NSD1: a Lysine Methyltransferase Between Developmental Disorders and Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Gene Activation Precedes DNA Demethylation in Response to Infection in Human Dendritic Cells
bioRxiv preprint doi: https://doi.org/10.1101/358531; this version posted June 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Gene activation precedes DNA demethylation in response to infection in human dendritic cells 2 3 Alain Pacis1,2‡, Florence Mailhot-Léonard1,2‡, Ludovic Tailleux3,4, Haley E Randolph1,2, Vania Yotova1, 4 Anne Dumaine1, Jean-Christophe Grenier1, Luis B Barreiro1,5,6*, 5 6 1CHU Sainte-Justine Research Center, Department of Genetics, Montreal, H3T1C5, Canada; 2University 7 of Montreal, Department of Biochemistry, Montreal, H3T1J4, Canada; 3Institut Pasteur, Mycobacterial 8 Genetics Unit, Paris, 75015, France; 4Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, 9 CNRS UMR 3525, Paris, 75015, France; 5University of Montreal, Department of Pediatrics, Montreal, 10 H3T1J4, Canada; 6University of Chicago, Department of Medicine, Genetics Section, Chicago, Illinois, 11 USA. 12 13 14 ‡ These authors equally contributed to this study. 15 *Correspondence to: [email protected] 16 Running title: Epigenetic changes in response to infection 17 Keywords: DNA Methylation, Infection, Enhancers, Gene regulation 18 1 bioRxiv preprint doi: https://doi.org/10.1101/358531; this version posted June 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
In Human Metabolism
Supporting Information (SI Appendix) Framework and resource for more than 11,000 gene-transcript- protein-reaction associations (GeTPRA) in human metabolism SI Appendix Materials and Methods Standardization of Metabolite IDs with MNXM IDs Defined in the MNXref Namespace. Information on metabolic contents of the Recon 2Q was standardized using MNXM IDs defined in the MNXref namespace available at MetaNetX (1-3). This standardization was to facilitate the model refinement process described below. Each metabolite ID in the Recon 2Q was converted to MNXM ID accordingly. For metabolite IDs that were not converted to MNXM IDs, they were manually converted to MNXM IDs by comparing their compound structures and synonyms. In the final resulting SBML files, 97 metabolites were assigned with arbitrary IDs (i.e., “MNXMK_” followed by four digits) because they were not covered by the MNXref namespace (i.e., metabolite IDs not converted to MNXM IDs). Refinement or Removal of Biochemically Inconsistent Reactions. Recon 2 was built upon metabolic genes and reactions collected from EHMN (4, 5), the first genome-scale human liver metabolic model HepatoNet1 (6), an acylcarnitine and fatty-acid oxidation model Ac-FAO (7), and a small intestinal enterocyte model hs_eIEC611 (8). Flux variability analysis (9) of the Recon 2Q identified blocked reactions coming from these four sources of metabolic reaction data. The EHMN caused the greatest number of blocked reactions in the Recon 2Q (1,070 reactions corresponding to 69.3% of all the identified blocked reactions). To refine the EHMN reactions, following reactions were initially disregarded: 1) reactions having metabolite IDs not convertible to MNXM IDs; and 2) reactions without genes. -
FGFR1 Fusion and Amplification in a Solid Variant of Alveolar Rhabdomyosarcoma
Modern Pathology (2011) 24, 1327–1335 & 2011 USCAP, Inc. All rights reserved 0893-3952/11 $32.00 1327 FOXO1–FGFR1 fusion and amplification in a solid variant of alveolar rhabdomyosarcoma Jinglan Liu1,2, Miguel A Guzman1,2, Donna Pezanowski1, Dilipkumar Patel1, John Hauptman1, Matthew Keisling3, Steve J Hou2,3, Peter R Papenhausen4, Judy M Pascasio1,2, Hope H Punnett1,5, Gregory E Halligan2,6 and Jean-Pierre de Chadare´vian1,2 1Department of Pathology and Laboratory Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA; 2Drexel University College of Medicine, Philadelphia, PA, USA; 3Department of Pathology and Laboratory Medicine, Hahnneman University Hospital, Philadelphia, PA, USA; 4Laboratory Corporation of America, The Research Triangle Park, NC, USA; 5Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA and 6Department of Pediatrics, Section of Oncology, St Christopher’s Hospital for Children, Philadelphia, PA, USA Rhabdomyosarcoma is the most common pediatric soft tissue malignancy. Two major subtypes, alveolar rhabdomyosarcoma and embryonal rhabdomyosarcoma, constitute 20 and 60% of all cases, respectively. Approximately 80% of alveolar rhabdomyosarcoma carry two signature chromosomal translocations, t(2;13)(q35;q14) resulting in PAX3–FOXO1 fusion, and t(1;13)(p36;q14) resulting in PAX7–FOXO1 fusion. Whether the remaining cases are truly negative for gene fusion has been questioned. We are reporting the case of a 9-month-old girl with a metastatic neck mass diagnosed histologically as solid variant alveolar rhabdomyosarcoma. Chromosome analysis showed a t(8;13;9)(p11.2;q14;9q32) three-way translocation as the sole clonal aberration. Fluorescent in situ hybridization (FISH) demonstrated a rearrangement at the FOXO1 locus and an amplification of its centromeric region. -
ATRX Protects Cells Against Replication-Induced Genomic Instability
ATRX Protects Cells Against Replication-Induced Genomic Instability Danton Ivanochko M.Sc. Thesis This thesis is submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Master of Science in Biochemistry with a specialization in Human and Molecular Genetics Department of Biochemistry, Microbiology, and Immunology Faculty of Medicine University of Ottawa, Ontario, Ontario, Canada © Danton Ivanochko, Ottawa, Canada, 2016 Dedicated to my parents. ii Abstract Expansive proliferation of neural progenitor cells (NPCs) is a prerequisite to the temporal waves of neuronal differentiation that generate the six-layered cerebral cortex. NPC expansion places a heavy burden on proteins that regulate chromatin packaging and genome integrity, which is further reflected by the growing number of developmental disorders caused by mutations in chromatin regulators. Accordingly, mutations in ATRX, a chromatin remodelling protein required for heterochromatin maintenance at telomeres and simple repeats, cause the ATR-X syndrome. Here, we demonstrate that proliferating ATRX-null cells accumulate DNA damage, while also exhibiting sensitivity to hydroxyurea-induced replication fork stalling. Specifically, PARP1 hyperactivation and replication-dependent double strand DNA breakage indicated replication fork protection defects, while DNA fiber assays confirmed that ATRX was required to protect replication forks from degradation. Interestingly, inhibition of the exonuclease MRE11 by the small molecule mirin could prevent degradation. Thus, ATRX is required to limit replication stress during NPC expansion. iii Acknowledgements First and foremost, I would like to thank my supervisor, Dr. David Picketts, for his guidance and support during my undergraduate and graduate studies. Thanks to the members of my thesis advisory committee, Dr. -
Anti-HIST1H1E K51ac Antibody
FOR RESEARCH USE ONLY! 02/20 Anti-HIST1H1E K51ac Antibody CATALOG NO.: A2051-100 (100 µl) BACKGROUND DESCRIPTION: Histones are basic nuclear proteins responsible for nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H1 family. Transcripts from this gene lack poly A tails but instead contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6. Histone H1.4 (Histone H1b) (Histone H1s-4), HIST1H1E, H1F4 ALTERNATE NAMES: ANTIBODY TYPE: Polyclonal HOST/ISOTYPE: Rabbit / IgG IMMUNOGEN: Acetylated peptide sequence targeting residues around Lysine 51 of human Histone H1.4 PURIFICATION: Antigen Affinity purified FORM: Liquid FORMULATION: In 0.01 M PBS, pH 7.4, 50% Glycerol, 0.03% proclin 300 SPECIES REACTIVITY: Human STORAGE CONDITIONS: Store at -20ºC. Avoid freeze / thaw cycles. APPLICATIONS AND USAGE: ICC 1:20-1:200, IF 1:50-1:200 This information is only intended as a guide. The optimal dilutions must be determined by the user Immunocytochemistry analysis of HeLa cells using Anti-HIST1H1E K51ac antibody at dilution of 1:100. Immunofluorescent analysis of HeLa cells (treated with sodium butyrate, 30 mM, 4 hrs) using Anti-HIST1H1E K51ac antibody at dilution of 1:100 and Alexa Fluor 488-conjugated Goat Anti-Rabbit IgG (H+L) as secondary antibody. -
Mitoxplorer, a Visual Data Mining Platform To
mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, Cecilia Garcia-Perez, José Villaveces, Salma Gamal, Giovanni Cardone, Fabiana Perocchi, et al. To cite this version: Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, et al.. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dy- namics and mutations. Nucleic Acids Research, Oxford University Press, 2020, 10.1093/nar/gkz1128. hal-02394433 HAL Id: hal-02394433 https://hal-amu.archives-ouvertes.fr/hal-02394433 Submitted on 4 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz1128 Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz1128/5651332 by Bibliothèque de l'université la Méditerranée user on 04 December 2019 mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim1,†, Prasanna Koti1,†, Adrien Bonnard2, Fabio Marchiano3, Milena Durrbaum¨ 1, Cecilia Garcia-Perez4, Jose Villaveces1, Salma Gamal1, Giovanni Cardone1, Fabiana Perocchi4, Zuzana Storchova1,5 and Bianca H. -
Human Brain Organoids Reveal Accelerated Development of Cortical Neuron Classes As a Shared Feature of Autism Risk Genes
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.376509; this version posted November 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Human brain organoids reveal accelerated development of cortical neuron classes as a shared feature of autism risk genes Bruna Paulsen1,2,†, Silvia Velasco1,2,†,#, Amanda J. Kedaigle1,2,3,†, Martina Pigoni1,2,†, Giorgia Quadrato4,5 Anthony Deo2,6,7,8, Xian Adiconis2,3, Ana Uzquiano1,2, Kwanho Kim1,2,3, Sean K. Simmons2,3, Kalliopi Tsafou2, Alex Albanese9, Rafaela Sartore1,2, Catherine Abbate1,2, Ashley Tucewicz1,2, Samantha Smith1,2, Kwanghun Chung9,10,11,12, Kasper Lage2,13, Aviv Regev3,14, Joshua Z. Levin2,3, Paola Arlotta1,2,# † These authors contributed equally to the work # Correspondence should be addressed to [email protected] and [email protected] 1 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA 2 Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 3 Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 4 Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; 5 Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at the University of Southern California, Los Angeles, CA 90033, USA. 6 Department of Psychiatry, -
Patient Mutations Alter ATRX Targeting to PML Nuclear Bodies
European Journal of Human Genetics (2008) 16, 192–201 & 2008 Nature Publishing Group All rights reserved 1018-4813/08 $30.00 www.nature.com/ejhg ARTICLE Patient mutations alter ATRX targeting to PML nuclear bodies Nathalie G Be´rube´1,3,4, Jasmine Healy1,4, Chantal F Medina1, Shaobo Wu1, Todd Hodgson1, Magdalena Jagla1 and David J Picketts*,2 1Molecular Medicine Program, Ottawa Health Research Institute, Ottawa, Ontario, Canada; 2Departments of Medicine and Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada ATRX is a SWI/SNF-like chromatin remodeling protein mutated in several X-linked mental retardation syndromes. Gene inactivation studies in mice demonstrate that ATRX is an essential protein and suggest that patient mutations likely retain partial activity. ATRX associates with the nuclear matrix, pericentromeric heterochromatin, and promyelocytic leukemia nuclear bodies (PML-NBs) in a speckled nuclear staining pattern. Here, we used GFP–ATRX fusion proteins to identify the specific domains of ATRX necessary for subnuclear targeting and the effect of patient mutations on this localization. We identified two functional nuclear localization signals (NLSs) and two domains that target ATRX to nuclear speckles. One of the latter domains is responsible for targeting ATRX to PML-NBs. Surprisingly, this domain encompassed motifs IV–VI of the SNF2 domain suggesting that in addition to chromatin remodeling, it may also have a role in subnuclear targeting. More importantly, four different patient mutations within this domain resulted in an B80% reduction in the number of transfected cells with ATRX nuclear speckles and PML colocalization. These results demonstrate that patient mutations have a dramatic effect on subnuclear targeting to PML-NBs. -
X-Linked Diseases: Susceptible Females
REVIEW ARTICLE X-linked diseases: susceptible females Barbara R. Migeon, MD 1 The role of X-inactivation is often ignored as a prime cause of sex data include reasons why women are often protected from the differences in disease. Yet, the way males and females express their deleterious variants carried on their X chromosome, and the factors X-linked genes has a major role in the dissimilar phenotypes that that render women susceptible in some instances. underlie many rare and common disorders, such as intellectual deficiency, epilepsy, congenital abnormalities, and diseases of the Genetics in Medicine (2020) 22:1156–1174; https://doi.org/10.1038/s41436- heart, blood, skin, muscle, and bones. Summarized here are many 020-0779-4 examples of the different presentations in males and females. Other INTRODUCTION SEX DIFFERENCES ARE DUE TO X-INACTIVATION Sex differences in human disease are usually attributed to The sex differences in the effect of X-linked pathologic variants sex specific life experiences, and sex hormones that is due to our method of X chromosome dosage compensation, influence the function of susceptible genes throughout the called X-inactivation;9 humans and most placental mammals – genome.1 5 Such factors do account for some dissimilarities. compensate for the sex difference in number of X chromosomes However, a major cause of sex-determined expression of (that is, XX females versus XY males) by transcribing only one disease has to do with differences in how males and females of the two female X chromosomes. X-inactivation silences all X transcribe their gene-rich human X chromosomes, which is chromosomes but one; therefore, both males and females have a often underappreciated as a cause of sex differences in single active X.10,11 disease.6 Males are the usual ones affected by X-linked For 46 XY males, that X is the only one they have; it always pathogenic variants.6 Females are biologically superior; a comes from their mother, as fathers contribute their Y female usually has no disease, or much less severe disease chromosome. -
Enhanced CRISPR-Based DNA Demethylation by Casilio-ME-Mediated RNA-Guided Coupling of Methylcytosine Oxidation and DNA Repair Pathways
ARTICLE https://doi.org/10.1038/s41467-019-12339-7 OPEN Enhanced CRISPR-based DNA demethylation by Casilio-ME-mediated RNA-guided coupling of methylcytosine oxidation and DNA repair pathways Aziz Taghbalout1, Menghan Du1, Nathaniel Jillette1, Wojciech Rosikiewicz1, Abhijit Rath2, Christopher D. Heinen2, Sheng Li1 & Albert W. Cheng 1,3,4* Casilio-ME 1234567890():,; Here we develop a methylation editing toolbox, , that enables not only RNA-guided methylcytosine editing by targeting TET1 to genomic sites, but also by co-delivering TET1 and protein factors that couple methylcytosine oxidation to DNA repair activities, and/or promote TET1 to achieve enhanced activation of methylation-silenced genes. Delivery of TET1 activity by Casilio-ME1 robustly alters the CpG methylation landscape of promoter regions and activates methylation-silenced genes. We augment Casilio-ME1 to simultaneously deliver the TET1-catalytic domain and GADD45A (Casilio-ME2) or NEIL2 (Casilio-ME3) to streamline removal of oxidized cytosine intermediates to enhance activation of targeted genes. Using two-in-one effectors or modular effectors, Casilio-ME2 and Casilio-ME3 remarkably boost gene activation and methylcytosine demethylation of targeted loci. We expand the toolbox to enable a stable and expression-inducible system for broader application of the Casilio-ME platforms. This work establishes a platform for editing DNA methylation to enable research investigations interrogating DNA methylomes. 1 The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA. 2 Center for Molecular Oncology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT 06030, USA. 3 Department of Genetics and Genome Sciences, University of Connecticut Health, 400 Farmington Avenue, Farmington, CT 06030, USA. -
Epigenetic Modifications Precede Molecular Alterations and Drive Human Hepatocarcinogenesis
Epigenetic modifications precede molecular alterations and drive human hepatocarcinogenesis Carolin Czauderna, … , Young Nyun Park, Jens U. Marquardt JCI Insight. 2021. https://doi.org/10.1172/jci.insight.146196. Research In-Press Preview Hepatology Oncology Graphical abstract Find the latest version: https://jci.me/146196/pdf 1 Epigenetic modifications precede molecular alterations and drive human hepatocarcinogenesis. Carolin Czauderna1,2, Alicia Poplawski3, Colm J. O’Rourke4, Darko Castven1,2 , Benjamín Pérez- Aguilar1, Diana Becker1, Stephanie Heilmann-Heimbach5, Margarete Odenthal6, Wafa Amer6, Marcel Schmiel6, Uta Drebber6, Harald Binder7, Dirk A. Ridder8, Mario Schindeldecker8,9, Beate K. Straub8, Peter R. Galle1, Jesper B. Andersen4, Snorri S. Thorgeirsson10, Young Nyun Park11 and Jens U. Marquardt1,2# 1Department of Medicine I, University Medical Center Mainz, Mainz, Germany: [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 2Department of Medicine I, University Medical Center Schleswig -Holstein - Campus Lübeck, Lübeck, Germany: [email protected] 3Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI) Division Biostatistics and Bioinformatics, Johannes Gutenberg University, Mainz, Germany: [email protected]; 4Biotech Research and Innovation Centre (BRIC), Dept. of Health and M edical Sciences, University of Copenhagen, Denmark: [email protected]; [email protected] 5Institute of Human Genetics, Department of Genomics, -
Deletions of IKZF1 and SPRED1 Are Associated with Poor Prognosis in A
Leukemia (2014) 28, 302–310 & 2014 Macmillan Publishers Limited All rights reserved 0887-6924/14 www.nature.com/leu ORIGINAL ARTICLE Deletions of IKZF1 and SPRED1 are associated with poor prognosis in a population-based series of pediatric B-cell precursor acute lymphoblastic leukemia diagnosed between 1992 and 2011 L Olsson1, A Castor2, M Behrendtz3, A Biloglav1, E Forestier4, K Paulsson1 and B Johansson1,5 Despite the favorable prognosis of childhood acute lymphoblastic leukemia (ALL), a substantial subset of patients relapses. As this occurs not only in the high risk but also in the standard/intermediate groups, the presently used risk stratification is suboptimal. The underlying mechanisms for treatment failure include the presence of genetic changes causing insensitivity to the therapy administered. To identify relapse-associated aberrations, we performed single-nucleotide polymorphism array analyses of 307 uniformly treated, consecutive pediatric ALL cases accrued during 1992–2011. Recurrent aberrations of 14 genes in patients who subsequently relapsed or had induction failure were detected. Of these, deletions/uniparental isodisomies of ADD3, ATP10A, EBF1, IKZF1, PAN3, RAG1, SPRED1 and TBL1XR1 were significantly more common in B-cell precursor ALL patients who relapsed compared with those remaining in complete remission. In univariate analyses, age (X10 years), white blood cell counts (4100 Â 109/l), t(9;22)(q34;q11), MLL rearrangements, near-haploidy and deletions of ATP10A, IKZF1, SPRED1 and the pseudoautosomal 1 regions on Xp/Yp were significantly associated with decreased 10-year event-free survival, with IKZF1 abnormalities being an independent risk factor in multivariate analysis irrespective of the risk group. Older age and deletions of IKZF1 and SPRED1 were also associated with poor overall survival.