Trichoptera)" (2018)

Total Page:16

File Type:pdf, Size:1020Kb

Trichoptera) Clemson University TigerPrints All Theses Theses 5-2018 Description and Diagnosis of Associated Larvae and Adults of Vietnamese and South Carolina Caddisflies T( richoptera) Madeline Sage Genco Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Genco, Madeline Sage, "Description and Diagnosis of Associated Larvae and Adults of Vietnamese and South Carolina Caddisflies (Trichoptera)" (2018). All Theses. 2839. https://tigerprints.clemson.edu/all_theses/2839 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. DESCRIPTION AND DIAGNOSIS OF ASSOCIATED LARVAE AND ADULTS OF VIETNAMESE AND SOUTH CAROLINA CADDISFLIES (TRICHOPTERA) A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Entomology by Madeline Sage Genco May 2018 Accepted by: Dr. John C. Morse, Committee Co-chair Dr. Michael Caterino, Committee Co-chair Dr. Kyle Barrett ABSTRACT Globally, only 868 trichopteran larvae have been described to enable species-level identification; that is only 0.05% of all caddisfly species. In the Oriental Region, almost none (0.016%) of the larvae are known. Continued work on describing larval species may improve the accuracy of water quality monitoring metrics. Genetic barcoding (with mtCOI) was used to associate unknown larvae with known or unknown adults. The morphology of the larvae was then described in words as well as in illustrations to aid species-level identification. Two new species also were described from adult males in the same manner. ii DEDICATION This text is dedicated to all girls and young women who are fascinated by “bugs” (and other things traditionally seen as unladylike) and all the wonderful men and women who encourage our enthusiasm and support us in our ambitions. iii ACKNOWLEDGEMENTS I would like to thank my parents and my brother for their unwavering love and support, and for instilling in me my love of science and the outdoors. Dr. Jeff Heilveil, for introducing me to the world of aquatic entomology, and encouraging me to pursue graduate school. All of my fellow graduate students, lab-mates, and other professionals that lent me advice or helped with my field work, including C. Wrege, S. Muñoz, K. Murray, J. Xu, S. Qiu, L. Vasquez, A. Deczynski, Dr. M. Ferro, M. Green, Q. Lewis, Z. Burrington, Dr. X. Zhou, Dr. R. Holzenthal, T.M. Nguyễn, V.S. Mai, T.H.Y. Tô, V.H. Nguyễn, D.H Hugnh, Dr. T. Pham, and others. I would like to thank my committee member, Dr. Kyle Barrett for his support and guidance, especially with consideration towards my career goals. My co-advisor Dr. Mike Caterino, for his support, guidance, and patience throughout the numerous office visits about molecular work and tree building questions. Finally, thank you to Dr. John C. Morse, for your continued help and guidance. I feel blessed to have you as an advisor. You have gone above and beyond to help me reach my goals; from inviting me to Vietnam and helping me to collect, to correcting my spelling (I’m sorry), to advice about life, and everything in-between. You have strived to help me learn and become my best self. Thank you. I would like to thank the Clemson University Entomology Faculty for awarding me the King Research Grant, which funded much of the molecular work, and the Nettles Grant which supported some of my travel to Vietnam and conferences. iv PREFACE This thesis “is not issued for public and permanent scientific record, or for the purposes of zoological nomenclature”; article 8.2 of the International Code of Zoological Nomenclature applies (ICZN 1999). v TABLE OF CONTENTS Page TITLE PAGE ....................................................................................................................... i ABSTRACT ......................................................................................................................... i DEDICATION ................................................................................................................... iii ACKNOWLEDGEMENTS ............................................................................................... iv PREFACE ........................................................................................................................... v LIST OF TABLES ........................................................................................................... viii LIST OF FIGURES ........................................................................................................... ix CHAPTER I. INTRODUCTION ........................................................................................... 1 II. METHODS..................................................................................................... 8 Sampling ......................................................................................... 8 Molecular work ............................................................................. 10 Describing Newly Associated Larvae ........................................... 15 Tree Building ................................................................................ 16 III. RESULTS ................................................................................................... 19 Vietnamese Trichoptera ................................................................ 19 Cheumatopsyche of North and South Carolina ............................. 21 Key to the Larve of Cheumatopsyche .......................................... 25 IV. SPECIES DESCRIPTIONS........................................................................ 30 Drepanocentron dentatum, new species ....................................... 32 Hydromanicus calyx, new species ................................................ 43 Cheumatopsyche oxa Ross, 1938 .................................................. 51 Cheumatopsyche pinaca Ross, 1941............................................. 53 V. DISCUSSION AND CONCLUSIONS ....................................................... 55 Trichoptera of Vietnam ................................................................. 56 Cheumatopsyche of North and South Carolina ............................. 59 vi Table of Contents (Continued) Page APPENDICES .................................................................................................................. 64 A: Voucher Information ........................................................................................65 B: BOLD Outgroup Information ..........................................................................79 REFERENCES ..................................................................................................................88 vii LIST OF TABLES Table Page 1. Master mix reagent quantities used for most PCRs run. ................................ 13 2. PCR Parameters. ........................................................................................... 14 viii LIST OF FIGURES Figure Page 1. Majority rule consensus tree assembled from most parsimonious trees. .............................................................................................................. 27 2. Majority rule consensus tree assembled from maximum likelihood trees. ............................................................................................. 28 3. Phylogram of majority rule consensus tree assembled from post burn-in Bayesian Analysis. ................................................................... 29 4. Drepanocentron dentatum n. sp., adult male genitalia, composite drawings of specimens VN59–VN62. 4A, genitalia, left lateral; 4B, segment X and phallus, left lateral; 4C, genitalia, dorsal; 4D, right inferior appendage, dorsal; 4E, genitalia, ventral. ......................... 36 5. Drepanocentron dentatum n. sp., larva. 5A, head of specimen VN69, dorsal; 5B, head of VN69, ventral; 5C, labrum of VN70, dorsal; 5D, mandibles of VN69, dorsal; 5E, mandibles of VN70, dorsal; 5F, pronotum of VN69, dorsal; 5G, right anal proleg of VN 69, right lateral; 5F, pro- and mesopleura of VN69, right lateral. ................................................................................... 40 6. Hydromanicus calyx, male genitalia of specimen VN108. 6A, left lateral; 6B, phallus, left lateral; 6C, segment 10, dorsal; 6D, genitalia, dorsal. ......................................................................... 45 7. Hydromanicus calyx, larva of specimen VN4 except 7J of specimen VN3. 7A, head, dorsal; 7B, head, ventral; 7C, pronotum, dorsal; 7D, mesonotum, dorsal; 7E, metanotum, dorsal; 7F, inset of anterior margin of mesonotum, dorsal; 7G, prosternal sclerites, ventral; 7H, mandibles, dorsal; 7I, habitus, right lateral; 7J, right anal proleg, right lateral. ............................... 50 8. Larva of Cheumatopsyche oxa, specimen MG20. A. Head, dorsal; B. Anterior margin of frontoclypeus, dorsal; intersegmental sclerites, ventral. ........................................................................................... 52 9. Larva of Cheumatopsyche pinaca, specimen MG65. A. Head, dorsal; B. Anterior margin of frontoclypeus, dorsal; intersegmental sclerites, ventral. ........................................................................................... 54 ix CHAPTER ONE INTRODUCTION There are 16,127 species of caddisflies
Recommended publications
  • Data Quality, Performance, and Uncertainty in Taxonomic Identification for Biological Assessments
    J. N. Am. Benthol. Soc., 2008, 27(4):906–919 Ó 2008 by The North American Benthological Society DOI: 10.1899/07-175.1 Published online: 28 October 2008 Data quality, performance, and uncertainty in taxonomic identification for biological assessments 1 2 James B. Stribling AND Kristen L. Pavlik Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Susan M. Holdsworth3 Office of Wetlands, Oceans, and Watersheds, US Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Mail Code 4503T, Washington, DC 20460 USA Erik W. Leppo4 Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Abstract. Taxonomic identifications are central to biological assessment; thus, documenting and reporting uncertainty associated with identifications is critical. The presumption that comparable results would be obtained, regardless of which or how many taxonomists were used to identify samples, lies at the core of any assessment. As part of a national survey of streams, 741 benthic macroinvertebrate samples were collected throughout the eastern USA, subsampled in laboratories to ;500 organisms/sample, and sent to taxonomists for identification and enumeration. Primary identifications were done by 25 taxonomists in 8 laboratories. For each laboratory, ;10% of the samples were randomly selected for quality control (QC) reidentification and sent to an independent taxonomist in a separate laboratory (total n ¼ 74), and the 2 sets of results were compared directly. The results of the sample-based comparisons were summarized as % taxonomic disagreement (PTD) and % difference in enumeration (PDE). Across the set of QC samples, mean values of PTD and PDE were ;21 and 2.6%, respectively.
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • ( ) Hydropsychidae (Insecta: Trichoptera) As Bio-Indicators Of
    ว.วิทย. มข. 40(3) 654-666 (2555) KKU Sci. J. 40(3) 654-666 (2012) แมลงน้ําวงศ!ไฮดรอบไซคิดี้ (อันดับไทรคอบเทอร-า) เพื่อเป2นตัวบ-งชี้ทางชีวภาพของคุณภาพน้ํา Hydropsychidae (Insecta: Trichoptera) as Bio-indicators of Water QuaLity แตงออน พรหมมิ1 บทคัดยอ การประเมินคุณภาพน้ําในแมน้ําและลําธารควรที่จะมีการใชปจจัยทางกายภาพ เคมีและชีวภาพควบคูกัน ไป ปจจัยทางชีวภาพที่มีศักยภาพในการประเมินคุณภาพน้ําในแหลงน้ําคือกลุมสัตว+ไมมีกระดูกสันหลังขนาดใหญที่ อาศัยอยูตามพื้นทองน้ํา โดยเฉพาะแมลงน้ําอันดับไทรคอบเทอรา ซึ่งเป3นกลุมสัตว+ที่มีความหลากหลายมากกลุม หนึ่งในแหลงน้ํา ระยะตัวออนของแมลงกลุมนี้ทุกชนิดอาศัยอยูในแหลงน้ํา เป3นองค+ประกอบหลักในแหลงน้ําและ เป3นตัวหมุนเวียนสารอาหารในแหลงน้ํา ระยะตัวออนของแมลงน้ํากลุมนี้จะตอบสนองตอปจจัยของสภาพแวดลอม ในแหลงน้ําทุกรูปแบบ ระยะตัวเต็มวัยอาศัยอยูบนบกบริเวณตนไมซึ่งไมไกลจากแหลงน้ํามากนัก หากินเวลา กลางคืน ความรูทางดานอนุกรมวิธานและชีววิทยาไมวาจะเป3นระยะตัวออนหรือตัวเต็มวัยของแมลงน้ําอันดับไทร คอบเทอราในประเทศแถบยุโรปตะวันตกและอเมริกาเหนือสามารถวินิจฉัยไดถึงระดับชนิด โดยเฉพาะแมลงน้ํา วงศ+ไฮดรอบไซคิดี้ มีการประยุกต+ใชในการติดตามตรวจสอบทางชีวภาพของคุณภาพน้ํา เนื่องจากชนิดของตัวออน แมลงน้ําวงศ+นี้มีความทนทานตอมลพิษในชวงกวางมากกวาแมลงน้ําชนิดอื่น ๆ 1สายวิชาวิทยาศาสตร+ คณะศิลปศาสตร+และวิทยาศาสตร+ มหาวิทยาลัยเกษตรศาสตร+ วิทยาเขตกําแพงแสน จ.นครปฐม 73140 E-mail: [email protected] บทความ วารสารวิทยาศาสตร+ มข. ปQที่ 40 ฉบับที่ 3 655 ABSTRACT Assessment on rivers and streams water quality should incorporate aspects of chemical, physical, and biological. Of all the potential groups of freshwater organisms that have been considered for
    [Show full text]
  • Diversity of Trichoptera Fauna and Its Correlation with Water Quality Parameters at Pasak Cholasit Reservoir, Central Thailand
    Environment and Natural Resources J. Vol 12, No.2, December 2014:35-41 35 Diversity of Trichoptera Fauna and its Correlation with Water Quality Parameters at Pasak Cholasit reservoir, Central Thailand Taeng-On Prommi 1* and Isara Thani 2 1Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Thailand 2Department of Biology, Faculty of Science, Mahasarakham University, Thailand Abstract The objectives of this study were to study the diversity of the Trichoptera fauna and the physicochemical parameters of water quality, as well as the correlation between physicochemical parameters and biodiversity of Trichoptera fauna for monitoring of water quality. The specimens were sampled monthly using portable black light traps from January to December 2010 at the inflow and outflow of Pasak Cholasit reservoir. A total of 20,380 adult caddis flies representing 7 families and 27 species were collected from the sampling sites in the present study. The family Hydropsychidae contained the greatest number of species (29%, 8 species), followed by Leptoceridae (26%, 7 species), Ecnomidae (19%, 5 species), Psychomyiidae (11%, 3 species), Philopotamidae (7%, 2 species), and Dipseudopsidae and Xiphocentronidae (4%, 1 species). Results of CCA ordination showed that eleven selected physicochemical water quality parameters (i.e., air and water temperature, pH of water, dissolved oxygen, total dissolved solids, electrical conductivity, ammonia-nitrogen, nitrate-nitrogen, orthophosphate, sulfate and turbidity of water) were the important
    [Show full text]
  • Trichoptera:Hydropsychidae) Based on DNA and Morphological Evidence Christy Jo Geraci National Museum on Natural History, Smithsonian Institute
    Clemson University TigerPrints Publications Biological Sciences 3-2010 Defining the Genus Hydropsyche (Trichoptera:Hydropsychidae) Based on DNA and Morphological Evidence Christy Jo Geraci National Museum on Natural History, Smithsonian Institute Xin Zhou University of Guelph John C. Morse Clemson University, [email protected] Karl M. Kjer Rutgers University - New Brunswick/Piscataway Follow this and additional works at: https://tigerprints.clemson.edu/bio_pubs Part of the Biology Commons Recommended Citation Please use publisher's recommended citation. This Article is brought to you for free and open access by the Biological Sciences at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. J. N. Am. Benthol. Soc., 2010, 29(3):918–933 ’ 2010 by The North American Benthological Society DOI: 10.1899/09-031.1 Published online: 29 June 2010 Defining the genus Hydropsyche (Trichoptera:Hydropsychidae) based on DNA and morphological evidence Christy Jo Geraci1 Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012 USA Xin Zhou2 Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1 Canada John C. Morse3 Department of Entomology, Soils, and Plant Sciences, Clemson University, Clemson, South Carolina 29634 USA Karl M. Kjer4 Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901 USA Abstract. In this paper, we review the history of Hydropsychinae genus-level classification and nomenclature and present new molecular evidence from mitochondrial cytochrome c oxidase subunit I (COI) and nuclear large subunit ribosomal ribonucleic acid (28S) markers supporting the monophyly of the genus Hydropsyche.
    [Show full text]
  • Lazare Botosaneanu ‘Naturalist’ 61 Doi: 10.3897/Subtbiol.10.4760
    Subterranean Biology 10: 61-73, 2012 (2013) Lazare Botosaneanu ‘Naturalist’ 61 doi: 10.3897/subtbiol.10.4760 Lazare Botosaneanu ‘Naturalist’ 1927 – 2012 demic training shortly after the Second World War at the Faculty of Biology of the University of Bucharest, the same city where he was born and raised. At a young age he had already showed interest in Zoology. He wrote his first publication –about a new caddisfly species– at the age of 20. As Botosaneanu himself wanted to remark, the prominent Romanian zoologist and man of culture Constantin Motaş had great influence on him. A small portrait of Motaş was one of the few objects adorning his ascetic office in the Amsterdam Museum. Later on, the geneticist and evolutionary biologist Theodosius Dobzhansky and the evolutionary biologist Ernst Mayr greatly influenced his thinking. In 1956, he was appoint- ed as a senior researcher at the Institute of Speleology belonging to the Rumanian Academy of Sciences. Lazare Botosaneanu began his career as an entomologist, and in particular he studied Trichoptera. Until the end of his life he would remain studying this group of insects and most of his publications are dedicated to the Trichoptera and their environment. His colleague and friend Prof. Mar- cos Gonzalez, of University of Santiago de Compostella (Spain) recently described his contribution to Entomolo- gy in an obituary published in the Trichoptera newsletter2 Lazare Botosaneanu’s first contribution to the study of Subterranean Biology took place in 1954, when he co-authored with the Romanian carcinologist Adriana Damian-Georgescu a paper on animals discovered in the drinking water conduits of the city of Bucharest.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Parapsyche Species (Trichoptera: Hydropsychidae: Arctopsychinae) of Western North America
    Zootaxa 4057 (4): 451–489 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4057.4.1 http://zoobank.org/urn:lsid:zoobank.org:pub:1EF572F1-5038-4032-9065-F6FD3D51DC0F Parapsyche species (Trichoptera: Hydropsychidae: Arctopsychinae) of western North America DONALD R. GIVENS Department of Bioagricultural Sciences and Pest Management, C.P. Gillette Museum of Arthropod Diversity; Campus Delivery 1177; Colorado State University; Fort Collins, CO 80523, USA. E-mail: [email protected] Table of contents Abstract . 451 Introduction . 451 Material and methods . 452 Genus diagnosis. 453 Diagnosis and discussion of species . 453 Parapsyche almota Ross 1938 . 453 Parapsyche elsis Milne 1936 . 458 Parapsyche extensa Denning 1949a . 463 Parapsyche spinata Denning 1949b . 467 Parapsyche turbinata Schmid 1968 . 471 Keys to western North American species of Parapsyche . 485 Acknowledgements . 487 References . 487 Abstract The adult female, pupa, and larva of the 5 western North American species of the arctopsychine genus Parapsyche—P. almota Ross 1938, P. elsis Milne 1936, P. extensa Denning 1949a, P. spinata Denning 1949b, and P. turbinata Schmid 1968—are reviewed. The female and larva of P. extensa are described for the first time. The larvae of P. spinata and P. turbinata are described for the first time. The chaetotaxy of the larval forms of western North American Parapsyche is discussed and scanning electron micrographs are presented. Keys to the females, known pupae, and larvae are provided. Distributional and biological data are also included. Key words: caddisfly taxonomy, description, chaetotaxonomy, larval keys Introduction This study initially focused on the association of the western North American larvae and adult females of Parapsyche extensa Denning 1949a, P.
    [Show full text]
  • From Northeastern Brazil
    Zootaxa 3914 (1): 046–054 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3914.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:475FE496-2D30-4B92-935F-13902F1BB464 New species of Xiphocentron Brauer 1870 (Trichoptera: Xiphocentronidae) from Northeastern Brazil ALBANE VILARINO1 & ADOLFO R. CALOR2 Universidade Federal da Bahia, Instituto de Biologia, Departamento de Zoologia, PPG Diversidade Animal, Laboratório de Entomo- logia Aquática - LEAq. Rua Barão de Jeremoabo, 147, campus Ondina, Ondina, CEP 40170-115, Salvador, Bahia, Brazil. E-mail: [email protected]; [email protected] Abstract Two new species of Xiphocentron (Trichoptera: Xiphocentronidae) from Northeastern Brazil are diagnosed, described, and illustrated. Xiphocentron (Antillotrichia) kamakan n. sp. has inferior appendages each with a shape discontinuity (twist) between the first and second articles of inferior appendage, similar to that found in X. (Antillotrichia) rhamnes Schmid 1982, X. (Antillotrichia) serestus Schmid 1982, and X. (Antillotrichia) mnesteus Schmid 1982; however, it can be distinguished from these species by each inferior appendage having two darkly sclerotized spinulous regions ventrally on the basomesal and midmesal margins. Xiphocentron (Antillotrichia) maiteae n. sp. can be differentiated from all other congeners by having the basoventral margin of each inferior appendage strongly produced posterad. A key to males of Brazilian species of Xiphocentron is provided. Key words: aquatic insects, biodiversity, caddisflies, Neotropical, taxonomy Introduction Xiphocentronidae was erected by Ross (1949) but synonymized with Psychomyiidae by Edwards (1961) based on larval similarities, being considered at that time as a subfamily Xiphocentroninae of Psychomyiidae.
    [Show full text]
  • Biodiversity of Minnesota Caddisflies (Insecta: Trichoptera)
    Conservation Biology Research Grants Program Division of Ecological Services Minnesota Department of Natural Resources BIODIVERSITY OF MINNESOTA CADDISFLIES (INSECTA: TRICHOPTERA) A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY DAVID CHARLES HOUGHTON IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Ralph W. Holzenthal, Advisor August 2002 1 © David Charles Houghton 2002 2 ACKNOWLEDGEMENTS As is often the case, the research that appears here under my name only could not have possibly been accomplished without the assistance of numerous individuals. First and foremost, I sincerely appreciate the assistance of my graduate advisor, Dr. Ralph. W. Holzenthal. His enthusiasm, guidance, and support of this project made it a reality. I also extend my gratitude to my graduate committee, Drs. Leonard C. Ferrington, Jr., Roger D. Moon, and Bruce Vondracek, for their helpful ideas and advice. I appreciate the efforts of all who have collected Minnesota caddisflies and accessioned them into the University of Minnesota Insect Museum, particularly Roger J. Blahnik, Donald G. Denning, David A. Etnier, Ralph W. Holzenthal, Jolanda Huisman, David B. MacLean, Margot P. Monson, and Phil A. Nasby. I also thank David A. Etnier (University of Tennessee), Colin Favret (Illinois Natural History Survey), and Oliver S. Flint, Jr. (National Museum of Natural History) for making caddisfly collections available for my examination. The laboratory assistance of the following individuals-my undergraduate "army"-was critical to the processing of the approximately one half million caddisfly specimens examined during this study and I extend my thanks: Geoffery D. Archibald, Anne M.
    [Show full text]
  • 2002 Benthic Sites with Data Types Available for Each Site
    APPENDIX A 2002 Benthic Sites with Data Types Available for Each Site 04-1422-022.1 King County 2002 Benthic Macroinvertebrate Data Analyses FINAL August 2004 A-1 APPENDIX A - 2002 Benthic Sites with Data Types Available for Each Site Land WQ Hydrology Benthic Use Habitat Station WQ Station Hydrology Watershed Site Code Site Name Data Data Data Code Data Code Data Green-Duwamish 09BLA0675 Black 0675 x x x Green-Duwamish 09BLA0716 Black 0716 x x x Green-Duwamish 09BLA0722 Black 0722 x x x A326 x Green-Duwamish 09BLA0756 Black 0756 x x x Green-Duwamish 09BLA0768 Black 0768 x x x 03B x Green-Duwamish 09BLA0768 Black 0768 Replicate x x x 03B x Green-Duwamish 09BLA0771 Black 0771 x x x Green-Duwamish 09BLA0772 Black 0772 x x x Green-Duwamish 09BLA0813 Black 0813 x x x Green-Duwamish 09BLA0817 Black 0817 x x x Green-Duwamish 09BLA0817 Black 0817 Replicate x x x Green-Duwamish 09COV1165 Covington Basin 1165 x x x Green-Duwamish 09COV1418 Covington Basin 1418 x x x C320 x Green-Duwamish 09COV1753 Covington Basin 1753 x x x Green-Duwamish 09COV1798 Covington Basin 1798 x x x Green-Duwamish 09COV1862 Covington Basin 1862 x x x Green-Duwamish 09COV1864 Covington Basin 1864 x x x Green-Duwamish Covington Basin Soos 03 x x Green-Duwamish 09DEE2163 Deep/Coal Basin 2163 x x x Green-Duwamish 09DEE2208 Deep/Coal Basin 2208 x x x Green-Duwamish 09DEE2211 Deep/Coal Basin 2211 x x x Green-Duwamish 09DEE2266 Deep/Coal Basin 2266 x x x Green-Duwamish 09DEE2294 Deep/Coal Basin 2294 x x x Green-Duwamish 09DEE2294 Deep/Coal Basin 2294 Replicate x x x Green-Duwamish
    [Show full text]
  • A New Species of Macrostemum Kolenati, 1859 from Brazilian Amazon and the Immature Stages of M. Brasiliense
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2019 Band/Volume: 0534 Autor(en)/Author(s): Pes Ana M., Desiderio Gleison R., Barcelos-Silva Patrik, Hamada Neusa Artikel/Article: A new species of Macrostemum Kolenati, 1859 from Brazilian Amazon and the immature stages of M. brasiliense (Fischer, 1970) (Trichoptera: Hydropsychidae) 1-20 European Journal of Taxonomy 534: 1–20 ISSN 2118-9773 https://doi.org/10.5852/ejt.2019.534 www.europeanjournaloftaxonomy.eu 2019 · Pes A.M. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:EF7D7683-B108-4EAB-B2B9-968FA959AC4E A new species of Macrostemum Kolenati, 1859 from Brazilian Amazon and the immature stages of M. brasiliense (Fischer, 1970) (Trichoptera: Hydropsychidae) Ana M. PES 1,*, Gleison R. DESIDÉRIO 2, Patrik BARCELOS-SILVA 3 & Neusa HAMADA 4 1,2,3,4 Instituto Nacional de Pesquisas da Amazônia (INPA), Coordenação de Biodiversidade (CoBio), Programa de Pós-graduação em Entomologia (PPG-Ent), Manaus, Amazonas, Brazil. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 4 Email: [email protected] 1 https://orcid.org/0000-0003-0901-5965 2 https://orcid.org/0000-0002-5048-9786 4 https://orcid.org/0000-0002-3526-5426 1 urn:lsid:zoobank.org:author:03D29AFD-A7EE-49DA-9740-7FA0F34932AF 2 urn:lsid:zoobank.org:author:63EE23DE-6125-4167-A3AA-27E2A982928 3 urn:lsid:zoobank.org:author:BFE5C5B5-97A2-4CBB-8133-9737579F12D2 4 urn:lsid:zoobank.org:author:0D02F36C-6B09-423C-95A6-6179E9808CD5 Abstract.
    [Show full text]