Ctbt: Science and Technology 2 15 Book of Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

Ctbt: Science and Technology 2 15 Book of Abstracts CTBT: CTBT: SCIENCE AND TECHNOLOGY SCIENCE SCIENCE AND TECHNOLOGY 2 15 CONFERENCE BOOK OF ABSTRACTS 2 15 22-26 JUNE HOFBURG PALACE VIENNA, AUSTRIA WITH THE GENEROUS SUPPORT OF THE REPUBLIC OF AUSTRIA, FEDERAL MINISTRY FOR EUROPE, INTEGRATION AND FOREIGN AFFAIRS WWW.CTBTO.ORG PREPARATORY COMMISSION Book of Abstracts Cover S&T 2015.indd 1 12/06/15 15:25 CTBT: CTBT: SCIENCE AND TECHNOLOGY SCIENCE SCIENCE AND TECHNOLOGY 2 15 CONFERENCE BOOK OF ABSTRACTS 2 15 22-26 JUNE HOFBURG PALACE VIENNA, AUSTRIA WITH THE GENEROUS SUPPORT OF THE REPUBLIC OF AUSTRIA, FEDERAL MINISTRY FOR EUROPE, INTEGRATION AND FOREIGN AFFAIRS WWW.CTBTO.ORG PREPARATORY COMMISSION Book of Abstracts Cover S&T 2015.indd 1 12/06/15 15:25 CTBT: SCIENCE AND TECHNOLOGY 2 15 CONFERENCE BOOK OF ABSTRACTS The abstracts in this book have been supplied by the authors. The views expressed remain the responsibility of the named authors. The Preparatory Commission for the Comprehensive Nuclear- Test-Ban Treaty Organization bears no responsibility for any material reproduced in this book. Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization Vienna International Centre PO Box 1200 1400 Vienna Austria Printed in Austria June 2015 Foreword The format of these conferences has evolved as the CTBTO itself has matured, but the overall aim remains unchanged. The effective verification of a comprehensive nuclear test ban is founded on the scientific and technical capacity of the world’s experts in nuclear test detection and on the infrastructure that underpins it. This capacity is ever advancing, and we at the CTBTO must remain at the forefront of this advancement if the effectiveness and credibility of our Treaty’s verification regime are to be maintained. Moreover, science and technology are needed to improve the cost effectiveness of our long term operations. We also look forward eagerly to the Treaty’s entry into force, knowing that effective verification is an important consideration as the remaining States Signatories proceed with their individual processes of ratification. W. Randy Bell has served as Director of the CTBTO’s International Data Centre (IDC) since 28 October The goals of our conference are straightforward: 2013. Mr Bell, a national of the United States, was Enlarge the scientific community engaged in Director of the Office of Nuclear Detonation Detection at the US National Nuclear Security test-ban monitoring; Administration (NNSA) between 2004 and 2013. In Promote the wider scientific application of this position he led the programme that produces data that are used for test-ban verification; space-based sensor payloads to monitor the globe for Enhance the exchange of knowledge and ideas nuclear detonations and conducted research to between the CTBTO and the broader advance space- and terrestrial-based monitoring scientific community. technologies, such as seismic, infrasound and debris sampling. Prior to that, he held other positions within To this end, the scientific programme includes a the US Department of Energy, serving as the Manager mix of oral presentations, posters and panel of Space and Remote Sensing Systems at the NNSA discussions familiar to international scientific from 1993 to 2004 and as a nuclear engineer in the meetings. Presentations are arranged under four Office of Nuclear Energy from 1991 to 1993. Mr Bell themes, intended to cover the broad range of began his professional career as an officer in the US research fields directly relevant to CTBT Navy’s nuclear submarine service. He obtained a verification. For SnT2015 these include a new master’s degree in physics from George Mason theme on performance optimization, to highlight University in 2010, a master’s degree in computer science from Johns Hopkins University in 1994 and a the importance of assessing the quality and bachelor’s degree in mathematics from the University efficiency of the work we do and the resources of Rochester in 1986. that we use. This theme aims to gain insight from operational analysis to improve our processes. It is my great pleasure to welcome you to the The opening day offers a programme of keynote CTBT: Science and Technology 2015 (SnT2015) addresses and discussions featuring prominent conference, which is hosted by the Provisional figures whose varied experiences put them in a Technical Secretariat of the Preparatory good position to provide a broader political and Commission for the Comprehensive Nuclear- diplomatic context to the CTBT. I believe that Test-Ban Treaty Organization (CTBTO), with this will be of interest not only to those in the generous support from the Federal Ministry for diplomatic community and elsewhere who are Europe, Integration and Foreign Affairs of concerned with nuclear-test-ban and non- Austria. This is the fifth such gathering; all of proliferation issues, but also to those from the them have been held in the Hofburg Palace in the academic world who would normally concentrate centre of Vienna. on the science. iv CTBT: Science and Technology 2015 Two discussion panels on the following days inspectors. This has been extended to educational address topics of current special interest in the events focused on academics and others engaged CTBT monitoring community. One alludes to the in, or interested in, broader disarmament or non- role of science in on-site inspections (OSIs), proliferation issues. Accordingly, I am pleased which are provided for under the Treaty after it that this year’s Academic Forum has been enters into force. This discussion will benefit integrated into the SnT2015 programme and will from the experience of the 2014 Integrated Field take place on the final day. All participants of Exercise (IFE14) in Jordan. IFE14 was the SnT2015 are cordially invited to attend. largest and most comprehensive such exercise so For those of you not otherwise committed on far conducted in the build-up of CTBTO’s OSI Friday, we are offering for the first time a capabilities. number of field trips to organizations with direct The other panel explores the potential role of relevance to our work. In addition to the ‘citizen science’ in the global effort to monitor a CTBTO’s headquarters in the Vienna nuclear test ban. We know that the CTBTO International Centre, destinations include the verification regime is complemented by the Seibersdorf Laboratories, which include Austria’s national monitoring capabilities of individual certified IMS radionuclide laboratory; Austria’s States—so-called national technical means. A Central Institute for Meteorology and third component might come from individuals or Geodynamics (ZAMG) and the Conrad small groups, contributing to a global body of Observatory, also operated by ZAMG. observational data acquired and analysed Also offered are two evening programmes independently of the CTBTO and national targeted towards young scientists participating in governments. These panellists have been SnT2015, and those from CTBT National Data instrumental in promoting such an initiative, and Centres. These events will allow members of they will share their ideas at this conference. these groups to make new contacts and to discuss SnT2015 will again include a range of issues of common interest. presentations describing results from the Whereas the CTBTO is mandated by the Treaty application of data from the International to explore new potential monitoring technologies, Monitoring System (IMS) to problems not the methods currently used for the IMS, and for directly connected to Treaty monitoring. Civil, an OSI, are governed by Treaty provisions. scientific and even industrial applications of IMS Although the CTBTO verification system has data and International Data Centre (IDC) proven itself capable of performing its task, products pay dividends to the Treaty monitoring additional scientific and technological challenges mission in a variety of ways. One example is always present themselves. Some pointers to improved methods of understanding and future priorities will be outlined during the removing what might be considered noise to us concluding session, on Thursday afternoon. but signal to others. Another is the demonstrated near-term value of the system to States One of the continuing challenges is the Signatories and to the public who have invested improvement of automatic processing of IMS so much, and who will continue to invest in order waveform and radionuclide data to produce the to sustain it. Moreover, the promotion of IDC’s reviewed products: the Reviewed Event additional uses of IMS data and IDC products Bulletins (REBs) and Reviewed Radionuclide benefits our operational effectiveness in that Reports (RRRs). The review of both IMS data having more eyes on the data improves quality by and the output of IDC automatic processing is a detecting and highlighting errors, inconsistencies major demand on CTBTO resources. In order to and other shortcomings in either data acquisition acquaint participants with the challenges of or its subsequent processing. The broader use of preparing these products, the programme will IMS data even serves to broaden the pool of include demonstrations of waveform and experienced candidates from which the CTBTO radionuclide analysis, where you will have a can hire its specialists. chance to see IDC analysts in action. The CTBTO has long been concerned with I had the privilege of being a member of the training specialists who support its verification Scientific Programme Committee for SnT2013 regime, from IMS station operators to OSI and came to realise that it provided a valuable Foreword v forum for the exchange of ideas at the forefront I wish you all a successful and productive of CTBT monitoring. I am confident that experience at SnT2015, as well as a pleasant stay SnT2015 will follow this tradition. To me it is in the beautiful city of Vienna. clear that we must seek out ideas from fields W. Randy Bell beyond the traditional participants in nuclear test Director of the CTBTO International monitoring, and I believe that our Science and Data Centre Division and Technology conference series offers an effective SnT2015 Project Executive way to pursue this goal.
Recommended publications
  • Biennial Review 1969/70 Bedford Institute Dartmouth, Nova Scotia Ocean Science Reviews 1969/70 A
    (This page Blank in the original) ii Bedford Institute. ii Biennial Review 1969/70 Bedford Institute Dartmouth, Nova Scotia Ocean Science Reviews 1969/70 A Atlantic Oceanographic Laboratory Marine Sciences Branch Department of Energy, Mines and Resources’ B Marine Ecology Laboratory Fisheries Research Board of Canada C *As of June 11, 1971, Department of Environment (see forward), iii (This page Blank in the original) iv Foreword This Biennial Review continues our established practice of issuing a single document to report upon the work of the Bedford Institute as a whole. A new feature introduced in this edition is a section containing four essays: The HUDSON 70 Expedition by C.R. Mann Earth Sciences Studies in Arctic Marine Waters, 1970 by B.R. Pelletier Analysis of Marine Ecosystems by K.H. Mann Operation Oil by C.S. Mason and Wm. L. Ford They serve as an overview of the focal interests of the past two years in contrast to the body of the Review, which is basically a series of individual progress reports. The search for petroleum on the continental shelves of Eastern Canada and Arctic intensified considerably with several drilling rigs and many geophysical exploration teams in the field. To provide a regional depository for the mandatory core samples required from all drilling, the first stage of a core storage and archival laboratory was completed in 1970. This new addition to the Institute is operated by the Resource Administration Division of the Department of Energy, Mines & Resources. In a related move the Geological Survey of Canada undertook to establish at the Institute a new team whose primary function will be the stratigraphic mapping of the continental shelf.
    [Show full text]
  • ISC Data Cited in Research Publications in 2019
    ISC data cited in research publications in 2019 This list is a result of a special effort to put together a collection of scientific papers published during 2019 that used ISC data. The list is by no means exhaustive. The ISC has become such a familiar name that many researchers sadly fail to reference their use of the ISC data. To track publications that use one or more of the ISC dataset and services, we set up automatic alerts with Google Scholar for scientific papers that refer to ISC. The Google Scholar alerts return matches with different ways to refer to the ISC as normally done by authors, such as “International Seismological Centre”, “International Seismological Center”, “ISC-GEM”, “ISC-EHB” and “EHB” + ”seismic”. No doubt many more references can be found by using different search phrases. Below are the bibliographic references to the ~280 works in year 2019 as gathered by Google Scholar. The references to articles published in journals are listed first, followed by the references to other types of publications (e.g., chapters in books, reports, thesis, websites). The references are sorted by journal name. The vast majority of the references below belong to journal articles. Radulian, M., Bălă, A., Ardeleanu, L., Toma-Dănilă, D., Petrescu, registered earthquakes in the Arctic regions, Arctic Environmental L. and Popescu, E. (2019). Revised catalogue of earthquake Research, 19, 3, 123-128, http://doi.org/10.3897/issn2541- mechanisms for the events occurred in Romania until the end of 8416.2019.19.3.123. twentieth century: REFMC, Acta Geod. Geoph., 54, 1, 3-18, Turova, A.P.
    [Show full text]
  • 2019 Weddell Sea Expedition
    Initial Environmental Evaluation SA Agulhas II in sea ice. Image: Johan Viljoen 1 Submitted to the Polar Regions Department, Foreign and Commonwealth Office, as part of an application for a permit / approval under the UK Antarctic Act 1994. Submitted by: Mr. Oliver Plunket Director Maritime Archaeology Consultants Switzerland AG c/o: Maritime Archaeology Consultants Switzerland AG Baarerstrasse 8, Zug, 6300, Switzerland Final version submitted: September 2018 IEE Prepared by: Dr. Neil Gilbert Director Constantia Consulting Ltd. Christchurch New Zealand 2 Table of contents Table of contents ________________________________________________________________ 3 List of Figures ___________________________________________________________________ 6 List of Tables ___________________________________________________________________ 8 Non-Technical Summary __________________________________________________________ 9 1. Introduction _________________________________________________________________ 18 2. Environmental Impact Assessment Process ________________________________________ 20 2.1 International Requirements ________________________________________________________ 20 2.2 National Requirements ____________________________________________________________ 21 2.3 Applicable ATCM Measures and Resolutions __________________________________________ 22 2.3.1 Non-governmental activities and general operations in Antarctica _______________________________ 22 2.3.2 Scientific research in Antarctica __________________________________________________________
    [Show full text]
  • Seismotectonic Characteristics of the Taiwan Collision-Manila Subduction Transition the Effect of Pre-Existing Structures
    Journal of Asian Earth Sciences 173 (2019) 113–120 Contents lists available at ScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jseaes Seismotectonic characteristics of the Taiwan collision-Manila subduction transition: The effect of pre-existing structures T ⁎ Shao-Jinn China,b, Jing-Yi Lina,b, , Yi-Ching Yeha, Hao Kuo-Chena, Chin-Wei Liangb a Department of Earth Sciences, National Central University, No. 300, Jhongda Rd., Jhongli City, Taoyuan 32001, Taiwan, ROC b Center for Environmental Studies, National Central University, No. 300, Jhongda Rd., Jhongli City, Taoyuan 32001, Taiwan, ROC ARTICLE INFO ABSTRACT Keywords: Based on the distribution of an earthquake swarm determined from an ocean bottom seismometer (OBS) network Collision deployed from 20 August to 5 September 2015 in the northernmost part of the South China Sea (SCS) and data Subduction from inland seismic stations in Taiwan, we resolved a ML 4.1 earthquake occurring on 1 September 2015 as a NE- Taiwan SW-trending left-lateral strike-slip event that ruptured along the pre-existing normal faults generated during the Manila SCS opening phases. The direction of the T-axes derived from the M 4.1 earthquake and the background Ocean bottom seismometer L seismicity off SW Taiwan present high consistency, indicating a stable dominant NW-SE tensional stress for the Passive margin subducted Eurasian Plate (EUP). The distinct stress variations on the two sides of these reactivated NE-SW trending features suggest that the presence of pre-existing normal faults and other related processes may lessen the lateral resistance between the Taiwan collision and Manila subduction system, and facilitate the slab-pull process for the subducting portion, which may explain the NW-SE tensional stress environment near the tran- sition boundary in the northernmost part of the SCS.
    [Show full text]
  • Waba Directory 2003
    DIAMOND DX CLUB www.ddxc.net WABA DIRECTORY 2003 1 January 2003 DIAMOND DX CLUB WABA DIRECTORY 2003 ARGENTINA LU-01 Alférez de Navió José María Sobral Base (Army)1 Filchner Ice Shelf 81°04 S 40°31 W AN-016 LU-02 Almirante Brown Station (IAA)2 Coughtrey Peninsula, Paradise Harbour, 64°53 S 62°53 W AN-016 Danco Coast, Graham Land (West), Antarctic Peninsula LU-19 Byers Camp (IAA) Byers Peninsula, Livingston Island, South 62°39 S 61°00 W AN-010 Shetland Islands LU-04 Decepción Detachment (Navy)3 Primero de Mayo Bay, Port Foster, 62°59 S 60°43 W AN-010 Deception Island, South Shetland Islands LU-07 Ellsworth Station4 Filchner Ice Shelf 77°38 S 41°08 W AN-016 LU-06 Esperanza Base (Army)5 Seal Point, Hope Bay, Trinity Peninsula 63°24 S 56°59 W AN-016 (Antarctic Peninsula) LU- Francisco de Gurruchaga Refuge (Navy)6 Harmony Cove, Nelson Island, South 62°18 S 59°13 W AN-010 Shetland Islands LU-10 General Manuel Belgrano Base (Army)7 Filchner Ice Shelf 77°46 S 38°11 W AN-016 LU-08 General Manuel Belgrano II Base (Army)8 Bertrab Nunatak, Vahsel Bay, Luitpold 77°52 S 34°37 W AN-016 Coast, Coats Land LU-09 General Manuel Belgrano III Base (Army)9 Berkner Island, Filchner-Ronne Ice 77°34 S 45°59 W AN-014 Shelves LU-11 General San Martín Base (Army)10 Barry Island in Marguerite Bay, along 68°07 S 67°06 W AN-016 Fallières Coast of Graham Land (West), Antarctic Peninsula LU-21 Groussac Refuge (Navy)11 Petermann Island, off Graham Coast of 65°11 S 64°10 W AN-006 Graham Land (West); Antarctic Peninsula LU-05 Melchior Detachment (Navy)12 Isla Observatorio
    [Show full text]
  • On the Thermodynamics of Listric Faults
    Earth Planets Space, 56, 1111–1120, 2004 On the thermodynamics of listric faults Klaus Regenauer-Lieb1,2, Bruce Hobbs2, and Alison Ord2 1Johannes Gutenberg-Universitat¨ Mainz, Geophysics and Geodynamics, 55099 Mainz, Germany 2CSIRO Exploration and Mining Perth (ARRC), PO Box 1130, Bentley WA 6102, Australia (Received June 15, 2004; Revised November 21, 2004; Accepted December 4, 2004) We investigate a novel fully coupled thermal-mechanical numerical model of the crust in order to trace the physics of interaction of its brittle and ductile layers. In a unified approach these layers develop in a natural transition as a function of the state variables pressure, deviatoric stress, temperature and strain-rate. We find that the main storage of elastic energy lies in the domain where brittle and ductile strain-rates overlap so that shear zones are attracted to this zone of maximum energy dissipation. This dissipation appears as a local heat source (shear heating). The brittle-ductile transition zone evolves through extreme weakening by thermo-mechanical feedback. The physics of the weakening process relies on repeated breaching of a critical energy flux threshold for feedback within this sub-horizontal brittle-ductile flow layer, thus developing unstable slipping events at post- and pre-seismic strain-rates. The width- and the temperature domain of the feedback layer is controlled by the activation enthalpy Q of the material. For olivine rheology (Q ∼ 500 kJ/mol) the layer can be extremely thin <500 m and adheres to the 875 K isotherm. For quartz (Q ∼ 135 kJ/mol) the width of the feedback layer fans out into multiple interacting ductile faults covering a temperature domain of 450–600 K.
    [Show full text]
  • Seismic Response of SDOF Systems Under Doublet Earthquakes
    Seismic response of SDOF systems under doublet earthquakes *Saman Yaghmaei-Sabegh1) 1) Department of Civil Engineering, University of Tabriz, Tabriz, Iran 1) [email protected] ABSTRACT A single event scenario has been adopted in seismic design process of buildings by current design codes however seismic sequences may influence the structural safety. On 11th August 2012, two earthquakes took place in East-Azerbaijan province in the north-western part of Iran. In this study, effect of different features of this special seismic sequence that is named “doublet events” has been considered in the analysis. Artificial earthquake ground motion sequences are constructed based on real single events and results are compared with real sequences in terms of displacement time history. Results of analysis would help to highlight the effect of such type of motion in seismic evaluation of structures. 1. INTRODUCTION Based on observations in the past, the seismic events with strong or moderate intensity levels may be followed by aftershocks with considerable level of intensity. Large aftershocks after the mainshocks of the 2010 Haiti (Mw=7.0), 2010 Chile (Mw=8.8), 2008 Sichuan, China (Mw=8.0), 2011 Tohoku (Mw=9.0), 2009 L’Aquila, Italy earthquakes caused considerable structural and non-structural damages in suffering regions. Building seismic design codes does not typically provide any explicit guideline to consider seismic sequences effect on analysis or design procedures. A large body of literature exists about seismic sequences effects (or multiple events) on nonlinear behavior of buildings (Parisi and Augenti 2013; Zhai et al. 2013; Penna et al 2014). However, Seismic sequences studies have frequently been focused on mainshock-aftershock events in the past.
    [Show full text]
  • Damage and Ground Motion of the 26 December 2006 Pingtung Earthquakes, Taiwan
    Terr. Atmos. Ocean. Sci., Vol. 19, No. 6, 641-651, December 2008 doi: 10.3319/TAO.2008.19.6.641(PT) Damage and Ground Motion of the 26 December 2006 Pingtung Earthquakes, Taiwan Kou-Liang Wen1, 2, 3, *, Yu-Wen Chang 2, Che-Min Lin1, Hsien-Jen Chiang1, and Ming-Wey Huang 3 1 Institute of Geophysics, National Central University, Chung-Li, Taiwan, ROC 2 National Center for Research on Earthquake Engineering, National Applied Research Laboratories, Taipei, Taiwan, ROC 3 National S&T Center for Disaster Reduction, National Applied Research Laboratories, Taipei, Taiwan, ROC Received 7 January 2008, accepted 26 September 2008 ABSTRACT Two consecutive large earthquakes eight minutes apart occurred offshore of Hengchun, Pingtung County of Taiwan at night on 26 December 2006. The seismic intensity in the Kaohsiung and Pingtung areas reached 5 according to the Central Weather Bureau’s intensity scale making them the strongest earthquakes in the Hengchun area in a century. These earthquakes were felt throughout Taiwan. Because the earthquakes were located not far offshore, seismic instruments at the Taipower’s Nuclear Power Plant No. 3 (NPP3) registered their largest motions since recording commenced at the site. As a result, unit 2 of NPP3 was shut down while Unit 1 remained operating at full capacity. Other damage that occurred during the Earthquake Doublet included building collapse, rock falls, structure and non-structural damage to buildings, fire, and damage to utilities such as gas, electricity, and telephone lines; liquefaction was also noted. In this paper, the shakemaps based on the source parameters and real-time observations were predicted and compared with the recorded shakemaps.
    [Show full text]
  • Antarctica and Isolate It Geographi- East Falkland
    ©Lonely Planet Publications Pty Ltd S o u t h e r n O c e a n Why Go? Ushuaia............................31 The southern parts of the Atlantic, Indian and Pacific Oceans Falkland Islands .............39 form the fifth ocean of the world, the Southern Ocean. Its Stanley ...........................42 wild waters surround Antarctica and isolate it geographi- East Falkland ..................46 cally, biologically and climatically from the rest of the world. Scattered around these waters are the islands that early ex- West Falkland .................48 plorers and sealers encountered before they actually found South Georgia ................50 Terra Australis Incognita. South Orkney Islands .... 59 Visit the rocky but fecund shores of the Falkland Islands South Shetland and South Georgia, with abundant wildlife and history. Islands .............................61 Most cruises from South America call in at the South Shet- Heard & McDonald land Islands or the South Orkney Islands, where people set Islands ............................69 up their first Antarctic outposts. Travelers from Australia, Macquarie Island ........... 70 New Zealand and South Africa approach the continent from New Zealand’s Sub- the Ross Sea side, with seabird-rich Heard and Macquarie Antarctic Islands .............71 islands. Sailing these waters and sighting these windswept isles Best Places to recreates the journeys of early adventurers. Spot Wildlife Top Resources » North coast of South » South Georgia & South Sandwich official site (www. Georgia (p 50 ) sgisland.gs) Loads of info, including permit requirements. » Livingston Island (p 65 ) » South Georgia Heritage Trust (www.sght.org) History/ » West Falkland (p 48 ) wildlife conservation group. » Deception Island (p 65 ) » Falkland Islands (www.falklandislands.com) Central source on the island group.
    [Show full text]
  • Ionospheric and Atmospheric Perturbations Due to Two Major Earthquakes (M [ 7.0)
    J. Earth Syst. Sci. (2021) 130:149 Ó Indian Academy of Sciences https://doi.org/10.1007/s12040-021-01650-x (0123456789().,-volV)(0123456789().,-volV) Ionospheric and atmospheric perturbations due to two major earthquakes (M [ 7.0) 1, 2 2 SANJAY KUMAR *, PRASHANT KUMAR SINGH ,ROHTASH KUMAR , 1 1 AKSINGH and R P SINGH 1Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221 005, India. 2Department of Geo-Physics, Banaras Hindu University, Varanasi 221 005, India. *Corresponding author. e-mail: [email protected] MS received 16 October 2020; revised 10 March 2021; accepted 25 March 2021 The perturbation produced in the atmosphere/ionosphere associated with earthquake precursors during seismic activity of two major earthquakes which occurred on (1) 24 June 2019 in Indonesia (M = 7.3) and (2) on 19 August 2018 at Ndoi, Fiji (M = 8.2), are studied. Based on statistical analysis of total electron content (TEC) data, the presence of ionospheric perturbations 5 days before and after the main shock are found, which depends on the distance as well as direction of observation point from the epicentre. In general, ionospheric perturbations after the EQ at all the stations are found larger than that before the EQ. Probable mechanisms behind these perturbations associated with EQ are also being discussed. The ionospheric perturbations are observed at stations which are at larger distances from the epicentre, but not observed over other stations in different directions which are comparatively closer to the epicentre. These results suggest that seismic induced ionospheric anomaly is not isotropic in nature. Ozone data from three satellites: AIRS, OMI, and TOMS-like and MERRA-2 model are also analyzed 5 days before the EQ day and compared to the monthly average level.
    [Show full text]
  • Variations in Wedge Earthquake Distribution Along the Strike Underlain by Thermally Controlled Hydrated Megathrusts
    applied sciences Article Variations in Wedge Earthquake Distribution along the Strike Underlain by Thermally Controlled Hydrated Megathrusts Rui Qu 1,2 , Yingfeng Ji 1,2,* and Weiling Zhu 1,3,* 1 State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 2 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3 Department of Geophysics, Yunnan University, Kunming 650091, China * Correspondence: [email protected] (Y.J.); [email protected] (W.Z.) Featured Application: Resource and environmental effects. Abstract: Accretionary wedge earthquakes usually occur in the overriding crust close to the trench or above the cold nose of the mantle wedge. However, the mechanism and temperature properties related to the slab dip angle remain poorly understood. Based on 3D thermal models to estimate the subduction wedge plate temperature and structure, we investigate the distribution of wedge earthquakes in Alaska, which has a varying slab dip angle along the trench. The horizontal distance of wedge-earthquake hypocenters significantly increases from the Aleutian Islands to south–central Alaska due to a transition from steep subduction to flat subduction. Slab dehydration inside the subducted Pacific plate indicates a simultaneous change in the distances between the intraslab metamorphic fronts and the Alaskan Trench at various depths, which is associated with the flattening Citation: Qu, R.; Ji, Y.; Zhu, W. of the Pacific plate eastward along the strike. The across-arc width of the wedge-earthquake source Variations in Wedge Earthquake zone is consistent with the across-arc width of the surface high topography above the fully dehydrated Distribution along the Strike megathrust, and the fluid upwelling spontaneously influences wedge seismotectonics and orogenesis.
    [Show full text]
  • World Climate Research Programme
    WORLD CLIMATE RESEARCH PROGRAMME PROCEEDINGS OF THE INTERNATIONAL CLIVAR CONFERENCE (Paris, France, 2-4 December 1998) WCRP-109 WMO/TD No.954 ICPO No. 27 June 1999 ICSU WMO UNESCO The World Climate Programme launched by the World Meteorological Organisation (WMO) includes four components: The World Climate Data and Monitoring Programme The World Climate Applications and Services Programme The World Climate Impact Assessment and Response Strategies Programme The World Climate Research Programme The World Climate Research Programme is jointly sponsored by the WMO, the International Council of Scientific Unions and the Intergovernmental Oceanographic Commission of UNESCO. NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organisation concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. PROCEEDINGS OF THE INTERNATIONAL CLIVAR CONFERENCE (Paris, France, 2-4 December 1998) WCRP-109 WMO/TD No.954 ICPO No. 27 June 1999 TABLE OF CONTENTS Page No. Preface by co-Chairs, Scientific Steering Group iii Foreword by Chairman, Conference Organising Committee 1 Conference Programme 3 Conference Statement 5 Opening Statement by Professor G.O.P. Obasi, Secretary General, WMO 7 Welcome Address by Patricio A. Bernal, Assistant Director General, UNESCO 9 SCIENTIFIC PRESENTATIONS Global environmental change and the need for international research programmes Dr. Bert Bolin, Sweden 11 Conference structure and objectives Dr. Allyn Clarke, CLIVAR SSG Co-Chair 15 The evolution of the CLIVAR Science Dr.
    [Show full text]