Bioassessment of Aquatic Invertebrates Along the Laramie River at Fort Laramie National Historic Site

Total Page:16

File Type:pdf, Size:1020Kb

Bioassessment of Aquatic Invertebrates Along the Laramie River at Fort Laramie National Historic Site National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Bioassessment of aquatic invertebrates along the Laramie River at Fort Laramie National Historic Site Natural Resource Technical Report NPS/NGPN/NRTR—2013/823 ON THIS PAGE Ken Brown collecting aquatic invertebrates in the Laramie River at Fort Laramie National Historic Site Photograph by: Lusha Tronstad, WYNDD, University of Wyoming ON THE COVER The Laramie River where it flows into Fort Laramie National Historic Site Photograph by: Lusha Tronstad, WYNDD, University of Wyoming Bioassessment of aquatic invertebrates along the Laramie River at Fort Laramie National Historic Site Natural Resource Technical Report NPS/NGPN/NRTR—2013/823 Lusha Tronstad Wyoming Natural Diversity Database University of Wyoming 1000 East University Avenue Laramie, Wyoming 82071 November 2013 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data. Data in this report were collected and analyzed using methods based on established, peer-reviewed protocols and were analyzed and interpreted within the guidelines of the protocols. Views, statements, findings, conclusions, recommendations, and data in this report do not necessarily reflect views and policies of the National Park Service, U.S. Department of the Interior. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. Government. This report is available from m the Northern Great Plains Inventory & Monitoring Network website (http://science.nature.nps.gov/im/units/NGPN), the Natural Resource Publications Management website (http://www.nature.nps.gov/publications/nrpm/), and the WYNDD website (http://www.uwyo.edu/wyndd/reports-and-publications/). Please cite this publication as: Tronstad, L. 2013. Bioassessment of aquatic invertebrates along the Laramie River at Fort Laramie National Historic Site. Natural Resource Technical Report NPS/NGPN/NRTR— 2013/823. National Park Service, Fort Collins, Colorado. NPS 375/122848, November 2013 ii Contents Page Figures............................................................................................................................................ iv Tables .............................................................................................................................................. v Abstract .......................................................................................................................................... vi Acknowledgments......................................................................................................................... vii Introduction ..................................................................................................................................... 1 Study Area ...................................................................................................................................... 3 Methods........................................................................................................................................... 5 Results ............................................................................................................................................. 8 Discussion ..................................................................................................................................... 18 Conclusions ................................................................................................................................... 23 Literature ....................................................................................................................................... 24 Appendix A. .................................................................................................................................. 29 iii Figures Page Figure 1. Map of Fort Laramie National Historic Site showing where aquatic invertebrate samples were collected. .............................................................................................. 4 Figure 2. Trichoptera (a) were the most abundant invertebrates, followed by Diptera (b) and Ephemeroptera (c). Bold lines are median values, the lower and upper edges of the box represent the 25th and 75th percentile, and whiskers are the upper and lower limits of the data.............................................................................................................................. 9 Figure 3. Density (ind/m2) of invertebrate functional feeding groups at site 1 (green), site 2 (yellow), and site 3 (blue) in the Laramie River at Fort Laramie National Historic Site. Bold lines are median values, lower and upper edges of the boxes are the 25th and 75th percentiles, and whiskers are limits of the data.................................................. 10 Figure 4. Density (ind/m2) of invertebrate habits at site 1 (green), site 2 (yellow), and site 3 (blue) in the Laramie River at Fort Laramie National Historic Site. Bold lines are median values, lower and upper edges of the boxes are the 25th and 75th percentiles, and whiskers are the lower and upper limits of the data. .......................................... 11 iv Tables Page Table 1. Invertebrate bioassessment metrics used to compare sites at Fort Laramie National Historic Site. ..................................................................................................................... 6 Table 2. Site locations and basic water quality at each site along the Laramie River at Fort Laramie National Historic Site. ............................................................................................... 8 Table 3. Average density (ind/m2) of insects at each site along the Laramie River at Fort Laramie National Historic Site. Variance is standard error. Higher taxonomic headings (bold) show total mean densities for the group. ............................................................ 12 Table 4. Average density (ind/m2) of non-insect invertebrates at each site along the Laramie River at Fort Laramie National Historic Site. Variance is standard error. Higher taxonomic headings (bold) show total mean densities for the group. .............................. 15 Table 5. Average invertebrate bioassessment metrics for each site along the Laramie River at Fort Laramie National Historic Site. Variance is standard error. Metrics with significant site effects (ANOVA; P < 0.05) were marked with an asterisk and significant differences among sites (multiple comparison tests) were shown in the differences column. For definitions of metrics see methods. ...................................................... 16 Table 6. Selected invertebrate bioassessment metrics in the Laramie River at Fort Laramie National Historic Site compared to other rivers in parks within the Northern Great Plains Network region. The Belle Fourche River flows through Devils Tower National Monument (Tronstad, in review), the Little Missouri River flows through Theodore Roosevelt National Park (Tronstad 2013a), and the Knife River flows through Knife River Indian Villages National Historic Site (Tronstad 2013b). ........................... 19 Table 7. Metrics included in the Wyoming Stream Integrity Index for the southeastern plains, the expected trend in relation to stream impairment, the threshold values for least disturbed sites, and metrics calculated for three sites along the Laramie River at Fort Laramie National Historic Site. Metrics from the Laramie River were electronically composited to simulate field composite samples used to develop the metrics. ...................................................................................................................... 20 v Abstract The Laramie River runs through Fort Laramie National Historic Site in eastern Wyoming and is an important source of water for the area. To estimate the ecosystem quality of the Laramie River, I collected aquatic invertebrates at three sites using a Hess sampler. Invertebrates were identified and counted under a dissecting microscope. Each taxon was assigned a functional feeding group, habit, and pollution tolerance based on published values, and I calculated 24 bioassessment metrics. Total invertebrate density in the Laramie River was 21,500 ind/m2. I identified at least 49 taxa in
Recommended publications
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • ( ) Hydropsychidae (Insecta: Trichoptera) As Bio-Indicators Of
    ว.วิทย. มข. 40(3) 654-666 (2555) KKU Sci. J. 40(3) 654-666 (2012) แมลงน้ําวงศ!ไฮดรอบไซคิดี้ (อันดับไทรคอบเทอร-า) เพื่อเป2นตัวบ-งชี้ทางชีวภาพของคุณภาพน้ํา Hydropsychidae (Insecta: Trichoptera) as Bio-indicators of Water QuaLity แตงออน พรหมมิ1 บทคัดยอ การประเมินคุณภาพน้ําในแมน้ําและลําธารควรที่จะมีการใชปจจัยทางกายภาพ เคมีและชีวภาพควบคูกัน ไป ปจจัยทางชีวภาพที่มีศักยภาพในการประเมินคุณภาพน้ําในแหลงน้ําคือกลุมสัตว+ไมมีกระดูกสันหลังขนาดใหญที่ อาศัยอยูตามพื้นทองน้ํา โดยเฉพาะแมลงน้ําอันดับไทรคอบเทอรา ซึ่งเป3นกลุมสัตว+ที่มีความหลากหลายมากกลุม หนึ่งในแหลงน้ํา ระยะตัวออนของแมลงกลุมนี้ทุกชนิดอาศัยอยูในแหลงน้ํา เป3นองค+ประกอบหลักในแหลงน้ําและ เป3นตัวหมุนเวียนสารอาหารในแหลงน้ํา ระยะตัวออนของแมลงน้ํากลุมนี้จะตอบสนองตอปจจัยของสภาพแวดลอม ในแหลงน้ําทุกรูปแบบ ระยะตัวเต็มวัยอาศัยอยูบนบกบริเวณตนไมซึ่งไมไกลจากแหลงน้ํามากนัก หากินเวลา กลางคืน ความรูทางดานอนุกรมวิธานและชีววิทยาไมวาจะเป3นระยะตัวออนหรือตัวเต็มวัยของแมลงน้ําอันดับไทร คอบเทอราในประเทศแถบยุโรปตะวันตกและอเมริกาเหนือสามารถวินิจฉัยไดถึงระดับชนิด โดยเฉพาะแมลงน้ํา วงศ+ไฮดรอบไซคิดี้ มีการประยุกต+ใชในการติดตามตรวจสอบทางชีวภาพของคุณภาพน้ํา เนื่องจากชนิดของตัวออน แมลงน้ําวงศ+นี้มีความทนทานตอมลพิษในชวงกวางมากกวาแมลงน้ําชนิดอื่น ๆ 1สายวิชาวิทยาศาสตร+ คณะศิลปศาสตร+และวิทยาศาสตร+ มหาวิทยาลัยเกษตรศาสตร+ วิทยาเขตกําแพงแสน จ.นครปฐม 73140 E-mail: [email protected] บทความ วารสารวิทยาศาสตร+ มข. ปQที่ 40 ฉบับที่ 3 655 ABSTRACT Assessment on rivers and streams water quality should incorporate aspects of chemical, physical, and biological. Of all the potential groups of freshwater organisms that have been considered for
    [Show full text]
  • Check List 4(2): 92–97, 2008
    Check List 4(2): 92–97, 2008. ISSN: 1809-127X NOTES ON GEOGRAPHIC DISTRIBUTION Insecta, Ephemeroptera, Baetidae: Range extensions and new state records from Kansas, U.S.A. W. Patrick McCafferty 1 Luke M. Jacobus 2 1 Department of Entomology, Purdue University. West Lafayette, Indiana 47907 USA. E-mail: [email protected] 2 Department of Biology, Indiana University. Bloomington, Indiana 47405 USA. The mayfly (Ephemeroptera) fauna of the U.S.A. other central lowland prairie states as well state of Kansas is relatively poorly documented (McCafferty et al. 2001; 2003; Guenther and (McCafferty 2001). With respect to small minnow McCafferty 2005). Some additionally common mayflies (family Baetidae), only 16 species have species will be evident from the new data we been documented with published records from present herein. Kansas. Those involve Acentrella turbida (McDunnough, 1924); Acerpenna pygmaea Our examination of additional unidentified (Hagen, 1861); Apobaetis Etowah (Traver, 1935); material of Kansas Baetidae housed in the Snow A. lakota McCafferty, 2000; Baetis flavistriga Museum, University of Kansas, Lawrence, McDunnough, 1921; B. intercalaris McDunnough, Kansas, and collected mainly by the State 1921; Callibaetis fluctuans (Walsh, 1862); C. Biological Survey of Kansas, has led to the pictus Eaton, 1871; Centroptilum album discovery of 19 additional species of Baetidae in McDunnough, 1926; C. bifurcatum McDunnough, Kansas, resulting in a new total of 35 species of 1924; Fallceon quilleri (Dodds, 1923); Baetidae now known from the state. The records Paracloeodes minutus (Daggy, 1945); P. given alphabetically below also represent the first dardanum (McDunnough, 1923); P. ephippiatum Kansas records of the genera Camelobaetidius, (Traver, 1935); P.
    [Show full text]
  • Late Pleistocene Glacial Equilibrium-Line Altitudes in the Colorado Front Range: a Comparison of Methods
    QUATERNARY RESEARCH l&289-310 (1982) Late Pleistocene Glacial Equilibrium-Line Altitudes in the Colorado Front Range: A Comparison of Methods THOMAS C. MEIERDING Department of Geography and Center For Climatic Research, University of Delaware, Newark, Delaware 19711 Received July 6, 1982 Six methods for approximating late Pleistocene (Pinedale) equilibrium-line altitudes (ELAs) are compared for rapidity of data collection and error (RMSE) from first-order trend surfaces, using the Colorado Front Range. Trend surfaces computed from rapidly applied techniques, such as glacia- tion threshold, median altitude of small reconstructed glaciers, and altitude of lowest cirque floors have relatively high RMSEs @I- 186 m) because they are subjectively derived and are based on small glaciers sensitive to microclimatic variability. Surfaces computed for accumulation-area ratios (AARs) and toe-to-headwall altitude ratios (THARs) of large reconstructed glaciers show that an AAR of 0.65 and a THAR of 0.40 have the lowest RMSEs (about 80 m) and provide the same mean ELA estimate (about 3160 m) as that of the more subjectively derived maximum altitudes of Pinedale lateral moraines (RMSE = 149 m). Second-order trend surfaces demonstrate low ELAs in the latitudinal center of the Front Range, perhaps due to higher winter accumulation there. The mountains do not presently reach the ELA for large glaciers, and small Front Range cirque glaciers are not comparable to small glaciers existing during Pinedale time. Therefore, Pleistocene ELA depression and consequent temperature depression cannot reliably be ascertained from the calcu- lated ELA surfaces. INTRODUCTION existed in alpine regions (Charlesworth, Glacial equilibrium-line altitudes (ELAs) 1957; ostrem, 1966; Flint, 1971; Andrews, have been widely used to infer present and 1975).
    [Show full text]
  • Ent21 3 273 306 Kluge.Pmd
    Russian Entomol. J. 21(3): 273306 © RUSSIAN ENTOMOLOGICAL JOURNAL, 2012 Contribution to the knowledge of Choroterpes (Ephemeroptera: Leptophlebiidae) Ê ïîçíàíèþ Choroterpes (Ephemeroptera: Leptophlebiidae) Nikita J. Kluge Í.Þ. Êëþãå Department of Entomology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia. E-mail: [email protected]. Website: http://www.insecta.bio.pu.ru Êàôåäðà ýíòîìîëîãèè, áèîëîãî-ïî÷âåííûé ôàêóëüòåò, Ñ.-Ïåòåðáóðãñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, Óíèâåðñèòåòñêàÿ íàá., 7/8, Ñ.-Ïåòåðáóðã 199034, Ðîññèÿ. KEY WORDS: systematics, Ephemeroptera, Leptophlebiidae, Atalophlebomaxillata, Choroterpes, Neochorot- erpes, Euthraulus, Monophyllus, Dilatognathus, Choroterpides, new species. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: ñèñòåìàòèêà, Ephemeroptera, Leptophlebiidae, Atalophlebomaxillata, Choroterpes, Neochoroterpes, Euthraulus, Monophyllus, Dilatognathus, Choroterpides, íîâûå âèäû. ABSTRACT. The taxon Atalophlebomaxillata is char- ÐÅÇÞÌÅ. Òàêñîí Atalophlebomaxillata õàðàêòå- acterized by presence of an apical flange on maxilla; this ðèçóåòñÿ íàëè÷èåì àïèêàëüíîé ïëàñòèíêè íà ìàê- flange is lost only in those representatives, whose maxil- ñèëëå; ýòà ïëàñòèíêà óòðà÷åíà òîëüêî ó òåõ ïðåäñòà- lae are highly specialized. Within Atalophlebomaxillata- âèòåëåé, ìàêñèëëû êîòîðûõ ñèëüíî ñïåöèàëèçèðîâà- Atalophlebolinguata, a new tribe Choroterpini tribus n. íû.  ñîñòàâå AtalophlebomaxillataAtalophlebo- (or Choroterpes/fg1) is established, to comprise Thrau- linguata âûäåëÿåòñÿ íîâàÿ òðèáà Choroterpini tribus n. lus
    [Show full text]
  • Biodiversity of Minnesota Caddisflies (Insecta: Trichoptera)
    Conservation Biology Research Grants Program Division of Ecological Services Minnesota Department of Natural Resources BIODIVERSITY OF MINNESOTA CADDISFLIES (INSECTA: TRICHOPTERA) A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY DAVID CHARLES HOUGHTON IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Ralph W. Holzenthal, Advisor August 2002 1 © David Charles Houghton 2002 2 ACKNOWLEDGEMENTS As is often the case, the research that appears here under my name only could not have possibly been accomplished without the assistance of numerous individuals. First and foremost, I sincerely appreciate the assistance of my graduate advisor, Dr. Ralph. W. Holzenthal. His enthusiasm, guidance, and support of this project made it a reality. I also extend my gratitude to my graduate committee, Drs. Leonard C. Ferrington, Jr., Roger D. Moon, and Bruce Vondracek, for their helpful ideas and advice. I appreciate the efforts of all who have collected Minnesota caddisflies and accessioned them into the University of Minnesota Insect Museum, particularly Roger J. Blahnik, Donald G. Denning, David A. Etnier, Ralph W. Holzenthal, Jolanda Huisman, David B. MacLean, Margot P. Monson, and Phil A. Nasby. I also thank David A. Etnier (University of Tennessee), Colin Favret (Illinois Natural History Survey), and Oliver S. Flint, Jr. (National Museum of Natural History) for making caddisfly collections available for my examination. The laboratory assistance of the following individuals-my undergraduate "army"-was critical to the processing of the approximately one half million caddisfly specimens examined during this study and I extend my thanks: Geoffery D. Archibald, Anne M.
    [Show full text]
  • Lakamie Basin, Wyoming
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR BULLETIN 364 GEOLOGY AND MINERAL RESOURCES OF THE LAKAMIE BASIN, WYOMING A PRELIMINARY REPORT BY N. H. DARTON AND C. E. SIEBENTHAL WASHINGTON GOVERNMENT PRINTING OFFICE 1909 CONTENTS. Page. Introduction............................................................. 7 Geography ............................................................... 8 Configuration........................................................ 8 Drainage ............................................................ 9 Climate ............................................................. 9 Temperature...................................................... 9 Precipitation..................................................... 10 Geology ................................................................. 11 Stratigraphy.......................................................... 11 General relations........................../....................... .11 Carboniferous system............................................. 13 Casper formation......................... .................... 13. General character........................................ 13 Thickness ............................................... 13 Local features............................................ 14 Erosion and weathering of limestone slopes ................ 18 Paleontology and age..................................... 19 Correlation .............................................. 20 Forelle limestone............................................
    [Show full text]
  • Bibliographia Trichopterorum
    Entry numbers checked/adjusted: 23/10/12 Bibliographia Trichopterorum Volume 4 1991-2000 (Preliminary) ©Andrew P.Nimmo 106-29 Ave NW, EDMONTON, Alberta, Canada T6J 4H6 e-mail: [email protected] [As at 25/3/14] 2 LITERATURE CITATIONS [*indicates that I have a copy of the paper in question] 0001 Anon. 1993. Studies on the structure and function of river ecosystems of the Far East, 2. Rep. on work supported by Japan Soc. Promot. Sci. 1992. 82 pp. TN. 0002 * . 1994. Gunter Brückerman. 19.12.1960 12.2.1994. Braueria 21:7. [Photo only]. 0003 . 1994. New kind of fly discovered in Man.[itoba]. Eco Briefs, Edmonton Journal. Sept. 4. 0004 . 1997. Caddis biodiversity. Weta 20:40-41. ZRan 134-03000625 & 00002404. 0005 . 1997. Rote Liste gefahrdeter Tiere und Pflanzen des Burgenlandes. BFB-Ber. 87: 1-33. ZRan 135-02001470. 0006 1998. Floods have their benefits. Current Sci., Weekly Reader Corp. 84(1):12. 0007 . 1999. Short reports. Taxa new to Finland, new provincial records and deletions from the fauna of Finland. Ent. Fenn. 10:1-5. ZRan 136-02000496. 0008 . 2000. Entomology report. Sandnats 22(3):10-12, 20. ZRan 137-09000211. 0009 . 2000. Short reports. Ent. Fenn. 11:1-4. ZRan 136-03000823. 0010 * . 2000. Nattsländor - Trichoptera. pp 285-296. In: Rödlistade arter i Sverige 2000. The 2000 Red List of Swedish species. ed. U.Gärdenfors. ArtDatabanken, SLU, Uppsala. ISBN 91 88506 23 1 0011 Aagaard, K., J.O.Solem, T.Nost, & O.Hanssen. 1997. The macrobenthos of the pristine stre- am, Skiftesaa, Haeylandet, Norway. Hydrobiologia 348:81-94.
    [Show full text]
  • The Laramie Region
    Wyoming Game and Fish Department 2009 Edition LLARAMIEARAMIE RREGIONEGION AANGLERNGLER UUPDATEPDATE “Conserving Wildlife—Serving People” Inside this issue: The Laramie Region Aquatic Invasive Species 2 Updates on selected wa- 3 ters in Laramie Region Channel catfish 4 2 Plains lakes aeration 5 systems 3 1 Laramie River 6 Learn about the smooth- 7 greensnake Encampment River study 8 Map of the Laramie Region indicating the three different management River and floating eti- 9 areas: (1) Platte Valley, Sierra Madre Mountains, (2) Laramie Plains to the quette Snowy Range, (3) Eastern Plains to the Laramie Range. Red and Blue North 10 Platte River signs 2010-2011 Regulation 10 Cycle Pole Mountain Beaver Pond Stocking Splake vs. brook trout 11 The Pole Mountain area, located between and makes for a great family outing. If Cheyenne and Laramie, is dotted with you are interested in volunteering on Special points of hundreds of beaver ponds teeming with this project, Saturday, June 6, 2009, interest: brook trout. These ponds offer fast action contact us at the Laramie Regional Of- □ Wyoming’s Free Fishing for anglers. Many portions of streams in fice, (307) 745-4046. day is Saturday June 6, the Pole Mountain area do not have the 2009! habitat conducive to trout spawning. In □ Summary of last year’s order for these ponds to support high fish- activities ing pressure, they are stocked annually □ River and floating eti- with 20,000 fingerling brook trout on the quette first Saturday in June. Effectively stocking hundreds of ponds scattered over thou- □ Splake vs. brook trout sands of acres is a labor intensive job, re- identification quiring a lot of people.
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Platte River Basin
    Platte River Basin Little Medicine Bow River Table of Contents Watershed Description ............................................................................................................................................. 2 Aquatic Wildlife ......................................................................................................................................................... 3 Identification of Conservation Areas ..................................................................................................................... 5 Threats......................................................................................................................................................................... 6 Conservation Initiatives ............................................................................................................................................ 8 Recommended Conservation Actions .................................................................................................................. 10 Monitoring ................................................................................................................................................................ 11 Literature Cited ........................................................................................................................................................ 11 Wyoming State Wildlife Action Plan - 2017 Page III – 15 - 1 Aquatic Basins Wyoming Game and Fish Department Platte River Basin Watershed Description Lower
    [Show full text]