for each PCB layer (copper layers, solder mask, legend or silk) to allow manufacturing. -
Metadefender Core V4.12.2
MetaDefender Core v4.12.2 © 2018 OPSWAT, Inc. All rights reserved. OPSWAT®, MetadefenderTM and the OPSWAT logo are trademarks of OPSWAT, Inc. All other trademarks, trade names, service marks, service names, and images mentioned and/or used herein belong to their respective owners. Table of Contents About This Guide 13 Key Features of Metadefender Core 14 1. Quick Start with Metadefender Core 15 1.1. Installation 15 Operating system invariant initial steps 15 Basic setup 16 1.1.1. Configuration wizard 16 1.2. License Activation 21 1.3. Scan Files with Metadefender Core 21 2. Installing or Upgrading Metadefender Core 22 2.1. Recommended System Requirements 22 System Requirements For Server 22 Browser Requirements for the Metadefender Core Management Console 24 2.2. Installing Metadefender 25 Installation 25 Installation notes 25 2.2.1. Installing Metadefender Core using command line 26 2.2.2. Installing Metadefender Core using the Install Wizard 27 2.3. Upgrading MetaDefender Core 27 Upgrading from MetaDefender Core 3.x 27 Upgrading from MetaDefender Core 4.x 28 2.4. Metadefender Core Licensing 28 2.4.1. Activating Metadefender Licenses 28 2.4.2. Checking Your Metadefender Core License 35 2.5. Performance and Load Estimation 36 What to know before reading the results: Some factors that affect performance 36 How test results are calculated 37 Test Reports 37 Performance Report - Multi-Scanning On Linux 37 Performance Report - Multi-Scanning On Windows 41 2.6. Special installation options 46 Use RAMDISK for the tempdirectory 46 3. Configuring Metadefender Core 50 3.1. Management Console 50 3.2. -
Hackerspaces and Diybio in Asia: Connecting Science and Community with Open Data, Kits and Protocols
Journal of Peer Production New perspectives on the implications of peer production for social change http://peerproduction.net Hackerspaces and DIYbio in Asia: connecting science and community with open data, kits and protocols Denisa Kera Abstract: Different hacker, maker and DIY activities in recent years form a global culture with alternative networks of knowledge production and sharing, offering a more resilient and pragmatic response to various challenges. This growth of grassroots science and tinkering based on open data, protocols and DIY kits is often understood as part of a geek culture, which has little if any impact on the larger society. The aim here is to discuss hackerspaces as intermediaries and transnational sites offering unique opportunities for translation between scientific knowledge produced in the labs (official academic and research institutions) and the everyday interests, practices and problems of ordinary people in diverse local contexts around the globe. To demonstrate how hackerspaces function as sites of complex negotiations between various forms of knowledge and practice, and to understand how these global flows of kits and DIY protocols work in the local context, we will compare several examples from Asia (Indonesia, Singapore, and Japan). These emergent, alternative R&D centers revive a link between knowledge creation and community building, and problematize the common, “East - West”, “Modern (Industrial) - Post-industrial - Pre-modern (indigenous)” distinctions, often used when knowledge transfer is discussed. By integrating community building with prototype testing, hackerspaces embody a community based innovation that provides a more resilient policy model for societies facing emerging technologies and numerous deep and far reaching environmental and social challenges. -
Review/Of/The/Research/ Literature
Working/Paper/Series// SWPS/2014)08/ May,%2014% Community)based/digital/fabrica5on/ workshops:/A/review/of/the/research/ literature// Sabine/Hielscher// and/Adrian/Smith/ SPRU.Working.Paper.Series/ The/SPRU/Working/Paper/Series/aims/to/accelerate/the/public/availability/of/the/research/undertaken/ by/ SPRU)associated/ people/ of/ all/ categories,/ and/ excep5onally,/ other/ research/ that/ is/ of/ considerable/interest/within/SPRU./It/presents/research/results/that/in/whole/or/part/are/suitable/for/ submission/to/a/refereed/journal,/to/a/sponsor,/to/a/major/conference/or/to/the/editor/of/a/book./Our/ inten5on/is/to/provide/access/to/early/copies/of/SPRU/research./ Editors( Contact( Tommaso&Ciarli& [email protected]/ Daniele&Rotolo& [email protected]/ Associate(Editors& Area& Florian&Kern& Energy& [email protected]/ Paul&Nightingale&& Science,&&&Technology&Policy& [email protected]/ Matias&Ramirez& Development& [email protected]/ Joe&Tidd&&& Technology&Innovation&Management& [email protected]/ Carlos&Sato& [email protected]/ Maria&Savona&&& Economics&of&Technological&Change& [email protected]/ Mariana&Mazzucato& [email protected]/ Andrew&Stirling& Transitions& [email protected]/ Caitriona&McLeish& Civil&military&interface&& [email protected]/ Administrator( Jenny&Lieu& [email protected]/ Disclaimer/ The/works/available/here/are/the/responsibility/of/the/individual/author(s)/and/do/not/necessarily/ represent/the/views/of/other/SPRU/researchers./As/maLers/of/policy/and/prac5ce,/SPRU/does/not/ -
Hackerspaces
d WP4 | CASE STUDY Report: Hackerspaces Theme [ssh.2013.3.2-1][Social Innovation- Empowering People, changing societies] Project Full Title: “Transformative Social Innovation Theory project” Grant Agreement n. 613169 This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 613169 Suggested citation: Sabine Hielscher, Adrian Smith, Mariano Fressoli (2015) WP4 Case Study Report: Hackerspaces, Report For the TRANSIT FP7 Project, SPRU, University oF Sussex, Brighton. Acknowledgements: We wish to thank everyone in the Hackerspace scene who helped us with our research, whether through interviews, welcoming us to Hackerspaces and events, or putting us in touch with others. We also thank our colleagues in the TRANSIT project, at SPRU, at UNQ and Fundación Cenit For their help and encouragement with the research. Finally, we thank the European Commission and their FP7 research programme For Funding the TRANSIT project. Date: 14 January 2015 Authors: Sabine Hielscher, Adrian Smith, Mariano Fressoli Contact person: Adrian Smith Table of contents 1 Introduction to Hackerspaces 2 Methodology 2.1 Researcher relations to the case 2.2 Methods 3 Analysis of transnational network(ing) 3.1 Transnational networking: Hackerspaces 3.2 Aspects of ‘innovation’ and ‘change’ of the transnational network(ing) 3.3 Aspects of empowerment and disempowerment of the transnational network(ing) 3.4 Other issues about the transnational networking 4 Local initiative -
Build Your Own Lab: Do-It-Yourself Biology and the Rise of Citizen Biotech-Economies Morgan Meyer
Build your own lab: Do-it-yourself biology and the rise of citizen biotech-economies Morgan Meyer To cite this version: Morgan Meyer. Build your own lab: Do-it-yourself biology and the rise of citizen biotech-economies. Journal of Peer Production, 2012, 2 (online), 4 p. hal-00710829 HAL Id: hal-00710829 https://hal-mines-paristech.archives-ouvertes.fr/hal-00710829 Submitted on 28 Jun 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Build your own lab » Journal of Peer Production http://peerproduction.net/issues/issue-2/invited-comments/build-... ABOUT ISSUES PEER REVIEW NEWS CONTACT NEW PERSPECTIVES ON THE IMPLICATIONS OF PEER PRODUCTION FOR SOCIAL CHANGE BUILD YOUR OWN LAB Where you are: Home · Issues · Issue #2: Bio/Hardware Hacking · Invited Comments · Build your own lab BUILD YOUR OWN LAB: DO-IT-YOURSELF BIOLOGY AND THE RISE OF CITIZEN BIOTECH-ECONOMIES MORGAN MEYER 1. INTRODUCTION Most articles on garage biology and do-it-yourself (DIY) biology – whether academic papers or media reports – highlight its somewhat “immaterial” cultures or ideologies. The issues usually raised include: the ways in which do-it-yourself biology potentially democratizes science and fosters a citizen science (Wolinsky, 2009), that its practitioners are a “creative proof of the hacker principle” (Ledford, 2010: 650), that the field is an illustration of the open source movement, that concerns about control, security and safety need to be addressed (Sawyer, 2011). -
Open Source Hardware (OSHW) for Open Science in the Global South: Geek Diplomacy?
7 Open source hardware (OSHW) for open science in the global south: geek diplomacy? Denisa Kera INTRODUCTION The Do-It-Youself biology (DIYbio) movement originated in the U.S. in approximately 2009 around student iGEM synthetic biology competitions (durrett; field 2011; kuznetsov et al. 2012) as well as parallel open biology efforts in Europe and Asia with their connections to bioart and critical science practices in the late 1990s (bureaud; malina; whiteley, 2014). This movement merged in recent years with other movements coming from professional scientists advocating eScience, Open Science, Open Access and Open Data (neylon; wu, 2009; molloy, 2011; uhlir; schröder, 2007). The calls for changing the publishing model and opening the datasets while supporting online collaboration and crowdsourcing are starting to merge with attempts to reduce the cost of experimental research and increase reproducibility by building low cost customizable laboratory equipment (pearce, 2014; landrain et al. 2013). This convergence of hackerspace and makerspace OSHW interests with open science goals (open data, open access, online collaboration) created some unique opportunities to involve 134 Denisa Kera citizen scientists, but also scientists from the developing countries in alternative global research networks (kera, 2012A; kera, 2013). In this paper we want to reflect upon the critical role of open hardware in forming these unique South to South and South to North networks and research cooperation. We will analyse the issue as a form of “geek diplomacy” over open science. Geek diplomacy is a citizen, grassroots involvement in science which bridges various knowledge and infrastructural divides to create a more inclusive R&D response to challenging international political, social and scientific issues.